|
|
|
|
import tkinter as tk
|
|
|
|
|
from tkinter import filedialog
|
|
|
|
|
import cv2
|
|
|
|
|
import utils
|
|
|
|
|
import numpy as np
|
|
|
|
|
import argparse
|
|
|
|
|
import imutils
|
|
|
|
|
from imutils import contours
|
|
|
|
|
|
|
|
|
|
# 创建tkinter根窗口并立即隐藏
|
|
|
|
|
root = tk.Tk()
|
|
|
|
|
root.withdraw()
|
|
|
|
|
|
|
|
|
|
# 弹出文件选择对话框让用户选择模板文件
|
|
|
|
|
template_file_path = filedialog.askopenfilename(title="选择模板文件", filetypes=[("PNG files", "*.png"), ("JPEG files", "*.jpg"), ("All files", "*.*")])
|
|
|
|
|
# 弹出文件选择对话框让用户选择信用卡图片
|
|
|
|
|
image_file_path = filedialog.askopenfilename(title="选择信用卡图片", filetypes=[("PNG files", "*.png"), ("JPEG files", "*.jpg"), ("All files", "*.*")])
|
|
|
|
|
|
|
|
|
|
# 使用用户选择的路径读取模板文件和信用卡图片
|
|
|
|
|
img = cv2.imread(template_file_path)
|
|
|
|
|
image = cv2.imread(image_file_path)
|
|
|
|
|
|
|
|
|
|
#指定信用卡类型
|
|
|
|
|
FIRST_NUMBER={
|
|
|
|
|
"3":"American Express",
|
|
|
|
|
"4":"Visa",
|
|
|
|
|
"5":"MasterCard",
|
|
|
|
|
"6":"Discover Card"
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#绘图展示
|
|
|
|
|
def cv_show(name,img):
|
|
|
|
|
cv2.imshow(name,img)
|
|
|
|
|
cv2.waitKey(0)
|
|
|
|
|
cv2.destroyAllWindows()
|
|
|
|
|
|
|
|
|
|
#读取一个模板文件
|
|
|
|
|
img=cv2.imread(template_file_path)
|
|
|
|
|
cv_show("img",img)
|
|
|
|
|
#灰度图
|
|
|
|
|
ref=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
|
|
|
|
cv_show('ref',ref)
|
|
|
|
|
#二值图像
|
|
|
|
|
ref=cv2.threshold(ref,10,255,cv2.THRESH_BINARY_INV)[1]
|
|
|
|
|
cv_show('ref',ref)
|
|
|
|
|
|
|
|
|
|
#计算轮廓
|
|
|
|
|
#cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图)
|
|
|
|
|
#cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标
|
|
|
|
|
#返回的list中每个元素都是图像中的一个轮廓
|
|
|
|
|
|
|
|
|
|
refCnts,hierarchy=cv2.findContours(ref.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
cv2.drawContours(img,refCnts,-1,(0,0,255),3)
|
|
|
|
|
cv_show('img',img)
|
|
|
|
|
refCnts=utils.sort_contours(refCnts,method="left-to-right")[0]#排序从左到右,从上到下
|
|
|
|
|
digits={}
|
|
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
第一个参数:img是原图
|
|
|
|
|
第二个参数:(x,y)是矩阵的左上点坐标
|
|
|
|
|
第三个参数:(x+w,y+h)是矩阵的右下点坐标
|
|
|
|
|
第四个参数:(0,255,0)是画线对应的rgb颜色
|
|
|
|
|
'''
|
|
|
|
|
#遍历每一个轮廓
|
|
|
|
|
for(i,c) in enumerate(refCnts):
|
|
|
|
|
#计算外接矩形并且resize成合适大小
|
|
|
|
|
(x,y,w,h)=cv2.boundingRect(c)
|
|
|
|
|
roi=ref[y:y+h,x:x+w]
|
|
|
|
|
roi=cv2.resize(roi,(57,58))
|
|
|
|
|
|
|
|
|
|
#每一个数字对应一个模板
|
|
|
|
|
digits[i]=roi
|
|
|
|
|
|
|
|
|
|
#初始化卷积核
|
|
|
|
|
rectKernel=cv2.getStructuringElement(cv2.MORPH_RECT,(9,3))
|
|
|
|
|
sqKernel=cv2.getStructuringElement(cv2.MORPH_RECT,(5,5))
|
|
|
|
|
|
|
|
|
|
#读取输入图像,预处理
|
|
|
|
|
image=cv2.imread(image_file_path)
|
|
|
|
|
cv_show('image',image)
|
|
|
|
|
image=utils.resize(image,width=300)
|
|
|
|
|
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
|
|
|
|
|
cv_show('gray',gray)
|
|
|
|
|
|
|
|
|
|
#礼帽操作,突出更明亮的区域
|
|
|
|
|
tophat=cv2.morphologyEx(gray,cv2.MORPH_TOPHAT,rectKernel)
|
|
|
|
|
cv_show('tophat',tophat)
|
|
|
|
|
|
|
|
|
|
#计算
|
|
|
|
|
gradX=cv2.Sobel(tophat,ddepth=cv2.CV_32F,dx=1,dy=0,ksize=1)
|
|
|
|
|
gradX=np.absolute(gradX)
|
|
|
|
|
