|
|
|
@ -0,0 +1,302 @@
|
|
|
|
|
########手写数字数据集##########
|
|
|
|
|
###########保存模型############
|
|
|
|
|
########1层隐含层(全连接层)##########
|
|
|
|
|
#60000条训练数据和10000条测试数据,28x28像素的灰度图像
|
|
|
|
|
#隐含层激活函数:ReLU函数
|
|
|
|
|
#输出层激活函数:softmax函数(实现多分类)
|
|
|
|
|
#损失函数:稀疏交叉熵损失函数
|
|
|
|
|
#输入层有784个节点,隐含层有128个神经元,输出层有10个节点
|
|
|
|
|
import tensorflow as tf
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
import numpy as np
|
|
|
|
|
import tkinter as tk
|
|
|
|
|
from tkinter import filedialog
|
|
|
|
|
import cv2
|
|
|
|
|
import utilsl
|
|
|
|
|
import numpy as np
|
|
|
|
|
import argparse
|
|
|
|
|
import imutils
|
|
|
|
|
from imutils import contours
|
|
|
|
|
import tensorflow as tf
|
|
|
|
|
import time
|
|
|
|
|
print('--------------')
|
|
|
|
|
nowtime = time.strftime('%Y-%m-%d %H:%M:%S')
|
|
|
|
|
print(nowtime)
|
|
|
|
|
|
|
|
|
|
#指定GPU
|
|
|
|
|
#import os
|
|
|
|
|
#os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
|
|
|
|
#gpus = tf.config.experimental.list_physical_devices('GPU')
|
|
|
|
|
#tf.config.experimental.set_memory_growth(gpus[0],True)
|
|
|
|
|
#初始化
|
|
|
|
|
plt.rcParams['font.sans-serif'] = ['SimHei']
|
|
|
|
|
|
|
|
|
|
#加载数据
|
|
|
|
|
mnist = tf.keras.datasets.mnist
|
|
|
|
|
(train_x,train_y),(test_x,test_y) = mnist.load_data()
|
|
|
|
|
print('\n train_x:%s, train_y:%s, test_x:%s, test_y:%s'%(train_x.shape,train_y.shape,test_x.shape,test_y.shape))
|
|
|
|
|
|
|
|
|
|
#数据预处理
|
|
|
|
|
#X_train = train_x.reshape((60000,28*28))
|
|
|
|
|
#Y_train = train_y.reshape((60000,28*28)) #后面采用tf.keras.layers.Flatten()改变数组形状
|
|
|
|
|
X_train,X_test = tf.cast(train_x/255.0,tf.float32),tf.cast(test_x/255.0,tf.float32) #归一化
|
|
|
|
|
y_train,y_test = tf.cast(train_y,tf.int16),tf.cast(test_y,tf.int16)
|
|
|
|
|
|
|
|
|
|
#建立模型
|
|
|
|
|
model = tf.keras.Sequential()
|
|
|
|
|
model.add(tf.keras.layers.Flatten(input_shape=(28,28))) #添加Flatten层说明输入数据的形状
|
|
|
|
|
model.add(tf.keras.layers.Dense(128,activation='relu')) #添加隐含层,为全连接层,128个节点,relu激活函数
|
|
|
|
|
model.add(tf.keras.layers.Dense(10,activation='softmax')) #添加输出层,为全连接层,10个节点,softmax激活函数
|
|
|
|
|
print('\n',model.summary()) #查看网络结构和参数信息
|
|
|
|
|
|
|
|
|
|
#配置模型训练方法
|
|
|
|
|
#adam算法参数采用keras默认的公开参数,损失函数采用稀疏交叉熵损失函数,准确率采用稀疏分类准确率函数
|
|
|
|
|
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['sparse_categorical_accuracy'])
|
|
|
|
|
|
|
|
|
|
#训练模型
|
|
|
|
|
#批量训练大小为64,迭代5次,测试集比例0.2(48000条训练集数据,12000条测试集数据)
|
|
|
|
|
print('--------------')
|
|
|
|
|
nowtime = time.strftime('%Y-%m-%d %H:%M:%S')
|
|
|
|
|
print('训练前时刻:'+str(nowtime))
|
|
|
|
|
|
|
|
|
|
history = model.fit(X_train,y_train,batch_size=64,epochs=5,validation_split=0.2)
|
|
|
|
|
|
|
|
|
|
print('--------------')
|
|
|
|
|
nowtime = time.strftime('%Y-%m-%d %H:%M:%S')
|
|
|
|
|
print('训练后时刻:'+str(nowtime))
