+
+
+
+YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics + open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development. +
+ + + +{dataset}_wandb.yaml
file which can be used to train from dataset artifact.
+ $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data ..
+
+ 
+ $ python utils/logger/wandb/log_dataset.py --data .. --upload_data
+
+
+ $ python utils/logger/wandb/log_dataset.py --data {data}_wandb.yaml
+
+
+ $ python train.py --save_period 1
+
+
+ --resume
argument starts with wandb-artifact://
prefix followed by the run path, i.e, wandb-artifact://username/project/runid
. This doesn't require the model checkpoint to be present on the local system.
+
+ $ python train.py --resume wandb-artifact://{run_path}
+
+
+ --upload_dataset
or
+ train from _wandb.yaml
file and set --save_period
+
+ $ python train.py --resume wandb-artifact://{run_path}
+
+
+