You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
255 lines
7.9 KiB
255 lines
7.9 KiB
4 weeks ago
|
|
||
|
/*
|
||
|
* Licensed to the Apache Software Foundation (ASF) under one
|
||
|
* or more contributor license agreements. See the NOTICE file
|
||
|
* distributed with this work for additional information
|
||
|
* regarding copyright ownership. The ASF licenses this file
|
||
|
* to you under the Apache License, Version 2.0 (the
|
||
|
* "License"); you may not use this file except in compliance
|
||
|
* with the License. You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing,
|
||
|
* software distributed under the License is distributed on an
|
||
|
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||
|
* KIND, either express or implied. See the License for the
|
||
|
* specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*/
|
||
|
|
||
|
|
||
|
/**
|
||
|
* AUTO-GENERATED FILE. DO NOT MODIFY.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Licensed to the Apache Software Foundation (ASF) under one
|
||
|
* or more contributor license agreements. See the NOTICE file
|
||
|
* distributed with this work for additional information
|
||
|
* regarding copyright ownership. The ASF licenses this file
|
||
|
* to you under the Apache License, Version 2.0 (the
|
||
|
* "License"); you may not use this file except in compliance
|
||
|
* with the License. You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing,
|
||
|
* software distributed under the License is distributed on an
|
||
|
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||
|
* KIND, either express or implied. See the License for the
|
||
|
* specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*/
|
||
|
import quickSelect from './quickSelect.js';
|
||
|
var KDTreeNode = /** @class */function () {
|
||
|
function KDTreeNode(axis, data) {
|
||
|
this.axis = axis;
|
||
|
this.data = data;
|
||
|
}
|
||
|
return KDTreeNode;
|
||
|
}();
|
||
|
/**
|
||
|
* @constructor
|
||
|
* @alias module:echarts/data/KDTree
|
||
|
* @param {Array} points List of points.
|
||
|
* each point needs an array property to represent the actual data
|
||
|
* @param {Number} [dimension]
|
||
|
* Point dimension.
|
||
|
* Default will use the first point's length as dimension.
|
||
|
*/
|
||
|
var KDTree = /** @class */function () {
|
||
|
function KDTree(points, dimension) {
|
||
|
// Use one stack to avoid allocation
|
||
|
// each time searching the nearest point
|
||
|
this._stack = [];
|
||
|
// Again avoid allocating a new array
|
||
|
// each time searching nearest N points
|
||
|
this._nearstNList = [];
|
||
|
if (!points.length) {
|
||
|
return;
|
||
|
}
|
||
|
if (!dimension) {
|
||
|
dimension = points[0].array.length;
|
||
|
}
|
||
|
this.dimension = dimension;
|
||
|
this.root = this._buildTree(points, 0, points.length - 1, 0);
|
||
|
}
|
||
|
/**
|
||
|
* Recursively build the tree.
|
||
|
*/
|
||
|
KDTree.prototype._buildTree = function (points, left, right, axis) {
|
||
|
if (right < left) {
|
||
|
return null;
|
||
|
}
|
||
|
var medianIndex = Math.floor((left + right) / 2);
|
||
|
medianIndex = quickSelect(points, left, right, medianIndex, function (a, b) {
|
||
|
return a.array[axis] - b.array[axis];
|
||
|
});
|
||
|
var median = points[medianIndex];
|
||
|
var node = new KDTreeNode(axis, median);
|
||
|
axis = (axis + 1) % this.dimension;
|
||
|
if (right > left) {
|
||
|
node.left = this._buildTree(points, left, medianIndex - 1, axis);
|
||
|
node.right = this._buildTree(points, medianIndex + 1, right, axis);
|
||
|
}
|
||
|
return node;
|
||
|
};
|
||
|
;
|
||
|
/**
|
||
|
* Find nearest point
|
||
|
* @param target Target point
|
||
|
* @param squaredDistance Squared distance function
|
||
|
* @return Nearest point
|
||
|
*/
|
||
|
KDTree.prototype.nearest = function (target, squaredDistance) {
|
||
|
var curr = this.root;
|
||
|
var stack = this._stack;
|
||
|
var idx = 0;
|
||
|
var minDist = Infinity;
|
||
|
var nearestNode = null;
|
||
|
if (curr.data !== target) {
|
||
|
minDist = squaredDistance(curr.data, target);
|
||
|
nearestNode = curr;
|
||
|
}
|
||
|
if (target.array[curr.axis] < curr.data.array[curr.axis]) {
|
||
|
// Left first
|
||
|
curr.right && (stack[idx++] = curr.right);
|
||
|
curr.left && (stack[idx++] = curr.left);
