import os import cv2 import numpy as np import tkinter as tk from tkinter import filedialog from read_data import * from PIL import Image class ModelObj: # 网络对象 def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY): self.ObjID = ObjID # 图元号 self.ObjType = ObjType # 图元类别 self.ObjLable = ObjLable # 对象标签 self.ParaString = ParaString # 参数字符串 self.ObjX = ObjX # 对象位置x坐标 self.ObjY = ObjY # 对象位置y坐标 class Data_Class(ModelObj): # 数据集网络对象 def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY): super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY) self.LoadData = self.load_data # 基本操作函数 self.SetDataPara = self.set_data_para # 参数设置函数 # 定义加载数据集load_data() def load_data(self, DataPara): global SubFolders listimages = [] # 存储图片的列表 list_path = [] SubFolders, train_Path = read_folders(DataPara["train_imgPath"]) list_path.append(train_Path) _, path_list = read_folders(DataPara["test_imgPath"]) list_path.append(path_list) for data_path in list_path: images = [] # 存储图片的列表 for path in data_path: # print(path) img = self.image_to_array(path, DataPara["img_width"], DataPara["img_height"]) # 读取图片数据 img = img.T # 转置,图像的行和列将互换位置。 images.append(img) # 将图片数组添加到训练集图片列表中 listimages.append(np.array(images)) # 返回转换后的数组 return listimages[0], listimages[1] def set_data_para(self):# 定义加载数据集的参数SetLoadData() # 设置数据集路径信息 train_imgPath = 'data_classification/train/' # 训练集文件夹的位置 test_imgPath = 'data_classification/test/' # 测试集文件夹的位置 img_width = 48 # 图片宽度 img_height = 48 # 图片高度 # 设置每批次读入图片的数量 batch_size = 32 # 批次大小 # 返回DataPara参数,这里用一个字典来存储 DataPara = {"train_imgPath": train_imgPath, "test_imgPath": test_imgPath, "img_width": img_width, "img_height": img_height, "batch_size": batch_size} return DataPara # 定义一个函数,实现图片转换为数组的功能 def image_to_array(self, path, height, width): img = Image.open(path).convert("L") # 转换为灰度模式 img = img.resize((height, width)) # 将图片缩放为height*width的固定大小 data = np.array(img) # 将图片转换为数组格式 data = data / 255.0 # 将数组中的数值归一化,除以255 return data def output(self): # 输出方法 # 创建一个空列表 result = [self.ObjID, self.ObjType, self.ObjLable, self.LoadData, self.SetDataPara, self.ParaString, self.ObjX, self.ObjY] return result # if __name__ == '__main__': # DataSet = Data_Class("DataSet1", 1, "数据集1", ".", 120, 330) # print(DataSet) class Conv_Class(ModelObj): # 卷积对象 def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY): super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY) self.ConvProc = self.conv_proc # 基本操作函数 self.SetConvPara = self.setconv_para # 参数设置函数 # 定义卷积函数ConvProc() def conv_proc(self, image, ConvPara): # 获取输入数据的大小,这里假设是单通道的图片 c, image_h, image_w = image.shape kernel_h = ConvPara["kernel_h"] # 获取卷积核的大小和卷积核 kernel_w = ConvPara["kernel_w"] kernel = ConvPara["kernel"] out_h = (image_h - kernel_h) // ConvPara["stride"] + 1 # 计算输出数据的大小 out_w = (image_w - kernel_w) // ConvPara["stride"] + 1 output = np.zeros((c, out_h, out_w)) # 初始化输出数据为零矩阵 for k in range(c): # 遍历每个通道 for i in range(out_h): # 遍历每个输出位置 for j in range(out_w): stride = ConvPara["stride"] # 获得步长 output[k, i, j] = np.sum( image[k, i * stride:i * stride + 3, j * stride:j * stride + 3] * kernel) # 计算卷积操作 return output # 返回卷积计算后的数组(特征向量) def setconv_para(self):# 定义设置卷积参数的函数SetConvPara() kernel_h = 3 # 设置卷积核大小,这里假设是3x3 kernel_w = 3 kernel = [[1.289202, -1.471377, -0.238452], # 卷积核为3x3的单位矩阵(高斯分布) [-0.562343, -0.019988, -0.441446], [1.627381, 1.390266, 0.812486]] stride = 1 # 