You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
parttimejob/node_modules/echarts/lib/util/KDTree.js

255 lines
7.9 KiB

/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/**
* AUTO-GENERATED FILE. DO NOT MODIFY.
*/
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
import quickSelect from './quickSelect.js';
var KDTreeNode = /** @class */function () {
function KDTreeNode(axis, data) {
this.axis = axis;
this.data = data;
}
return KDTreeNode;
}();
/**
* @constructor
* @alias module:echarts/data/KDTree
* @param {Array} points List of points.
* each point needs an array property to represent the actual data
* @param {Number} [dimension]
* Point dimension.
* Default will use the first point's length as dimension.
*/
var KDTree = /** @class */function () {
function KDTree(points, dimension) {
// Use one stack to avoid allocation
// each time searching the nearest point
this._stack = [];
// Again avoid allocating a new array
// each time searching nearest N points
this._nearstNList = [];
if (!points.length) {
return;
}
if (!dimension) {
dimension = points[0].array.length;
}
this.dimension = dimension;
this.root = this._buildTree(points, 0, points.length - 1, 0);
}
/**
* Recursively build the tree.
*/
KDTree.prototype._buildTree = function (points, left, right, axis) {
if (right < left) {
return null;
}
var medianIndex = Math.floor((left + right) / 2);
medianIndex = quickSelect(points, left, right, medianIndex, function (a, b) {
return a.array[axis] - b.array[axis];
});
var median = points[medianIndex];
var node = new KDTreeNode(axis, median);
axis = (axis + 1) % this.dimension;
if (right > left) {
node.left = this._buildTree(points, left, medianIndex - 1, axis);
node.right = this._buildTree(points, medianIndex + 1, right, axis);
}
return node;
};
;
/**
* Find nearest point
* @param target Target point
* @param squaredDistance Squared distance function
* @return Nearest point
*/
KDTree.prototype.nearest = function (target, squaredDistance) {
var curr = this.root;
var stack = this._stack;
var idx = 0;
var minDist = Infinity;
var nearestNode = null;
if (curr.data !== target) {
minDist = squaredDistance(curr.data, target);
nearestNode = curr;
}
if (target.array[curr.axis] < curr.data.array[curr.axis]) {
// Left first
curr.right && (stack[idx++] = curr.right);
curr.left && (stack[idx++] = curr.left);
} else {
// Right first
curr.left && (stack[idx++] = curr.left);
curr.right && (stack[idx++] = curr.right);
}
while (idx--) {
curr = stack[idx];
var currDist = target.array[curr.axis] - curr.data.array[curr.axis];
var isLeft = currDist < 0;
var needsCheckOtherSide = false;
currDist = currDist * currDist;
// Intersecting right hyperplane with minDist hypersphere
if (currDist < minDist) {
currDist = squaredDistance(curr.data, target);
if (currDist < minDist && curr.data !== target) {
minDist = currDist;
nearestNode = curr;
}
needsCheckOtherSide = true;
}
if (isLeft) {
if (needsCheckOtherSide) {
curr.right && (stack[idx++] = curr.right);
}
// Search in the left area
curr.left && (stack[idx++] = curr.left);
} else {
if (needsCheckOtherSide) {
curr.left && (stack[idx++] = curr.left);
}
// Search the right area
curr.right && (stack[idx++] = curr.right);
}
}
return nearestNode.data;
};
;
KDTree.prototype._addNearest = function (found, dist, node) {
var nearestNList = this._nearstNList;
var i = found - 1;
// Insert to the right position
// Sort from small to large
for (; i > 0; i--) {
if (dist >= nearestNList[i - 1].dist) {
break;
} else {
nearestNList[i].dist = nearestNList[i - 1].dist;
nearestNList[i].node = nearestNList[i - 1].node;
}
}
nearestNList[i].dist = dist;
nearestNList[i].node = node;
};
;
/**
* Find nearest N points
* @param target Target point
* @param N
* @param squaredDistance Squared distance function
* @param output Output nearest N points
*/
KDTree.prototype.nearestN = function (target, N, squaredDistance, output) {
if (N <= 0) {
output.length = 0;
return output;
}
var curr = this.root;
var stack = this._stack;
var idx = 0;
var nearestNList = this._nearstNList;
for (var i = 0; i < N; i++) {
// Allocate
if (!nearestNList[i]) {
nearestNList[i] = {
dist: 0,
node: null
};
}
nearestNList[i].dist = 0;
nearestNList[i].node = null;
}
var currDist = squaredDistance(curr.data, target);
var found = 0;
if (curr.data !== target) {
found++;
this._addNearest(found, currDist, curr);
}
if (target.array[curr.axis] < curr.data.array[curr.axis]) {
// Left first
curr.right && (stack[idx++] = curr.right);
curr.left && (stack[idx++] = curr.left);
} else {
// Right first
curr.left && (stack[idx++] = curr.left);
curr.right && (stack[idx++] = curr.right);
}
while (idx--) {
curr = stack[idx];
var currDist_1 = target.array[curr.axis] - curr.data.array[curr.axis];
var isLeft = currDist_1 < 0;
var needsCheckOtherSide = false;
currDist_1 = currDist_1 * currDist_1;
// Intersecting right hyperplane with minDist hypersphere
if (found < N || currDist_1 < nearestNList[found - 1].dist) {
currDist_1 = squaredDistance(curr.data, target);
if ((found < N || currDist_1 < nearestNList[found - 1].dist) && curr.data !== target) {
if (found < N) {
found++;
}
this._addNearest(found, currDist_1, curr);
}
needsCheckOtherSide = true;
}
if (isLeft) {
if (needsCheckOtherSide) {
curr.right && (stack[idx++] = curr.right);
}
// Search in the left area
curr.left && (stack[idx++] = curr.left);
} else {
if (needsCheckOtherSide) {
curr.left && (stack[idx++] = curr.left);
}
// Search the right area
curr.right && (stack[idx++] = curr.right);
}
}
// Copy to output
for (var i = 0; i < found; i++) {
output[i] = nearestNList[i].node.data;
}
output.length = found;
return output;
};
return KDTree;
}();
export default KDTree;