(minVal,maxVal)=(np.min(gradX),np.max(gradX))
|
|
|
|
|
gradX=(255*((gradX-minVal)/(maxVal-minVal)))
|
|
|
|
|
gradX=gradX.astype("uint8")
|
|
|
|
|
|
|
|
|
|
print(np.array(gradX).shape)
|
|
|
|
|
cv_show('gradX',gradX)
|
|
|
|
|
|
|
|
|
|
#通过闭操作,(先膨胀,在腐蚀)将数字连在一起
|
|
|
|
|
gradX=cv2.morphologyEx(gradX,cv2.MORPH_CLOSE,rectKernel)
|
|
|
|
|
cv_show('gradX',gradX)
|
|
|
|
|
#THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0
|
|
|
|
|
thresh=cv2.threshold(gradX,0,255,cv2.THRESH_BINARY|cv2.THRESH_OTSU)[1]
|
|
|
|
|
cv_show('thresh',thresh)
|
|
|
|
|
|
|
|
|
|
#再来一个闭操作
|
|
|
|
|
thresh=cv2.morphologyEx(thresh,cv2.MORPH_CLOSE,sqKernel)
|
|
|
|
|
cv_show('thresh',thresh)
|
|
|
|
|
|
|
|
|
|
#计算轮廓
|
|
|
|
|
threshCnts,hierarchy=cv2.findContours(thresh.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
cnts=threshCnts
|
|
|
|
|
cur_img=image.copy()
|
|
|
|
|
cv2.drawContours(cur_img,cnts,-1,(0,0,255),3)
|
|
|
|
|
cv_show('img',cur_img)
|
|
|
|
|
locs=[]
|
|
|
|
|
|
|
|
|
|
#遍历轮廓
|
|
|
|
|
for (i,c) in enumerate(cnts):
|
|
|
|
|
#计算矩形
|
|
|
|
|
(x,y,w,h)=cv2.boundingRect(c)
|
|
|
|
|
ar=w/float(h)
|
|
|
|
|
|
|
|
|
|
#适合合适的区域,根据实际任务来,这里的基本是四个数字一组
|
|
|
|
|
if ar>2.5 and ar <4.0:
|
|
|
|
|
if(w>40 and w<55) and (h>10 and h<20):
|
|
|
|
|
#符合的留下来
|
|
|
|
|
locs.append((x,y,w,h))
|
|
|
|
|
#将符合的轮廓从左到右排序
|
|
|
|
|
locs=sorted(locs,key=lambda x:x[0])
|
|
|
|
|
output=[]
|
|
|
|
|
|
|
|
|
|
#遍历每一个轮廓中的数字
|
|
|
|
|
for (i,(gX,gY,gW,gH)) in enumerate(locs):
|
|
|
|
|
#initialize the list of group digits
|
|
|
|
|
groupOutput=[]
|
|
|
|
|
|
|
|
|
|
#根据坐标提取每一个组
|
|
|
|
|
group=gray[gY-5:gY+gH+5,gX-5:gX+gW+5]
|
|
|
|
|
cv_show('group',group)
|
|
|
|
|
#预处理
|
|
|
|
|
group=cv2.threshold(group,0,255,cv2.THRESH_BINARY|cv2.THRESH_OTSU)[1]
|
|
|
|
|
cv_show('group',group)
|
|
|
|
|
#计算每一个轮廓
|
|
|
|
|
digitCnts,hierarchy=cv2.findContours(group.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
digitCnts=contours.sort_contours(digitCnts,method="left-to-right")[0]
|
|
|
|
|
#计算每一组总的每一个数值
|
|
|
|
|
for c in digitCnts:
|
|
|
|
|
#找到当前数值的轮廓,resize成合适的大小
|
|
|
|
|
(x,y,w,h)=cv2.boundingRect(c)
|
|
|
|
|
roi=group[y:y+h,x:x+w]
|
|
|
|
|
roi=cv2.resize(roi,(57,58))
|
|
|
|
|
cv_show('roi',roi)
|
|
|
|
|
|
|
|
|
|
#计算匹配得分
|
|
|
|
|
scores=[]
|
|
|
|
|
#在模板章中计算每一个得分
|
|
|
|
|
for(digit,digiROI) in digits.items():
|
|
|
|
|
#模板匹配
|
|
|
|
|
result=cv2.matchTemplate(roi,digiROI,cv2.TM_CCOEFF)
|
|
|
|
|
(_,score,_,_)=cv2.minMaxLoc(result)
|
|
|
|
|
scores.append(score)
|
|
|
|
|
#得到合适的数字
|
|
|
|
|
groupOutput.append(str(np.argmax(scores)))
|
|
|
|
|
|
|
|
|
|
#画出来
|
|
|
|
|
cv2.rectangle(image,(gX-5,gY-5),(gX+gW+5,gY+gH+5),(0,0,255),1)
|
|
|
|
|
cv2.putText(image,"".join(groupOutput),(gX,gY-15),cv2.FONT_HERSHEY_SIMPLEX,0.65,(0,0,255),2)
|
|
|
|
|
#得到结果
|
|
|
|
|
output.extend(groupOutput)
|
|
|
|
|
# 打印结果
|
|
|
|
|
print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
|
|
|
|
|
print("Credit Card #: {}".format("".join(output)))
|
|
|
|
|
cv2.imshow("Image", image)
|
|
|
|
|
cv2.waitKey(0)
|
|
|
|
|
cv2.destroyAllWindows() # 确保关闭所有窗口
|
|
|
|
|
cv2.imwrite("final_output.jpg", image) # 保存图像到文件
|
|
|
|
|
|
|
|
|
|
|