|
|
|
|
|
#评估模型
|
|
|
|
|
model.evaluate(X_test,y_test,verbose=2) #每次迭代输出一条记录,来评价该模型是否有比较好的泛化能力
|
|
|
|
|
|
|
|
|
|
#保存模型参数
|
|
|
|
|
#model.save_weights('C:\\Users\\xuyansong\\Desktop\\深度学习\\python\\MNIST\\模型参数\\mnist_weights.h5')
|
|
|
|
|
#保存整个模型
|
|
|
|
|
model.save('mnist_weights.h5')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#结果可视化
|
|
|
|
|
print(history.history)
|
|
|
|
|
loss = history.history['loss'] #训练集损失
|
|
|
|
|
val_loss = history.history['val_loss'] #测试集损失
|
|
|
|
|
acc = history.history['sparse_categorical_accuracy'] #训练集准确率
|
|
|
|
|
val_acc = history.history['val_sparse_categorical_accuracy'] #测试集准确率
|
|
|
|
|
|
|
|
|
|
plt.figure(figsize=(10,3))
|
|
|
|
|
|
|
|
|
|
plt.subplot(121)
|
|
|
|
|
plt.plot(loss,color='b',label='train')
|
|
|
|
|
plt.plot(val_loss,color='r',label='test')
|
|
|
|
|
plt.ylabel('loss')
|
|
|
|
|
plt.legend()
|
|
|
|
|
|
|
|
|
|
plt.subplot(122)
|
|
|
|
|
plt.plot(acc,color='b',label='train')
|
|
|
|
|
plt.plot(val_acc,color='r',label='test')
|
|
|
|
|
plt.ylabel('Accuracy')
|
|
|
|
|
plt.legend()
|
|
|
|
|
|
|
|
|
|
#暂停5秒关闭画布,否则画布一直打开的同时,会持续占用GPU内存
|
|
|
|
|
#根据需要自行选择
|
|
|
|
|
#plt.ion() #打开交互式操作模式
|
|
|
|
|
#plt.show()
|
|
|
|
|
#plt.pause(5)
|
|
|
|
|
#plt.close()
|
|
|
|
|
|
|
|
|
|
#使用模型
|
|
|
|
|
#plt.figure()
|
|
|
|
|
#for i in range(10):
|
|
|
|
|
# num = np.random.randint(1,10000)
|
|
|
|
|
|
|
|
|
|
# plt.subplot(2,5,i+1)
|
|
|
|
|
# plt.axis('off')
|
|
|
|
|
# plt.imshow(test_x[num],cmap='gray')
|
|
|
|
|
# demo = tf.reshape(X_test[num],(1,28,28))
|
|
|
|
|
# y_pred = np.argmax(model.predict(demo))
|
|
|
|
|
# plt.title('标签值:'+str(test_y[num])+'\n预测值:'+str(y_pred))
|
|
|
|
|
#y_pred = np.argmax(model.predict(X_test[0:5]),axis=1)
|
|
|
|
|
#print('X_test[0:5]: %s'%(X_test[0:5].shape))
|
|
|
|
|
#print('y_pred: %s'%(y_pred))
|
|
|
|
|
|
|
|
|
|
#plt.ion() #打开交互式操作模式
|
|
|
|
|
#plt.show()
|
|
|
|
|
#plt.pause(5)
|
|
|
|
|
#plt.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 创建tkinter根窗口并立即隐藏
|
|
|
|
|
root = tk.Tk()
|
|
|
|
|
root.withdraw()
|
|
|
|
|
|
|
|
|
|
# 弹出文件选择对话框让用户选择模板文件
|
|
|
|
|
#template_file_path = filedialog.askopenfilename(title="选择模板文件", filetypes=[("PNG files", "*.png"), ("JPEG files", "*.jpg"), ("All files", "*.*")])
|
|
|
|
|
# 弹出文件选择对话框让用户选择信用卡图片
|
|
|
|
|
image_file_path = filedialog.askopenfilename(title="选择信用卡图片", filetypes=[("PNG files", "*.png"), ("JPEG files", "*.jpg"), ("All files", "*.*")])
|
|
|
|
|
|
|
|
|
|
# 使用用户选择的路径读取模板文件和信用卡图片
|
|
|
|
|
#img = cv2.imread(template_file_path)
|
|
|
|
|
image = cv2.imread(image_file_path)
|
|
|
|
|
|
|
|
|
|
#指定信用卡类型
|
|
|
|
|
FIRST_NUMBER={
|
|
|
|
|
"3":"American Express",
|
|
|
|
|
"4":"Visa",
|
|
|
|
|
"5":"MasterCard",
|
|
|
|
|
"6":"Discover Card"
