""" 用selenium操控浏览器免去了请求对象的定制,再模拟浏览器向服务器发送请求的过程,而是直接操控浏览器,降低被反爬的概率 """ from selenium import webdriver import time import csv from selenium.webdriver.common.keys import Keys import jieba import wordcloud from pyecharts.charts import Bar from pyecharts import options from pyecharts.options import * def work(start_page, end_page, trade_name): fp = open(f'{trade_name}采集数据.csv', 'a', encoding='utf-8',newline='') csv_writer = csv.DictWriter(fp, fieldnames=[ '标题', '价格', '评论数', '店铺名', '详情页链接', ]) # 写入表头 csv_writer.writeheader() # 京东网站地址 url = 'https://www.jd.com/' # 谷歌浏览器驱动路径 path = 'chromedriver.exe' # 构建浏览器对象 browser = webdriver.Chrome(path) # 打开京东网站 browser.get(url) # 睡眠方便观察 # time.sleep(3) # 通过xpath来获取文本框 input = browser.find_element_by_xpath('//*[@id="key"]') # time.sleep(3) # 在文本框中输入要搜索的商品 input.send_keys(trade_name) # time.sleep(2) # 获取搜索按钮并点击 # 根据xpath语法来获取对象 button = browser.find_element_by_xpath('//*[@id="search"]/div/div[2]/button') button.click() # time.sleep(3) # 将页面下划到底部,加载全部数据 # 不将页面下划到底部,无法加载当前页面的全部商品 def drop_down():# 固定写法之一 for x in range(1, 12, 2): time.sleep(1) j = x / 9 js = 'document.documentElement.scrollTop = document.documentElement.scrollHeight * %f' % j browser.execute_script(js) def shop_info(): try: browser.implicitly_wait(10) drop_down() # 获取当前页面搜索出的所有商品 # 根据bs4语法来获取对象 lis = browser.find_elements_by_css_selector('#J_goodsList ul li.gl-item') for li in lis: title = li.find_element_by_css_selector('.p-name em').text.replace('\n', '') # 获取商品名 price = li.find_element_by_css_selector('.p-price i').text # 获取价格 comment_count = li.find_element_by_css_selector('.p-commit a').text # 获取评论数 shop_name = li.find_element_by_css_selector('.p-shop a').text # 获取商家名 href = li.find_element_by_css_selector('.p-img a').get_attribute('href') # 获取商品链接 # 将数据保存到字典中 my_dict = { '标题': title, '价格': price, '评论数': comment_count, '店铺名': shop_name, '详情页链接': href } csv_writer.writerow(my_dict) with open(f'{trade_name}商家.txt','a',encoding='utf-8')as fp: fp.write(my_dict['店铺名'] + '\n') with open(f'{trade_name}商品价格.txt','a',encoding='utf-8')as f: f.write(my_dict['标题'] + ';' + my_dict['价格'] + '\n') print(title,price,comment_count,shop_name,href) except: # 一些系统推广的广告由于结构和样式不同,获取时会报错影响获取进度,直接忽略 pass for page in range(start_page, end_page+1): print(f"----------当前采集第{page}页的内容----------") shop_info() next_page_button = browser.find_element_by_css_selector('.pn-next').send_keys(Keys.ARROW_RIGHT)# 键盘向右箭头 # next_page_button.click() # 执行完毕后关闭浏览器 # time.sleep(2) browser.quit() def cloud(trade_name): with open(f'{trade_name}商家.txt','r',encoding='utf-8')as fp: txt = fp.read() txt_list = jieba.lcut(txt) # 用空格分割词语 my_string = ' '.join(txt_list) wc = wordcloud.WordCloud( width=800, height=500, background_color='white', scale=15, font_path='msyh.ttc' ) wc.generate(my_string) wc.to_file(f'{trade_name}商家词云.png') def chart(trade_name): with open(f'{trade_name}商品价格.txt','r',encoding='utf-8')as fp: data_lines = fp.readlines() data_dict = {} for line in data_lines: goods = line.replace(" ","").split(";")[0] prices = float(line.replace(" ","").split(";")[1]) try: data_dict[goods].append(prices) except KeyError: data_dict[goods] = [] data_dict[goods].append(prices) sorted_data =sorted(data_dict.items(), key=lambda element:element[1], reverse=True)[0:20] # 列表里面为元组 x_data = [] y_data = [] x_list = [] y_list = [] for i in range(20): x_data.append(sorted_data[i][0]) y_data.append(sorted_data[i][1]) x = x_data[i] y = y_data[i][0] x_list.append(x) y_list.append(y) bar = Bar(init_opts=options.InitOpts(width="1500px")) bar.add_xaxis(x_list) bar.add_yaxis("价格(元)", y_list,label_opts=LabelOpts(position="right")) bar.set_global_opts( title_opts=TitleOpts(title=f"{trade_name}价格前20商品"), xaxis_opts = options.AxisOpts(is_show=False),# 隐藏x轴 visualmap_opts=VisualMapOpts( is_show=True, is_piecewise=True, # 是否分段 pieces=[ {"min": 1, "max": 99, "label": '1 - 99', "color": "#CCFFFF"}, {"min": 100, "max": 999, "label": '100 - 999', "color": "#FFFF99"}, {"min": 1000, "max": 4999, "label": '1000 - 999', "color": "#FF9966"}, {"min": 5000, "max": 9999, "label": '5000 - 9999', "color": "#FF6666"}, {"min": 10000, "max": 99999, "label": '10000 - 99999', "color": "#CC3333"} ] ) ) bar.render(f"{trade_name}价格前20商品.html") if __name__ == '__main__': trade_name = input("输入要搜索的商品名:") start_page = int(input("输入起始页码:")) end_page = int(input("输入结束页码:")) work(start_page, end_page, trade_name) cloud(trade_name) chart(trade_name)