import numpy as np import lqmtest_x3_2_load_data import lqmtest_x3_4_conv_proc class ModelObj: # 网络对象 def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY): self.ObjID = ObjID # 图元号 self.ObjType = ObjType # 图元类别 self.ObjLable = ObjLable # 对象标签 self.ParaString = ParaString # 参数字符串 self.ObjX = ObjX # 对象位置x坐标 self.ObjY = ObjY # 对象位置y坐标 class Pool_Class(ModelObj): # 池化对象 def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY): super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY) self.MaxPoolProc = self.pool_proc # 基本操作函数 self.SetPollPara = self.setpool_para # 参数设置函数 def pool_proc(self, image, PoolPara): pool_mode = PoolPara["pool_mode"] pool_size = PoolPara["pool_size"] stride = PoolPara["stride"] c, h, w = image.shape # 获取输入特征图的高度和宽度 out_h = int((h - pool_size) / stride) + 1 # 计算输出特征图的高度 out_w = int((w - pool_size) / stride) + 1 # 计算输出特征图的宽度 out = np.zeros((c, out_h, out_w)) # 初始化输出特征图为全零数组 for k in range(c): # 对于输出的每一个位置上计算: for i in range(out_h): for j in range(out_w): window = image[k, i * stride:i * stride + pool_size, j * stride:j * stride + pool_size] if pool_mode == "max": # 最大池化 out[k][i][j] = np.max(window) elif pool_mode == "avg": # 平均池化 out[k][i][j] = np.mean(window) elif pool_mode == "min": # 最小池化 out[k][i][j] = np.min(window) else: # 无效的池化类型 raise ValueError("Invalid pooling mode") return out # 返回特征图。 def setpool_para(self): # 定义设置池化参数的函数 pool_mode = input("请输入池化模式(max/avg/min): ") # 用户输入池化模式 pool_size = int(input("请输入池化大小: ")) # 用户输入池化大小 stride = int(input("请输入步长: ")) # 用户输入步长 PoolPara = {"pool_mode": pool_mode, "pool_size": pool_size, "stride": stride} # 返回PoolPara参数,这里用字典来存储 return PoolPara # 返回PoolPara参数 if __name__ == '__main__': DataSet = lqmtest_x3_2_load_data.Data_Class("DataSet1", 1, "数据集1", [], 120, 330) # setload_data()函数,获取加载数据集的参数 DataPara = DataSet.SetDataPara() train_images, test_images = DataSet.LoadData(DataPara) Conv = lqmtest_x3_4_conv_proc.Conv_Class("Conv1", 2, "卷积1", [], 250, 330) ConvPara = Conv.SetConvPara() for i in range(len(train_images) // 32): images = train_images[i * 32:(i + 1) * 32] conv_images = [] # 存储卷积处理后的图片的列表 for image in images: # 获取训练集的图片数据 dim = len(image.shape) # 获取矩阵的维度 if dim == 2: # 如果是二维矩阵,则转化为三维矩阵 image_h, image_w = image.shape image = np.reshape(image, (1, image_h, image_w)) # 调用ConvProc()函数,根据ConvPara参数完成卷积计算 output = Conv.ConvProc(image, ConvPara) conv_images.append(output) # 将卷积结果存储到列表 elif dim == 3: # 若为三维矩阵,则保持不变直接卷积处理 output = Conv.ConvProc(image, ConvPara) conv_images.append(output) # 将卷积处理后的图片列表转换为数组形式,方便后续处理 conv_images = np.array(conv_images) Pool = Pool_Class("Pool1", 3, "最大池化1", [], 380, 330) PoolPara = Pool.SetPollPara() pool_images = [] # 存储池化处理后的图片的列表 for image in conv_images: # 获取卷积后的图片数据 output = Pool.MaxPoolProc(image, PoolPara) pool_images.append(output) # 将池化结果存储到列表 # 将池化处理后的图片列表转换为数组形式,方便后续处理 pool_images = np.array(pool_images)