You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

135 lines
4.7 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import os
import sys
import argparse
from datetime import datetime
from collections import OrderedDict
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import roc_auc_score, accuracy_score,confusion_matrix
import torchvision
import torchvision.transforms as transforms
from skimage import io
from torch.utils.data import DataLoader
#from dataset import *
from torch.autograd import Variable
from PIL import Image
from tensorboardX import SummaryWriter
#from models.discriminatorlayer import discriminator
from dataset import *
from conf import settings
import time
import cfg
from tqdm import tqdm
from torch.utils.data import DataLoader, random_split
from utils import *
import function
args = cfg.parse_args()
GPUdevice = torch.device('cuda', args.gpu_device)
net = get_network(args, args.net, use_gpu=args.gpu, gpu_device=GPUdevice, distribution = args.distributed)
'''load pretrained model'''
assert args.weights != 0
print(f'=> resuming from {args.weights}')
assert os.path.exists(args.weights)
checkpoint_file = os.path.join(args.weights)
assert os.path.exists(checkpoint_file)
loc = 'cuda:{}'.format(args.gpu_device)
checkpoint = torch.load(checkpoint_file, map_location=loc)
start_epoch = checkpoint['epoch']
best_tol = checkpoint['best_tol']
state_dict = checkpoint['state_dict']
if args.distributed != 'none':
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = 'module.' + k
new_state_dict[name] = v
# load params
else:
new_state_dict = state_dict
# Filter out problematic weights that depend on token_num (which varies with image_size)
filtered_state_dict = {}
for k, v in new_state_dict.items():
# Skip mask_decoder.deals.*.p1_tokens.weight and mask_decoder.deals.*.p2_tokens.weight
if 'mask_decoder.deals' in k and ('p1_tokens.weight' in k or 'p2_tokens.weight' in k):
continue
filtered_state_dict[k] = v
# Load the filtered state dict with strict=False to skip the problematic layers
net.load_state_dict(filtered_state_dict, strict=False)
args.path_helper = set_log_dir('logs', args.exp_name)
logger = create_logger(args.path_helper['log_path'])
logger.info(args)
'''segmentation data'''
transform_train = transforms.Compose([
transforms.Resize((args.image_size,args.image_size)),
transforms.ToTensor(),
])
transform_train_seg = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((args.image_size,args.image_size)),
])
transform_test = transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor(),
])
transform_test_seg = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((args.image_size, args.image_size)),
])
'''data end'''
if args.dataset == 'isic':
'''isic data'''
isic_train_dataset = ISIC2016(args, args.data_path, transform = transform_train, transform_msk= transform_train_seg, mode = 'Training')
isic_test_dataset = ISIC2016(args, args.data_path, transform = transform_test, transform_msk= transform_test_seg, mode = 'Test')
nice_train_loader = DataLoader(isic_train_dataset, batch_size=args.b, shuffle=True, num_workers=8, pin_memory=True)
nice_test_loader = DataLoader(isic_test_dataset, batch_size=args.b, shuffle=False, num_workers=8, pin_memory=True)
'''end'''
elif args.dataset == 'oneprompt':
nice_train_loader, nice_test_loader, transform_train, transform_val, train_list, val_list =get_decath_loader(args)
elif args.dataset == 'REFUGE':
'''REFUGE data'''
refuge_train_dataset = REFUGE(args, args.data_path, transform = transform_train, transform_msk= transform_train_seg, mode = 'Training')
refuge_test_dataset = REFUGE(args, args.data_path, transform = transform_test, transform_msk= transform_test_seg, mode = 'Test')
nice_train_loader = DataLoader(refuge_train_dataset, batch_size=args.b, shuffle=True, num_workers=8, pin_memory=True)
nice_test_loader = DataLoader(refuge_test_dataset, batch_size=args.b, shuffle=False, num_workers=8, pin_memory=True)
'''end'''
'''begain valuation'''
best_acc = 0.0
best_tol = 1e4
# 支持所有mod模式不仅限于sam_adpt
net.eval()
tol, metrics = function.validation_one(args, nice_test_loader, 0, net)
# Handle both 2-metric and 4-metric cases
if len(metrics) == 2:
eiou, edice = metrics
logger.info(f'Total score: {tol}, IOU: {eiou}, DICE: {edice} || @ epoch {start_epoch}.')
elif len(metrics) == 4:
iou_d, iou_c, disc_dice, cup_dice = metrics
logger.info(f'Total score: {tol}, Disc IOU: {iou_d}, Cup IOU: {iou_c}, Disc DICE: {disc_dice}, Cup DICE: {cup_dice} || @ epoch {start_epoch}.')
else:
logger.info(f'Total score: {tol}, Metrics: {metrics} || @ epoch {start_epoch}.')