You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

81 lines
4.1 KiB

8 months ago
import numpy as np
import lqmtest_x3_2_load_data
class ModelObj: # 网络对象
def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY):
self.ObjID = ObjID # 图元号
self.ObjType = ObjType # 图元类别
self.ObjLable = ObjLable # 对象标签
self.ParaString = ParaString # 参数字符串
self.ObjX = ObjX # 对象位置x坐标
self.ObjY = ObjY # 对象位置y坐标
class Conv_Class(ModelObj): # 卷积对象
def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY):
super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY)
self.ConvProc = self.conv_proc # 基本操作函数
self.SetConvPara = self.setconv_para # 参数设置函数
# 定义卷积函数ConvProc()
def conv_proc(self, image, ConvPara):
# 获取输入数据的大小,这里假设是单通道的图片
c, image_h, image_w = image.shape
kernel_h = ConvPara["kernel_h"]
kernel_w = ConvPara["kernel_w"]
kernel = ConvPara["kernel"]
out_h = (image_h - kernel_h) // ConvPara["stride"] + 1
out_w = (image_w - kernel_w) // ConvPara["stride"] + 1
output = np.zeros((c, out_h, out_w)) # 初始化输出数据为零矩阵
for k in range(c): # 遍历每个通道
for i in range(out_h): # 遍历每个输出位置
for j in range(out_w):
stride = ConvPara["stride"] # 获得步长
output[k, i, j] = np.sum(
image[k, i * stride:i * stride + 3, j *
stride:j * stride + 3] * kernel)#计算卷积
return output # 返回卷积计算后的数组(特征向量)
def setconv_para(self): # 定义设置卷积参数的函数SetConvPara()
kernel_h = int(input("请输入卷积核的高度: ")) # 用户输入卷积核的高度 3
kernel_w = int(input("请输入卷积核的宽度: ")) # 用户输入卷积核的宽度 3
# 用户输入卷积核的值
kernel = []
# [[1.289202, -1.471377, -0.238452],
# [-0.562343, -0.019988, -0.441446],
# [1.627381, 1.390266, 0.812486]]
print("请输入卷积核的值(一行一行输入,各值之间用空格分开):")
for i in range(kernel_h):
row = [float(val) for val in input().split()]
kernel.append(row)
stride = int(input("请输入步长: ")) # 用户输入步长 1
padding = int(input("请输入填充: ")) # 用户输入填充 0
# 返回ConvPara参数这里用一个字典来存储
ConvPara = {"kernel": kernel, "kernel_h": kernel_h,
"kernel_w": kernel_w, "stride": stride,
"padding": padding}
return ConvPara
if __name__ == '__main__':
DataSet = lqmtest_x3_2_load_data.Data_Class("DataSet1", 1, "数据集1", [], 120, 330)
# setload_data()函数,获取加载数据集的参数
DataPara = DataSet.SetDataPara()
train_images, test_images = DataSet.LoadData(DataPara)
Conv = Conv_Class("Conv1", 2, "卷积1", [], 250, 330)
ConvPara = Conv.SetConvPara()
for i in range(len(train_images) // 32):
images = train_images[i * 32:(i + 1) * 32]
conv_images = []# 存储卷积处理后的图片的列表
for image in images:# 获取训练集的图片数据
dim = len(image.shape)# 获取矩阵的维度
if dim == 2: # 如果是二维矩阵,则转化为三维矩阵
image_h, image_w = image.shape
image = np.reshape(image, (1,image_h,image_w))
# 调用ConvProc()函数根据ConvPara参数完成卷积计算
output = Conv.ConvProc(image, ConvPara)
conv_images.append(output)# 将卷积结果存储到列表
elif dim == 3: # 若为三维矩阵,则保持不变直接卷积处理
output = Conv.ConvProc(image, ConvPara)
conv_images.append(output)
# 将卷积处理后的图片列表转换为数组形式,方便后续处理
conv_images = np.array(conv_images)