You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
120 lines
4.6 KiB
120 lines
4.6 KiB
# -*- coding: utf-8 -*-
|
|
from __future__ import print_function
|
|
import click
|
|
import os
|
|
import re
|
|
import face_recognition.api as face_recognition
|
|
import multiprocessing
|
|
import itertools
|
|
import sys
|
|
import PIL.Image
|
|
import numpy as np
|
|
|
|
|
|
def scan_known_people(known_people_folder):
|
|
known_names = []
|
|
known_face_encodings = []
|
|
|
|
for file in image_files_in_folder(known_people_folder):
|
|
basename = os.path.splitext(os.path.basename(file))[0]
|
|
img = face_recognition.load_image_file(file)
|
|
encodings = face_recognition.face_encodings(img)
|
|
|
|
if len(encodings) > 1:
|
|
click.echo("WARNING: More than one face found in {}. Only considering the first face.".format(file))
|
|
|
|
if len(encodings) == 0:
|
|
click.echo("WARNING: No faces found in {}. Ignoring file.".format(file))
|
|
else:
|
|
known_names.append(basename)
|
|
known_face_encodings.append(encodings[0])
|
|
|
|
return known_names, known_face_encodings
|
|
|
|
|
|
def print_result(filename, name, distance, show_distance=False):
|
|
if show_distance:
|
|
print("{},{},{}".format(filename, name, distance))
|
|
else:
|
|
print("{},{}".format(filename, name))
|
|
|
|
|
|
def test_image(image_to_check, known_names, known_face_encodings, tolerance=0.6, show_distance=False):
|
|
unknown_image = face_recognition.load_image_file(image_to_check)
|
|
|
|
# Scale down image if it's giant so things run a little faster
|
|
if max(unknown_image.shape) > 1600:
|
|
pil_img = PIL.Image.fromarray(unknown_image)
|
|
pil_img.thumbnail((1600, 1600), PIL.Image.LANCZOS)
|
|
unknown_image = np.array(pil_img)
|
|
|
|
unknown_encodings = face_recognition.face_encodings(unknown_image)
|
|
|
|
for unknown_encoding in unknown_encodings:
|
|
distances = face_recognition.face_distance(known_face_encodings, unknown_encoding)
|
|
result = list(distances <= tolerance)
|
|
|
|
if True in result:
|
|
[print_result(image_to_check, name, distance, show_distance) for is_match, name, distance in zip(result, known_names, distances) if is_match]
|
|
else:
|
|
print_result(image_to_check, "unknown_person", None, show_distance)
|
|
|
|
if not unknown_encodings:
|
|
# print out fact that no faces were found in image
|
|
print_result(image_to_check, "no_persons_found", None, show_distance)
|
|
|
|
|
|
def image_files_in_folder(folder):
|
|
return [os.path.join(folder, f) for f in os.listdir(folder) if re.match(r'.*\.(jpg|jpeg|png)', f, flags=re.I)]
|
|
|
|
|
|
def process_images_in_process_pool(images_to_check, known_names, known_face_encodings, number_of_cpus, tolerance, show_distance):
|
|
if number_of_cpus == -1:
|
|
processes = None
|
|
else:
|
|
processes = number_of_cpus
|
|
|
|
# macOS will crash due to a bug in libdispatch if you don't use 'forkserver'
|
|
context = multiprocessing
|
|
if "forkserver" in multiprocessing.get_all_start_methods():
|
|
context = multiprocessing.get_context("forkserver")
|
|
|
|
pool = context.Pool(processes=processes)
|
|
|
|
function_parameters = zip(
|
|
images_to_check,
|
|
itertools.repeat(known_names),
|
|
itertools.repeat(known_face_encodings),
|
|
itertools.repeat(tolerance),
|
|
itertools.repeat(show_distance)
|
|
)
|
|
|
|
pool.starmap(test_image, function_parameters)
|
|
|
|
|
|
@click.command()
|
|
@click.argument('known_people_folder')
|
|
@click.argument('image_to_check')
|
|
@click.option('--cpus', default=1, help='number of CPU cores to use in parallel (can speed up processing lots of images). -1 means "use all in system"')
|
|
@click.option('--tolerance', default=0.6, help='Tolerance for face comparisons. Default is 0.6. Lower this if you get multiple matches for the same person.')
|
|
@click.option('--show-distance', default=False, type=bool, help='Output face distance. Useful for tweaking tolerance setting.')
|
|
def main(known_people_folder, image_to_check, cpus, tolerance, show_distance):
|
|
known_names, known_face_encodings = scan_known_people(known_people_folder)
|
|
|
|
# Multi-core processing only supported on Python 3.4 or greater
|
|
if (sys.version_info < (3, 4)) and cpus != 1:
|
|
click.echo("WARNING: Multi-processing support requires Python 3.4 or greater. Falling back to single-threaded processing!")
|
|
cpus = 1
|
|
|
|
if os.path.isdir(image_to_check):
|
|
if cpus == 1:
|
|
[test_image(image_file, known_names, known_face_encodings, tolerance, show_distance) for image_file in image_files_in_folder(image_to_check)]
|
|
else:
|
|
process_images_in_process_pool(image_files_in_folder(image_to_check), known_names, known_face_encodings, cpus, tolerance, show_distance)
|
|
else:
|
|
test_image(image_to_check, known_names, known_face_encodings, tolerance, show_distance)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|