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#绘图展示
|
|
|
|
|
def cv_show(name,img):
|
|
|
|
|
cv2.imshow(name,img)
|
|
|
|
|
cv2.waitKey(0)
|
|
|
|
|
cv2.destroyAllWindows()
|
|
|
|
|
|
|
|
|
|
def preprocess_image(roi):
|
|
|
|
|
# 调整图像大小并归一化
|
|
|
|
|
roi = cv2.resize(roi, (28, 28))
|
|
|
|
|
roi = roi / 255.0
|
|
|
|
|
roi = roi.reshape(1, 28, 28, 1) # 为模型输入调整形状
|
|
|
|
|
return roi
|
|
|
|
|
|
|
|
|
|
def predict_digit(roi, model):
|
|
|
|
|
roi = preprocess_image(roi)
|
|
|
|
|
prediction = model.predict(roi)
|
|
|
|
|
digit = np.argmax(prediction)
|
|
|
|
|
return str(digit)
|
|
|
|
|
|
|
|
|
|
#读取一个模板文件
|
|
|
|
|
#img=cv2.imread(template_file_path)
|
|
|
|
|
#cv_show("img",img)
|
|
|
|
|
#灰度图
|
|
|
|
|
#ref=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
|
|
|
|
#cv_show('ref',ref)
|
|
|
|
|
#二值图像
|
|
|
|
|
#ref=cv2.threshold(ref,10,255,cv2.THRESH_BINARY_INV)[1]
|
|
|
|
|
#cv_show('ref',ref)
|
|
|
|
|
|
|
|
|
|
#model = tf.keras.models.load_model('mnist_weights.h5')
|
|
|
|
|
|
|
|
|
|
#计算轮廓
|
|
|
|
|
#cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图)
|
|
|
|
|
#cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标
|
|
|
|
|
#返回的list中每个元素都是图像中的一个轮廓
|
|
|
|
|
|
|
|
|
|
#refCnts,hierarchy=cv2.findContours(ref.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
#cv2.drawContours(img,refCnts,-1,(0,0,255),3)
|
|
|
|
|
#cv_show('img',img)
|
|
|
|
|
#refCnts=utilsl.sort_contours(refCnts,method="left-to-right")[0]#排序从左到右,从上到下
|
|
|
|
|
#digits={}
|
|
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
第一个参数:img是原图
|
|
|
|
|
第二个参数:(x,y)是矩阵的左上点坐标
|
|
|
|
|
第三个参数:(x+w,y+h)是矩阵的右下点坐标
|
|
|
|
|
第四个参数:(0,255,0)是画线对应的rgb颜色
|
|
|
|
|
'''
|
|
|
|
|
#遍历每一个轮廓
|
|
|
|
|
#for(i,c) in enumerate(refCnts):
|
|
|
|
|
#计算外接矩形并且resize成合适大小
|
|
|
|
|
# (x,y,w,h)=cv2.boundingRect(c)
|
|
|
|
|
# roi=ref[y:y+h,x:x+w]
|
|
|
|
|
# roi=cv2.resize(roi,(57,58))
|
|
|
|
|
|
|
|
|
|
#每一个数字对应一个模板
|
|
|
|
|
# digits[i]=roi
|
|
|
|
|
|
|
|
|
|
#初始化卷积核
|
|
|
|
|
rectKernel=cv2.getStructuringElement(cv2.MORPH_RECT,(9,3))
|
|
|
|
|
sqKernel=cv2.getStructuringElement(cv2.MORPH_RECT,(5,5))
|
|
|
|
|
|
|
|
|
|
#读取输入图像,预处理
|
|
|
|
|
image=cv2.imread(image_file_path)
|
|
|
|
|
cv_show('image',image)
|
|
|
|
|
image=utilsl.resize(image,width=300)
|
|
|
|
|
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
|
|
|
|
|
cv_show('gray',gray)
|
|
|
|
|
|
|
|
|
|
#礼帽操作,突出更明亮的区域
|
|
|
|
|
tophat=cv2.morphologyEx(gray,cv2.MORPH_TOPHAT,rectKernel)
|
|
|
|
|
cv_show('tophat',tophat)
|
|
|
|
|
|
|
|
|
|
#计算
|
|
|
|
|
gradX=cv2.Sobel(tophat,ddepth=cv2.CV_32F,dx=1,dy=0,ksize=1)
|
|
|
|
|
gradX=np.absolute(gradX)
|
|
|
|
|
(minVal,maxVal)=(np.min(gradX),np.max(gradX))
|
|
|
|
|
gradX=(255*((gradX-minVal)/(maxVal-minVal)))
|
|
|
|
|
gradX=gradX.astype("uint8")
|
|
|
|
|
|
|
|
|
|
