|
|
import os
|
|
|
import cv2
|
|
|
import numpy as np
|
|
|
import tkinter as tk
|
|
|
from tkinter import filedialog
|
|
|
from read_data import *
|
|
|
from PIL import Image
|
|
|
|
|
|
class ModelObj: # 网络对象
|
|
|
def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY):
|
|
|
self.ObjID = ObjID # 图元号
|
|
|
self.ObjType = ObjType # 图元类别
|
|
|
self.ObjLable = ObjLable # 对象标签
|
|
|
self.ParaString = ParaString # 参数字符串
|
|
|
self.ObjX = ObjX # 对象位置x坐标
|
|
|
self.ObjY = ObjY # 对象位置y坐标
|
|
|
|
|
|
class Data_Class(ModelObj): # 数据集网络对象
|
|
|
def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY):
|
|
|
super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY)
|
|
|
self.LoadData = self.load_data # 基本操作函数
|
|
|
self.SetDataPara = self.set_data_para # 参数设置函数
|
|
|
|
|
|
# 定义加载数据集load_data()
|
|
|
def load_data(self, DataPara):
|
|
|
global SubFolders
|
|
|
listimages = [] # 存储图片的列表
|
|
|
list_path = []
|
|
|
SubFolders, train_Path = read_folders(DataPara["train_imgPath"])
|
|
|
list_path.append(train_Path)
|
|
|
_, path_list = read_folders(DataPara["test_imgPath"])
|
|
|
list_path.append(path_list)
|
|
|
for data_path in list_path:
|
|
|
images = [] # 存储图片的列表
|
|
|
for path in data_path:
|
|
|
# print(path)
|
|
|
img = self.image_to_array(path, DataPara["img_width"], DataPara["img_height"]) # 读取图片数据
|
|
|
img = img.T # 转置,图像的行和列将互换位置。
|
|
|
images.append(img) # 将图片数组添加到训练集图片列表中
|
|
|
listimages.append(np.array(images)) # 返回转换后的数组
|
|
|
return listimages[0], listimages[1]
|
|
|
|
|
|
def set_data_para(self):# 定义加载数据集的参数SetLoadData()
|
|
|
# 设置数据集路径信息
|
|
|
train_imgPath = 'data_classification/train/' # 训练集文件夹的位置
|
|
|
test_imgPath = 'data_classification/test/' # 测试集文件夹的位置
|
|
|
img_width = 48 # 图片宽度
|
|
|
img_height = 48 # 图片高度
|
|
|
# 设置每批次读入图片的数量
|
|
|
batch_size = 32 # 批次大小
|
|
|
# 返回DataPara参数,这里用一个字典来存储
|
|
|
DataPara = {"train_imgPath": train_imgPath,
|
|
|
"test_imgPath": test_imgPath,
|
|
|
"img_width": img_width,
|
|
|
"img_height": img_height,
|
|
|
"batch_size": batch_size}
|
|
|
return DataPara
|
|
|
|
|
|
# 定义一个函数,实现图片转换为数组的功能
|
|
|
def image_to_array(self, path, height, width):
|
|
|
img = Image.open(path).convert("L") # 转换为灰度模式
|
|
|
img = img.resize((height, width)) # 将图片缩放为height*width的固定大小
|
|
|
data = np.array(img) # 将图片转换为数组格式
|
|
|
data = data / 255.0 # 将数组中的数值归一化,除以255
|
|
|
return data
|
|
|
|
|
|
def output(self): # 输出方法
|
|
|
# 创建一个空列表
|
|
|
result = [self.ObjID, self.ObjType, self.ObjLable, self.LoadData,
|
|
|
self.SetDataPara, self.ParaString, self.ObjX, self.ObjY]
|
|
|
return result
|
|
|
# if __name__ == '__main__':
|
|
|
# DataSet = Data_Class("DataSet1", 1, "数据集1", ".", 120, 330)
|
|
|
# print(DataSet)
|
|
|
class Conv_Class(ModelObj): # 卷积对象
|
|
|
def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY):
|
|
|
super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY)
|
|
|
self.ConvProc = self.conv_proc # 基本操作函数
|
|
|
self.SetConvPara = self.setconv_para # 参数设置函数
|
|
|
# 定义卷积函数ConvProc()
|
|
|
def conv_proc(self, image, ConvPara):
|
|
|
# 获取输入数据的大小,这里假设是单通道的图片
|
|
|
c, image_h, image_w = image.shape
|
|
|
kernel_h = ConvPara["kernel_h"] # 获取卷积核的大小和卷积核
|
|
|
kernel_w = ConvPara["kernel_w"]
|
|
|
kernel = ConvPara["kernel"]
|
|
|
out_h = (image_h - kernel_h) // ConvPara["stride"] + 1 # 计算输出数据的大小
|
|
|
out_w = (image_w - kernel_w) // ConvPara["stride"] + 1
|
|
|
output = np.zeros((c, out_h, out_w)) # 初始化输出数据为零矩阵
|
|
|
for k in range(c): # 遍历每个通道
|
|
|
for i in range(out_h): # 遍历每个输出位置
|
|
|
for j in range(out_w):
|
|
|
stride = ConvPara["stride"] # 获得步长