设置步长,这里假设是1 padding = 0 # 设置填充,这里假设是0 ConvPara = {"kernel": kernel, # 返回ConvPara参数,这里用一个字典来存储 "kernel_h": kernel_h, "kernel_w": kernel_w, "stride": stride, "padding": padding} return ConvPara def output(self): # 输出方法 # 创建一个空列表 result = [self.ObjID, self.ObjType, self.ObjLable, self.ConvProc, self.SetConvPara, self.ParaString, self.ObjX, self.ObjY] return result class Pool_Class(ModelObj): # 池化对象 def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY): super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY) self.MaxPoolProc = self.pool_proc # 基本操作函数 self.SetPollPara = self.setpool_para # 参数设置函数 def pool_proc(self, image, PoolPara): pool_mode = PoolPara["pool_mode"] pool_size = PoolPara["pool_size"] stride = PoolPara["stride"] c, h, w = image.shape # 获取输入特征图的高度和宽度 out_h = int((h - pool_size) / stride) + 1 # 计算输出特征图的高度 out_w = int((w - pool_size) / stride) + 1 # 计算输出特征图的宽度 out = np.zeros((c, out_h, out_w)) # 初始化输出特征图为全零数组 for k in range(c): # 对于输出的每一个位置上计算: for i in range(out_h): for j in range(out_w): window = image[k, i * stride:i * stride + pool_size, j * stride:j * stride + pool_size] if pool_mode == "max": # 最大池化 out[k][i][j] = np.max(window) elif pool_mode == "avg": # 平均池化 out[k][i][j] = np.mean(window) elif pool_mode == "min": # 最小池化 out[k][i][j] = np.min(window) else: # 无效的池化类型 raise ValueError("Invalid pooling mode") return out # 返回特征图。 # 定义设置池化参数的函数 def setpool_para(self): pool_mode = "max" # 设置池大小和池类型,这里假设是2x2最大池化 pool_size = 2 stride = 2 # 设置步长,这里假设是2 PoolPara = {"pool_mode": pool_mode, "pool_size": pool_size, "stride": stride} # 返回PoolPara参数,这里用一个字典来存储 return PoolPara # 返回PoolPara参数 def output(self): # 输出方法 # 创建一个空列表 result = [self.ObjID, self.ObjType, self.ObjLable, self.MaxPoolProc, self.SetPollPara, self.ParaString, self.ObjX, self.ObjY] return result class FullConn_Class(ModelObj): # 全连接对象 def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY): super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY) self.FullConnProc = self.fullconn_proc # 基本操作函数 self.SetFullConnPara = self.setfullconn_para # 参数设置函数 def fullconn_proc(self, inputdata, FullConnPara): weights = FullConnPara["weights"] # 从FullConnPara参数中获取权重矩阵 bias = FullConnPara["bias"] # 偏置向量 inputdata = inputdata.reshape(1, inputdata.shape[1] * inputdata.shape[2]) # 对输入进行展平处理,变换为单通道的一维数组格式 output = np.dot(inputdata, weights.T) + bias # 计算全连接层的线性变换:inputdata与权重矩阵w进行乘法,再加上偏置向量b return output # 返回全连接计算后的数组 # 定义一个函数来设置全连接层的相关参数,这里可以根据实际情况修改或随机生成 def setfullconn_para(self, data, num_outputs): # 获取池化后的图片数组的长度和宽度 c, height, width = data num_outputs = num_outputs weights = np.random.randn(num_outputs, height * width) bias = np.random.randn(1, num_outputs) # 返回FullConnPara参数,这里用一个字典来存储 FullConnPara = {"weights": weights, "bias": bias, "num_outputs": num_outputs} return FullConnPara def output(self): # 输出方法 # 创建一个空列表 result = [self.ObjID, self.ObjType, self.ObjLable, self.FullConnProc, self.SetFullConnPara, self.ParaString, self.ObjX, self.ObjY] return result class Nonline_Class(ModelObj): # 非线性对象 def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY): super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY) self.NonlinearProc = self.nonlinear_proc # 基本操作函数 self.SetNonLPara = self.setnonl_para # 参数设置函数 # 定义非线性函数 def nonlinear_proc(self, inputdata, NonLPara): nonlinearmode = NonLPara["nonlinearmode"] # 从NonLPara参数中获取非线性函数类型 if nonlinearmode == "Sigmoid": # 