You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

299 lines
7.4 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#define N 3 // 定义拼图的维度这是一个3x3的拼图
typedef struct Node {
int puzzle[N][N]; // 存储拼图状态的数组
struct Node* parent; // 指向父节点的指针,用于追踪路径
int f, g, h; // A*算法中的 f, g, h 值
} Node;
// 创建新的拼图节点
Node* createNode(int puzzle[N][N]) {
Node* newnode = (Node*)malloc(sizeof(Node));
int i;
for( i=0;i<N;i++)
{
int j;
for(j=0;j<N;j++)
{
newnode->puzzle[i][j]=puzzle[i][j];
}
}
newnode->parent=NULL;
newnode->f=0;newnode->g=0;newnode->h=0;
}
// 检查两个拼图状态是否相同
bool isSamePuzzle(int a[N][N], int b[N][N]) {
int k=0,i;
for( i=0;i<N;i++)//相同则返回true,否则返回false
{
int j;
for(j=0;j<N;j++)
{
if(a[i][j]!=b[i][j])
k=1;
}
}
if(k==0) return 1;
else return 0;
}
// 打印拼图状态
void printPuzzle(int puzzle[N][N]) {
int i,j;
for(i=0;i<N;i++)//双重for循环实现拼图的打印
{
for(j=0;j<N;j++)
{
printf("%d ",puzzle[N][N]);
}
printf("\n");
}
printf("\n");
}
// 启发函数,计算当前状态到目标状态的估计代价
int heuristic(Node* current, Node* goal) {
int h = 0,i,j;
for(i=0;i<N;i++)
{
for(j=0;j<N;j++)
{
if(current->puzzle[i][j]!=goal->puzzle[i][j])
{
h++;
}
}
}
return h;
// 计算不匹配的拼图块数量
}
// 移动操作,生成新的拼图状态
Node* move(Node* current, int dir) {
int key_x, key_y,i,j;//记录空白块的位置
for(i=0;i<N;i++)// 找到空白块的位置
{
for(j=0;j<N;j++)
{
if(current->puzzle[i][j]==0)
{
key_x=i;
key_y=j;
}
}
}
int new_x,new_y;
new_x=key_x;new_y=key_y;
if(dir==0)
{
new_x--;
if(new_x<0)
return NULL;
}
if(dir==1)
{
new_x++;
if(new_x==N)
return NULL;
}
if(dir==2)
{
new_y--;
if(new_y<0) return NULL;
}
if(dir==3)
{
new_y++;
if(new_y==N) return NULL;
}
//给new_x、new_y赋值
// 根据移动方向更新新块的位置,上下左右移动
// 检查新位置是否在边界内
// 创建新节点,复制当前拼图状态,并交换块的位置
Node* new_node = createNode(current->puzzle);
new_node->puzzle[key_x][key_y] = current->puzzle[new_x][new_y];
new_node->puzzle[new_x][new_y] = 0;
return new_node;
}
// A*算法,寻找最短路径
Node* AStar(Node* start, Node* goal) {
Node* OPEN[1000]; // 开放列表,用于存储待探索的节点
Node* CLOSED[1000]; // 关闭列表,用于存储已探索的节点
int OPEN_SIZE = 0; // 开放列表的大小
int CLOSED_SIZE = 0; // 关闭列表的大小
OPEN[0] = start; // 将起始节点添加到开放列表
OPEN_SIZE = 1; // 开放列表的大小设置为1
CLOSED_SIZE = 0; // 关闭列表的大小设置为0
while (OPEN_SIZE > 0) {//对open列表进行操作
int min_f = OPEN[0]->f;//初始化最小的f
int min_index = 0;
int i;
// 查找开放列表中具有最小f值的节点
for(i=0;i<OPEN_SIZE;i++)
{
if(OPEN[i]->f<min_f)
{
min_f=OPEN[i]->f;
min_index=i;
}
}
Node* current = OPEN[min_index]; // 获取具有最小f值的节点
// 如果当前节点与目标状态匹配,表示找到解
if(isSamePuzzle(current->puzzle,goal->puzzle))
{
return current;
}
