You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

146 lines
5.4 KiB

import os
from datetime import datetime
from collections import OrderedDict
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import roc_auc_score, accuracy_score,confusion_matrix
import torchvision
import torchvision.transforms as transforms
from skimage import io
from torch.utils.data import DataLoader
#from dataset import *
from torch.autograd import Variable
from PIL import Image
from tensorboardX import SummaryWriter
#from models.discriminatorlayer import discriminator
from dataset import *
from conf import settings
import time
import cfg
from tqdm import tqdm
from torch.utils.data import DataLoader, random_split
from utils import *
import function
args = cfg.parse_args()
GPUdevice = torch.device('cuda', args.gpu_device)
net = get_network(args, args.net, use_gpu=args.gpu, gpu_device=GPUdevice, distribution = args.distributed)
optimizer = optim.Adam(net.parameters(), lr=args.lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5) #learning rate decay
'''load pretrained model'''
if args.weights != 0:
print(f'=> resuming from {args.weights}')
assert os.path.exists(args.weights)
checkpoint_file = os.path.join(args.weights)
assert os.path.exists(checkpoint_file)
loc = 'cuda:{}'.format(args.gpu_device)
checkpoint = torch.load(checkpoint_file, map_location=loc)
start_epoch = checkpoint['epoch']
best_tol = checkpoint['best_tol']
net.load_state_dict(checkpoint['state_dict'],strict=False)
# optimizer.load_state_dict(checkpoint['optimizer'], strict=False)
args.path_helper = checkpoint['path_helper']
logger = create_logger(args.path_helper['log_path'])
print(f'=> loaded checkpoint {checkpoint_file} (epoch {start_epoch})')
args.path_helper = set_log_dir('logs', args.exp_name)
logger = create_logger(args.path_helper['log_path'])
logger.info(args)
if args.dataset == 'oneprompt':
nice_train_loader, nice_test_loader, transform_train, transform_val, train_list, val_list =get_decath_loader(args)
elif args.dataset == 'isic' or args.dataset == 'custom':
# 定义数据变换
transform_train = transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
transform_val = transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
transform_train_seg = transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor()
])
# 创建数据集
train_dataset = ISIC2016(args, args.data_path, transform=transform_train, transform_msk=transform_train_seg, mode='Training', prompt='click')
test_dataset = ISIC2016(args, args.data_path, transform=transform_val, transform_msk=transform_train_seg, mode='Test', prompt='click')
# 创建数据加载器
nice_train_loader = DataLoader(train_dataset, batch_size=args.b, shuffle=True, num_workers=8, pin_memory=True)
nice_test_loader = DataLoader(test_dataset, batch_size=args.b, shuffle=False, num_workers=8, pin_memory=True)
'''checkpoint path and tensorboard'''
checkpoint_path = os.path.join(settings.CHECKPOINT_PATH, args.net, settings.TIME_NOW)
#use tensorboard
if not os.path.exists(settings.LOG_DIR):
os.mkdir(settings.LOG_DIR)
writer = SummaryWriter(log_dir=os.path.join(
settings.LOG_DIR, args.net, settings.TIME_NOW))
if not os.path.exists(checkpoint_path):
os.makedirs(checkpoint_path)
checkpoint_path = os.path.join(checkpoint_path, '{net}-{epoch}-{type}.pth')
'''begain training'''
best_acc = 0.0
best_tol = 1e4
for epoch in range(settings.EPOCH):
net.train()
time_start = time.time()
loss = function.train_one(args, net, optimizer, nice_train_loader, epoch, writer, vis = args.vis)
logger.info(f'Train loss: {loss}|| @ epoch {epoch}.')
time_end = time.time()
print('time_for_training ', time_end - time_start)
net.eval()
if epoch and epoch % args.val_freq == 0 or epoch == settings.EPOCH-1:
tol, metrics = function.validation_one(args, nice_test_loader, epoch, net, writer)
# Handle both 2-metric and 4-metric cases
if len(metrics) == 2:
eiou, edice = metrics
logger.info(f'Total score: {tol}, IOU: {eiou}, DICE: {edice} || @ epoch {epoch}.')
elif len(metrics) == 4:
iou_d, iou_c, disc_dice, cup_dice = metrics
logger.info(f'Total score: {tol}, Disc IOU: {iou_d}, Cup IOU: {iou_c}, Disc DICE: {disc_dice}, Cup DICE: {cup_dice} || @ epoch {epoch}.')
else:
logger.info(f'Total score: {tol}, Metrics: {metrics} || @ epoch {epoch}.')
if args.distributed != 'none':
sd = net.module.state_dict()
else:
sd = net.state_dict()
if tol < best_tol:
best_tol = tol
is_best = True
save_checkpoint({
'epoch': epoch + 1,
'model': args.net,
'state_dict': sd,
'optimizer': optimizer.state_dict(),
'best_tol': best_tol,
'path_helper': args.path_helper,
}, is_best, args.path_helper['ckpt_path'], filename="best_checkpoint")
else:
is_best = False
writer.close()