From 3410d53f1ab28bfa3b17764a76387a21ff212cfe Mon Sep 17 00:00:00 2001 From: pfo49kjfx <2512671328@qq.com> Date: Mon, 4 Dec 2023 16:57:10 +0800 Subject: [PATCH] ADD file via upload --- pytorch_ssim.py | 79 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 79 insertions(+) create mode 100644 pytorch_ssim.py diff --git a/pytorch_ssim.py b/pytorch_ssim.py new file mode 100644 index 0000000..c2c3c55 --- /dev/null +++ b/pytorch_ssim.py @@ -0,0 +1,79 @@ +import torch +import torch.nn.functional as F +from torch.autograd import Variable +import numpy as np +from math import exp + + +def gaussian(window_size, sigma): + gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)]) + return gauss / gauss.sum() + + +def create_window(window_size, channel): + _1D_window = gaussian(window_size, 1.5).unsqueeze(1) + _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) + window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous()) + return window + + +def Tssim(img1, img2, window, window_size, channel, size_average=True): + mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) + mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) + + mu1_sq = mu1.pow(2) + mu2_sq = mu2.pow(2) + mu1_mu2 = mu1 * mu2 + + sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq + sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq + sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2 + + C1 = 0.01 ** 2 + C2 = 0.03 ** 2 + + ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) + + if size_average: + return ssim_map.mean() + else: + return ssim_map.mean(1).mean(1).mean(1) + + +class SSIM(torch.nn.Module): + def __init__(self, window_size=11, size_average=True): + super(SSIM, self).__init__() + self.window_size = window_size + self.size_average = size_average + self.channel = 1 + self.window = create_window(window_size, self.channel) + + def forward(self, img1, img2): + + (_, channels, _, _) = img1.size() + + if channels == self.channel and self.window.data.type() == img1.data.type(): + window = self.window + else: + window = create_window(self.window_size, channels) + + if img1.is_cuda: + window = window.cuda(img1.get_device()) + window = window.type_as(img1) + + self.window = window + self.channel = channels + + return Tssim(img1, img2, window, self.window_size, channels, self.size_average) + + +def ssim(img1, img2, window_size=11, size_average=True): + print(img1.size()) + (_, channels, _, _) = img1.size() + window = create_window(window_size, channels) + + if img1.is_cuda: + window = window.cuda(img1.get_device()) + window = window.type_as(img1) + + return Tssim(img1, img2, window, window_size, channels, size_average)