判断nonlinearmode,进行相应的计算 output = 1 / (1 + np.exp(-inputdata)) # Sigmoid函数,将任何实数的输入映射到0和1之间的输出 elif nonlinearmode == "ReLU": output = np.maximum(inputdata, 0) # ReLU函数,将负数输入置为0,而正数输入保持不变 elif nonlinearmode == "Tanh": output = np.tanh(inputdata) # Tanh函数,将任何实数的输入映射到-1和1之间的输出 else: raise ValueError("Invalid nonlinear mode") # 非法的非线性类型,抛出异常 return output # 返回计算后的值 # 定义设置非线性参数的函数 def setnonl_para(self): # 可以选择"Sigmoid", "ReLU" 或 "Tanh" nonlinearmode = "ReLU" # 确定参数信息:非线性函数的类型 NonLPara = {"nonlinearmode": nonlinearmode} # 返回NonLPara参数,这里用一个字典来存储 return NonLPara # 返回NonLPara参数 def output(self): # 输出方法 # 创建一个空列表 result = [self.ObjID, self.ObjType, self.ObjLable, self.NonlinearProc, self.SetNonLPara, self.ParaString, self.ObjX, self.ObjY] return result class Label: # 标签 # 设置标签类别列表并将其转化为one-hot向量的形式 def setlabel_para(self, label_list): num_classes = len(label_list) identity_matrix = np.eye(num_classes) label_dict = {label: identity_matrix[i] for i, label in enumerate(label_list)} return label_dict # 读取样本数据集,遍历每个样本,并将样本和对应的标签组成元组,返回标记好标签的样本列表 def label_proc(self, samples, labels, label_dict): labeled_samples = [(sample, label_dict[label]) for sample, label in zip(samples, labels)] return labeled_samples def label_array(self, i): # 读取标签数据 path_csv = 'train.csv' df = pd.read_csv(path_csv, header=None, skiprows=range(0, i * 32), nrows=(i + 1) * 32 - i * 32) # print(df) # 将标签数据转化成数组 right_label = df.iloc[:, 0].tolist() right_label = list(map(int, right_label)) right_label = [x for x in right_label] # print(right_label) return right_label class Classifier_Class(ModelObj): # 分类对象 def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY): super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY) self.ClassifierProc = self.classifier_proc # 基本操作函数 self.SetClassifyPara = self.setclassify_para # 参数设置函数 def classifier_proc(self, inputdata, ClassifyPara): def softmax(x): # 定义softmax函数 x -= np.max(x) # 减去最大值,防止数值溢出 return np.exp(x) / np.sum(np.exp(x)) # 计算指数和归一化 threshold = ClassifyPara["threshold"] # 从ClassifyPara参数中获取阈值 output = -1 # 初始化输出为-1 prob = softmax(inputdata) # 调用softmax函数,得到概率分布向量 prob1 = prob[prob >= threshold] # 如果概率高于阈值,就将该类别加入输出结果 index = np.where(prob == max(prob1)) # 使用where()函数来返回等于概率最大值的元素的索引 output = index[1].item(0) + 1 # 使用item()方法来将索引转换为标准Python标量 return output # 返回分类标签 # 定义设置分类函数参数的函数 def setclassify_para(self): threshold = 0.1 # 设定阈值,可以根据你的数据和任务来调整阈值 ClassifyPara = {"threshold": threshold} # 返回ClassifyPara参数,这里用一个字典来存储 return ClassifyPara # 返回ClassifyPara参数 def output(self): # 输出方法 # 创建一个空列表 result = [self.ObjID, self.ObjType, self.ObjLable, self.ClassifierProc, self.SetClassifyPara, self.ParaString, self.ObjX, self.ObjY] return result class Error_Class(ModelObj): # 误差计算对象 def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY): super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY) self.ErrorProc = self.error_proc # 基本操作函数 self.SetErrorPara = self.seterror_para # 参数设置函数 def error_proc(self, input, label, ErrorPara): label_list, loss_type = ErrorPara # 读取标签列表和损失函数类型 one_hot_matrix = np.eye(len(label_list)) # 创建一个单位矩阵,大小为标签类别的个数 index = [x for x in label] # print(label) label_one_hot = np.take(one_hot_matrix, index, axis=0) # 从one-hot矩阵中取出对应的向量 # print(label_one_hot) if loss_type == "CEE": # 确定损失函数类别,实现不同的损失函数,计算输入值与label之间的误差 # 使用交叉熵损失函数,公式为:-sum(label_one_hot * log(input)) / n loss = -np.sum(label_one_hot * np.log(input)) / len(input) elif loss_type == "MSE": # 使用均方误差损失函数,公式为:sum((input - label_one_hot) ** 2) / n loss = np.sum((input - label_one_hot) ** 2) / len(input) elif loss_type == "MAE": # 使用平均绝对误差损失函数,公式为:sum(abs(input - label_one_hot)) / n loss = np.sum(np.abs(input - label_one_hot)) / len(input) else: raise ValueError("Invalid loss type") # 如果损失函数类型不在以上三种中,抛出异常 return loss # 返回误差值loss # 定义设置误差参数的函数 def seterror_para(self): label_list = [0, 1, 2, 3, 4, 5, 6] # 确定参数信息: 标签类别,损失函数类型 loss_type = "CEE" # 假设损失函数类型为交叉熵(Cross Entropy Error,CEE) ErrorPara = (label_list, loss_type) # 返回ErrorProc参数,这里用一个元组来存储 return ErrorPara # 返回ErrorPara参数 def output(self): # 输出方法 # 创建一个空列表 result = [self.ObjID, self.ObjType, self.ObjLable, self.ErrorProc, self.SetErrorPara, self.ParaString, self.ObjX, self.ObjY] return result class AjConv_Class(ModelObj): # 卷积调整对象 def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY): super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY) self.AjConvProc = self.ajconv_proc # 基本操作函数 self.SetAjConvPara = self.setajconv_para # 参数设置函数 def ajconv_proc(self, images, AjConvPara): kernel_grad_list = [] bias_grad = 0 # 初始化偏置项梯度为零 for c in images: # 计算卷积核和偏置项的梯度 kernel_grad = np.zeros_like(AjConvPara['kernel_info']) # 初始化卷积核梯度为零矩阵 for i in range(AjConvPara['loss'].shape[0]): # 遍历误差值矩阵的行 for j in range(AjConvPara['loss'].shape[1]): # 遍历误差值矩阵的列 # 将输入数据数组中对应的子矩阵旋转180度,与误差值相乘,累加到卷积核梯度上 kernel_grad += np.rot90(c[i:i + kernel_grad.shape[0], j:j + kernel_grad.shape[0]], 2) * AjConvPara['loss'][i, j] # 将误差值累加到偏置项梯度上 bias_grad += AjConvPara['loss'][i, j] kernel_grad_list.append(kernel_grad) # 使用stack函数沿着第0个轴把一百个a数组堆叠起来 result = np.stack(kernel_grad_list, axis=0) kernel_grad = np.sum(result, axis=0) / len(images) # 沿着第0个维度求和 # 更新卷积核和偏置项参数 kernel = AjConvPara['kernel_info'] - AjConvPara['learning_rate'] * kernel_grad # 卷积核参数减去学习率乘以卷积核梯度 return kernel # 返回更新后的卷积核 def setajconv_para(self, loss, ConvPara): kernel = ConvPara['kernel'] # 卷积核信息 learning_rate = 0.01 # 学习率 loss = np.array([[loss]]) AjConvPara = {'kernel_info': kernel, 'learning_rate': learning_rate, 'loss': loss} return AjConvPara class AjFullconn_Class(ModelObj): # 全连接调整对象 def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY): super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY) self.AjFullconnProc = self.ajfullconn_proc # 基本操作函数 self.SetAjFCPara = self.setajfc_para # 参数设置函数 def ajfullconn_proc(self, AjFCPara): # 根据激活函数的参数选择相应的函数和导数 # 计算权重矩阵和偏置向量的梯度,使用链式法则 gradient_weights = np.outer(AjFCPara['loss'], AjFCPara['learning_rate']) # 更新权重矩阵和偏置向量 weight_matrix = AjFCPara['weights'] - gradient_weights bias_vector = AjFCPara['bias'] - AjFCPara['learning_rate'] * AjFCPara['bias'] # 返回更新后的权重矩阵和偏置向量 return weight_matrix, bias_vector def setajfc_para(self, loss, FullConnPara): weights = FullConnPara["weights"] bias = FullConnPara["bias"] loss = np.array([loss]) AjFCPara = { 'weights': weights, # 全连接权重 'bias': bias, # 全连接偏置 'learning_rate': 0.01, # 学习率 'loss': loss # 误差值 } return AjFCPara def main(): DataPara = DataSet.SetDataPara() # setload_data()函数,获取加载数据集的参数 train_images, test_images = DataSet.LoadData(DataPara) ConvPara = Conv.SetConvPara() # 调用SetConvPara()函数,获取卷积层参数 PoolPara = Pool.SetPollPara() FullConnPara = FullConn.SetFullConnPara((1, 23, 23), 7) NonLPara = Nonline.SetNonLPara() ClassifyPara = Classifier.SetClassifyPara() ErrorPara = Error.SetErrorPara() LabelPara = Label() # AjFCPara = AjFullconn.SetAjFCPara() for i in range(len(train_images) // 32): images = train_images[i * 32:(i + 1) * 32] # 存储卷积处理后的图片的列表 conv_images = [] # 获取训练集的图片数据 for image in images: # 获取矩阵的维度 dim = len(image.shape) # 如果是二维矩阵,则转化为三维矩阵 if dim == 2: image_h, image_w = image.shape image = np.reshape(image, (1, image_h, image_w)) # 调用ConvProc()函数,根据ConvPara参数完成卷积计算 output = Conv.ConvProc(image, ConvPara) # 将卷积结果存储到列表 conv_images.append(output) # 若为三维矩阵,则保持不变直接卷积处理 elif dim == 3: output = Conv.ConvProc(image, ConvPara) conv_images.append(output) # 将卷积处理后的图片列表转换为数组形式,方便后续处理 conv_images = np.array(conv_images) pool_images = [] # 存储池化处理后的图片的列表 for image in conv_images: # 获取卷积后的图片数据 output = Pool.MaxPoolProc(image, PoolPara) pool_images.append(output) # 将池化结果存储到列表 pool_images = np.array(pool_images) # 将池化处理后的图片列表转换为数组形式,方便后续处理 # print(conv_images) # print(pool_images[0].shape) # 存储全连接处理后的图片的列表 fullconn_images = [] # 获取池化后的图片数据 for image in pool_images: output = FullConn.FullConnProc(image, FullConnPara) # 将全连接处理后的结果存储到列表 fullconn_images.append(output) # 将全连接处理后的图片列表转换为数组形式,方便后续处理 fullconn_images = np.array(fullconn_images) # print(fullconn_images) # 存储非线性处理后的图片的列表 nonlinear_images = [] for image in fullconn_images: # 获取全连接处理后的图片数据 output = Nonline.NonlinearProc(image, NonLPara) # 将非线性处理后的结果存储到列表 nonlinear_images.append(output) # 将非线性处理后的图片列表转换为数组形式,方便后续处理 nonlinear_images = np.array(nonlinear_images) # print(nonlinear_images) classifier_images = [] # 存储分类处理后的图片的列表 prob_images = [] # 存储分类处理后的概率向量 def softmax(x): # 定义softmax函数 x -= np.max(x) # 减去最大值,防止数值溢出 return np.exp(x) / np.sum(np.exp(x)) # 计算指数和归一化 for image in nonlinear_images: # 获取非线性处理后的图片数据 prob = softmax(image) # 调用softmax函数,得到概率分布向量 prob_images.append(prob) # 将概率向量结果存储到列表 output = Classifier.ClassifierProc(image, ClassifyPara) # 进行分类处理 classifier_images.append(output) # 将分类结果存储到列表 classifier_images = np.array(classifier_images) # 将分类的结果列表转换为数组形式,方便后续处理 print(classifier_images) # print(setlabel_para()) label_dict = LabelPara.setlabel_para([0, 1, 2, 3, 4, 5, 6]) right_label = LabelPara.label_array(i) labeled_samples = LabelPara.label_proc(images, right_label, label_dict) print(right_label) # 假设有以下输入值和真实标签值,输入值是一个概率矩阵,真实标签值是一个类别列表 prob_images = np.squeeze(prob_images) # print(prob_images) loss = Error.ErrorProc(prob_images, right_label, ErrorPara) # 计算误差值 print(loss) AjConvPara = AjConv.SetAjConvPara(loss, ConvPara) ConvPara['kernel'] = AjConv.AjConvProc(images, AjConvPara) print(ConvPara['kernel']) AjFCPara = AjFullconn.SetAjFCPara(loss, FullConnPara) weight, bias = AjFullconn.AjFullconnProc(AjFCPara) FullConnPara['weights'] = weight FullConnPara['bias'] = bias # print(weight, bias) if __name__ == '__main__': DataSet = Data_Class("DataSet1", 1, "数据集1", [], 120, 330) Conv = Conv_Class("Conv1", 2, "卷积1", [], 250, 330) Pool = Pool_Class("Pool1", 3, "最大池化1", [], 380, 330) FullConn = FullConn_Class("FullConn1", 4, "全连接1", [], 510, 330) Nonline = Nonline_Class("Nonline1", 5, "非线性函数1", [], 640, 330) Classifier = Classifier_Class("Classifier1", 6, "分类1", [], 780, 330) Error = Error_Class("Error1", 7, "误差计算1", [], 710, 124) AjConv = AjConv_Class("AjConv1", 8, "卷积调整1", [], 250, 70) AjFullconn = AjFullconn_Class("AjFullconn1", 9, "全连接调整1", [], 510, 120) # AllModelObj = [DataSet, Conv, Pool, FullConn, Nonline, Classifier, Error, AjConv, AjFullconn] main()