|
||
|
} else {
|
||
|
// Right first
|
||
|
curr.left && (stack[idx++] = curr.left);
|
||
|
curr.right && (stack[idx++] = curr.right);
|
||
|
}
|
||
|
while (idx--) {
|
||
|
curr = stack[idx];
|
||
|
var currDist = target.array[curr.axis] - curr.data.array[curr.axis];
|
||
|
var isLeft = currDist < 0;
|
||
|
var needsCheckOtherSide = false;
|
||
|
currDist = currDist * currDist;
|
||
|
// Intersecting right hyperplane with minDist hypersphere
|
||
|
if (currDist < minDist) {
|
||
|
currDist = squaredDistance(curr.data, target);
|
||
|
if (currDist < minDist && curr.data !== target) {
|
||
|
minDist = currDist;
|
||
|
nearestNode = curr;
|
||
|
}
|
||
|
needsCheckOtherSide = true;
|
||
|
}
|
||
|
if (isLeft) {
|
||
|
if (needsCheckOtherSide) {
|
||
|
curr.right && (stack[idx++] = curr.right);
|
||
|
}
|
||
|
// Search in the left area
|
||
|
curr.left && (stack[idx++] = curr.left);
|
||
|
} else {
|
||
|
if (needsCheckOtherSide) {
|
||
|
curr.left && (stack[idx++] = curr.left);
|
||
|
}
|
||
|
// Search the right area
|
||
|
curr.right && (stack[idx++] = curr.right);
|
||
|
}
|
||
|
}
|
||
|
return nearestNode.data;
|
||
|
};
|
||
|
;
|
||
|
KDTree.prototype._addNearest = function (found, dist, node) {
|
||
|
var nearestNList = this._nearstNList;
|
||
|
var i = found - 1;
|
||
|
// Insert to the right position
|
||
|
// Sort from small to large
|
||
|
for (; i > 0; i--) {
|
||
|
if (dist >= nearestNList[i - 1].dist) {
|
||
|
break;
|
||
|
} else {
|
||
|
nearestNList[i].dist = nearestNList[i - 1].dist;
|
||
|
nearestNList[i].node = nearestNList[i - 1].node;
|
||
|
}
|
||
|
}
|
||
|
nearestNList[i].dist = dist;
|
||
|
nearestNList[i].node = node;
|
||
|
};
|
||
|
;
|
||
|
/**
|
||
|
* Find nearest N points
|
||
|
* @param target Target point
|
||
|
* @param N
|
||
|
* @param squaredDistance Squared distance function
|
||
|
* @param output Output nearest N points
|
||
|
*/
|
||
|
KDTree.prototype.nearestN = function (target, N, squaredDistance, output) {
|
||
|
if (N <= 0) {
|
||
|
output.length = 0;
|
||
|
return output;
|
||
|
}
|
||
|
var curr = this.root;
|
||
|
var stack = this._stack;
|
||
|
var idx = 0;
|
||
|
var nearestNList = this._nearstNList;
|
||
|
for (var i = 0; i < N; i++) {
|
||
|
// Allocate
|
||
|
if (!nearestNList[i]) {
|
||
|
nearestNList[i] = {
|
||
|
dist: 0,
|
||
|
node: null
|
||
|
};
|
||
|
}
|
||
|
nearestNList[i].dist = 0;
|
||
|
nearestNList[i].node = null;
|
||
|
}
|
||
|
var currDist = squaredDistance(curr.data, target);
|
||
|
var found = 0;
|
||
|
if (curr.data !== target) {
|
||
|
found++;
|
||
|
this._addNearest(found, currDist, curr);
|
||
|
}
|
||
|
if (target.array[curr.axis] < curr.data.array[curr.axis]) {
|
||
|
// Left first
|
||
|
curr.right && (stack[idx++] = curr.right);
|
||
|
curr.left && (stack[idx++] = curr.left);
|
||
|
} else {
|
||
|
// Right first
|
||
|
curr.left && (stack[idx++] = curr.left);
|
||
|
curr.right && (stack[idx++] = curr.right);
|
||
|
}
|
||
|
while (idx--) {
|
||
|
curr = stack[idx];
|
||
|
var currDist_1 = target.array[curr.axis] - curr.data.array[curr.axis];
|
||
|
var isLeft = currDist_1 < 0;
|
||
|
var needsCheckOtherSide = false;
|
||
|
currDist_1 = currDist_1 * currDist_1;
|
||
|
// Intersecting right hyperplane with minDist hypersphere
|
||
|
if (found < N || currDist_1 < nearestNList[found - 1].dist) {
|
||
|
currDist_1 = squaredDistance(curr.data, target);
|
||
|
if ((found < N || currDist_1 < nearestNList[found - 1].dist) && curr.data !== target) {
|
||
|
if (found < N) {
|
||
|
found++;
|
||
|
}
|
||
|
this._addNearest(found, currDist_1, curr);
|
||
|
}
|
||
|
needsCheckOtherSide = true;
|
||
|
}
|
||
|
if (isLeft) {
|
||
|
if (needsCheckOtherSide) {
|
||
|
curr.right && (stack[idx++] = curr.right);
|
||
|
}
|
||
|
// Search in the left area
|
||
|
curr.left && (stack[idx++] = curr.left);
|
||
|
} else {
|
||
|
if (needsCheckOtherSide) {
|
||
|
curr.left && (stack[idx++] = curr.left);
|
||
|
}
|
||
|
// Search the right area
|
||
|
curr.right && (stack[idx++] = curr.right);
|
||
|
}
|
||
|
}
|
||
|
// Copy to output
|
||
|
for (var i = 0; i < found; i++) {
|
||
|
output[i] = nearestNList[i].node.data;
|
||
|
}
|
||
|
output.length = found;
|
||
|
return output;
|
||
|
};
|
||
|
return KDTree;
|
||
|
}();
|
||
|
export default KDTree;
|