print(np.array(gradX).shape)
|
|
|
|
|
cv_show('gradX',gradX)
|
|
|
|
|
|
|
|
|
|
#通过闭操作,(先膨胀,在腐蚀)将数字连在一起
|
|
|
|
|
gradX=cv2.morphologyEx(gradX,cv2.MORPH_CLOSE,rectKernel)
|
|
|
|
|
cv_show('gradX',gradX)
|
|
|
|
|
#THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0
|
|
|
|
|
thresh=cv2.threshold(gradX,0,255,cv2.THRESH_BINARY|cv2.THRESH_OTSU)[1]
|
|
|
|
|
cv_show('thresh',thresh)
|
|
|
|
|
|
|
|
|
|
#再来一个闭操作
|
|
|
|
|
thresh=cv2.morphologyEx(thresh,cv2.MORPH_CLOSE,sqKernel)
|
|
|
|
|
cv_show('thresh',thresh)
|
|
|
|
|
|
|
|
|
|
thresh=cv2.morphologyEx(thresh,cv2.MORPH_CLOSE,sqKernel)
|
|
|
|
|
cv_show('thresh',thresh)
|
|
|
|
|
|
|
|
|
|
#计算轮廓
|
|
|
|
|
threshCnts,hierarchy=cv2.findContours(thresh.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
cnts=threshCnts
|
|
|
|
|
cur_img=image.copy()
|
|
|
|
|
cv2.drawContours(cur_img,cnts,-1,(0,0,255),3)
|
|
|
|
|
cv_show('img',cur_img)
|
|
|
|
|
locs=[]
|
|
|
|
|
|
|
|
|
|
#遍历轮廓
|
|
|
|
|
for (i,c) in enumerate(cnts):
|
|
|
|
|
#计算矩形
|
|
|
|
|
(x,y,w,h)=cv2.boundingRect(c)
|
|
|
|
|
ar=w/float(h)
|
|
|
|
|
|
|
|
|
|
#适合合适的区域,根据实际任务来,这里的基本是四个数字一组
|
|
|
|
|
if ar>2.5 and ar <4:
|
|
|
|
|
if(w>40 and w<55) and (h>10 and h<20):
|
|
|
|
|
#符合的留下来
|
|
|
|
|
locs.append((x,y,w,h))
|
|
|
|
|
#将符合的轮廓从左到右排序
|
|
|
|
|
locs=sorted(locs,key=lambda x:x[0])
|
|
|
|
|
output=[]
|
|
|
|
|
|
|
|
|
|
#遍历每一个轮廓中的数字
|
|
|
|
|
for (i,(gX,gY,gW,gH)) in enumerate(locs):
|
|
|
|
|
#initialize the list of group digits
|
|
|
|
|
groupOutput=[]
|
|
|
|
|
|
|
|
|
|
#根据坐标提取每一个组
|
|
|
|
|
group=gray[gY-5:gY+gH+5,gX-5:gX+gW+5]
|
|
|
|
|
cv_show('group',group)
|
|
|
|
|
#预处理
|
|
|
|
|
group=cv2.threshold(group,0,255,cv2.THRESH_BINARY|cv2.THRESH_OTSU)[1]
|
|
|
|
|
cv_show('group',group)
|
|
|
|
|
#计算每一个轮廓
|
|
|
|
|
digitCnts,hierarchy=cv2.findContours(group.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
digitCnts=contours.sort_contours(digitCnts,method="left-to-right")[0]
|
|
|
|
|
#计算每一组总的每一个数值
|
|
|
|
|
for c in digitCnts:
|
|
|
|
|
(x, y, w, h) = cv2.boundingRect(c)
|
|
|
|
|
roi = group[y:y + h, x:x + w]
|
|
|
|
|
roi = cv2.resize(roi, (28, 28))
|
|
|
|
|
cv_show('roi', roi)
|
|
|
|
|
|
|
|
|
|
digit = predict_digit(roi, model)
|
|
|
|
|
groupOutput.append(digit)
|
|
|
|
|
|
|
|
|
|
print("识别的数字:", groupOutput)
|
|
|
|
|
|
|
|
|
|
#画出来
|
|
|
|
|
cv2.rectangle(image,(gX-5,gY-5),(gX+gW+5,gY+gH+5),(0,0,255),1)
|
|
|
|
|
cv2.putText(image,"".join(groupOutput),(gX,gY-15),cv2.FONT_HERSHEY_SIMPLEX,0.65,(0,0,255),2)
|
|
|
|
|
#得到结果
|
|
|
|
|
output.extend(groupOutput)
|
|
|
|
|
# 打印结果
|
|
|
|
|
#print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
|
|
|
|
|
print("Credit Card #: {}".format("".join(output)))
|
|
|
|
|
cv2.imshow("Image", image)
|
|
|
|
|
cv2.waitKey()
|
|
|
|
|
cv2.destroyAllWindows()
|