OPEN_SIZE--;
//开放列表的大小减1表示从开放列表中移除了一个节点
//将最小 f 值的节点移到开放列表的末尾,以便稍后将其添加到关闭列表中。
//这是为了优化开放列表的结构。
Node* temp = OPEN[min_index];
OPEN[min_index] = OPEN[OPEN_SIZE];
OPEN[OPEN_SIZE] = temp;
//将当前节点添加到关闭列表关闭列表大小加1
temp=CLOSED[CLOSED_SIZE];
CLOSED[CLOSED_SIZE]=OPEN[OPEN_SIZE];
OPEN[OPEN_SIZE]=temp;
CLOSED_SIZE++;
int key = 0,j;
// 查找当前节点中空白块的位置
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
if (current->puzzle[i][j] == 0) {
key = i * N + j;
break;
}
}
}
int dir;
// 尝试四个方向的移动操作
for (dir = 0; dir < 4; dir++) {
Node* new_node = move(current, dir);
if (new_node != NULL && !isSamePuzzle(new_node->puzzle, current->puzzle)) {
//得到对应的g、f、h值
int gNew = current->g + 1;
int hNew = heuristic(new_node, goal);
int fNew = gNew + hNew;
bool in_OPEN = false;
int open_index = -1;
// 检查新节点是否在开放列表中
for (i = 0; i < OPEN_SIZE; i++) {
if (isSamePuzzle(new_node->puzzle, OPEN[i]->puzzle)) {
in_OPEN = true;
open_index = i;
break;
}
}
bool in_CLOSED = false;
// 检查新节点是否在关闭列表中
for(i=0;i<CLOSED_SIZE;i++)
{
if(isSamePuzzle(new_node->puzzle,CLOSED[i]->puzzle))
{
in_CLOSED=true;
break;
}
}
//若该节点机不在开放列表中也不在关闭列表中
if (!in_OPEN && !in_CLOSED) {
new_node->f=fNew;//把gNew、hNew、fNew赋给new_node对应的g、h、f值并将其父节点设置为当前节点。
new_node->g=gNew;
new_node->h=hNew;
new_node->parent=current;
OPEN[OPEN_SIZE]=new_node;
OPEN_SIZE++;
// 添加新节点new_node到开放列表开放列表大小加1
}
//如果新节点已经在开放列表中,但新的 f 值更小,将更新开放列表中已存在节点的信息。
else if (in_OPEN && fNew < OPEN[open_index]->f) {
OPEN[open_index]->parent=new_node->parent;
OPEN[open_index]->f=new_node->f;
OPEN[open_index]->g=new_node->g;
OPEN[open_index]->h=new_node->h;
}
}
}
}
return NULL; // 无解
}
// 打印解路径
void printPath(Node* final) {
if (final == NULL) {
return;
}
printPath(final->parent);
int i,j;// 递归打印路径
for (i = 0; i < N; i++) {
if (i%3==0){
printf("-------\n");
}
for (j = 0; j < N; j++) {
printf("%d ", final->puzzle[i][j]);
}
printf("\n");
}
}
int main() {
//int start[N][N] = {{2, 0, 3}, {1, 8, 4}, {7, 6, 5}};
//int target[N][N] = {{1, 2, 3}, {8, 0, 4}, {7, 6, 5}};
int start[N][N] = {{2, 8, 3}, {1, 6, 4}, {7, 0, 5}};
int target[N][N] = {{1, 2, 3}, {8, 0, 4}, {7, 6, 5}};
//int start[N][N] = {{2, 8, 3}, {1, 0, 4}, {7, 6, 5}};
//int target[N][N] = {{1, 2, 3}, {8, 0, 4}, {7, 6, 5}};
Node* init = createNode(start);
Node* goal = createNode(target);
Node* final = AStar(init, goal);
if (final) {
printf("This problem has a solution:\n");
printPath(final); // 打印解路径
} else {
printf("This problem has no solution\n");
}
return 0;
}