|
|
|
output[k, i, j] = np.sum(
|
|
|
image[k, i * stride:i * stride + 3, j * stride:j * stride + 3] * kernel) # 计算卷积操作
|
|
|
return output # 返回卷积计算后的数组(特征向量)
|
|
|
|
|
|
def setconv_para(self):# 定义设置卷积参数的函数SetConvPara()
|
|
|
kernel_h = 3 # 设置卷积核大小,这里假设是3x3
|
|
|
kernel_w = 3
|
|
|
kernel = [[1.289202, -1.471377, -0.238452], # 卷积核为3x3的单位矩阵(高斯分布)
|
|
|
[-0.562343, -0.019988, -0.441446],
|
|
|
[1.627381, 1.390266, 0.812486]]
|
|
|
stride = 1 # 设置步长,这里假设是1
|
|
|
padding = 0 # 设置填充,这里假设是0
|
|
|
ConvPara = {"kernel": kernel, # 返回ConvPara参数,这里用一个字典来存储
|
|
|
"kernel_h": kernel_h,
|
|
|
"kernel_w": kernel_w,
|
|
|
"stride": stride,
|
|
|
"padding": padding}
|
|
|
return ConvPara
|
|
|
|
|
|
def output(self): # 输出方法
|
|
|
# 创建一个空列表
|
|
|
result = [self.ObjID, self.ObjType, self.ObjLable, self.ConvProc, self.SetConvPara, self.ParaString, self.ObjX,
|
|
|
self.ObjY]
|
|
|
return result
|
|
|
|
|
|
|
|
|
class Pool_Class(ModelObj): # 池化对象
|
|
|
def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY):
|
|
|
super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY)
|
|
|
self.MaxPoolProc = self.pool_proc # 基本操作函数
|
|
|
self.SetPollPara = self.setpool_para # 参数设置函数
|
|
|
|
|
|
def pool_proc(self, image, PoolPara):
|
|
|
pool_mode = PoolPara["pool_mode"]
|
|
|
pool_size = PoolPara["pool_size"]
|
|
|
stride = PoolPara["stride"]
|
|
|
c, h, w = image.shape # 获取输入特征图的高度和宽度
|
|
|
out_h = int((h - pool_size) / stride) + 1 # 计算输出特征图的高度
|
|
|
out_w = int((w - pool_size) / stride) + 1 # 计算输出特征图的宽度
|
|
|
out = np.zeros((c, out_h, out_w)) # 初始化输出特征图为全零数组
|
|
|
for k in range(c): # 对于输出的每一个位置上计算:
|
|
|
for i in range(out_h):
|
|
|
for j in range(out_w):
|
|
|
window = image[k, i * stride:i * stride + pool_size, j * stride:j * stride + pool_size]
|
|
|
if pool_mode == "max": # 最大池化
|
|
|
out[k][i][j] = np.max(window)
|
|
|
elif pool_mode == "avg": # 平均池化
|
|
|
out[k][i][j] = np.mean(window)
|
|
|
elif pool_mode == "min": # 最小池化
|
|
|
out[k][i][j] = np.min(window)
|
|
|
else: # 无效的池化类型
|
|
|
raise ValueError("Invalid pooling mode")
|
|
|
return out # 返回特征图。
|
|
|
|
|
|
# 定义设置池化参数的函数
|
|
|
def setpool_para(self):
|
|
|
pool_mode = "max" # 设置池大小和池类型,这里假设是2x2最大池化
|
|
|
pool_size = 2
|
|
|
stride = 2 # 设置步长,这里假设是2
|
|
|
PoolPara = {"pool_mode": pool_mode, "pool_size": pool_size, "stride": stride} # 返回PoolPara参数,这里用一个字典来存储
|
|
|
return PoolPara # 返回PoolPara参数
|
|
|
|
|
|
def output(self): # 输出方法
|
|
|
# 创建一个空列表
|
|
|
result = [self.ObjID, self.ObjType, self.ObjLable, self.MaxPoolProc, self.SetPollPara, self.ParaString, self.ObjX,
|
|
|
self.ObjY]
|
|
|
return result
|
|
|
class FullConn_Class(ModelObj): # 全连接对象
|
|
|
def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY):
|
|
|
super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY)
|
|
|
self.FullConnProc = self.fullconn_proc # 基本操作函数
|
|
|
self.SetFullConnPara = self.setfullconn_para # 参数设置函数
|
|
|
|
|
|
def fullconn_proc(self, inputdata, FullConnPara):
|
|
|
weights = FullConnPara["weights"] # 从FullConnPara参数中获取权重矩阵
|
|
|
bias = FullConnPara["bias"] # 偏置向量
|
|
|
inputdata = inputdata.reshape(1, inputdata.shape[1] * inputdata.shape[2]) # 对输入进行展平处理,变换为单通道的一维数组格式
|
|
|
output = np.dot(inputdata, weights.T) + bias # 计算全连接层的线性变换:inputdata与权重矩阵w进行乘法,再加上偏置向量b
|
|
|
return output # 返回全连接计算后的数组
|
|
|
|
|
|
# 定义一个函数来设置全连接层的相关参数,这里可以根据实际情况修改或随机生成
|
|
|
def setfullconn_para(self, data, num_outputs):
|
|
|
# 获取池化后的图片数组的长度和宽度
|
|
|
c, height, width = data
|
|
|
num_outputs = num_outputs
|
|
|
weights = np.random.randn(num_outputs, height * width)
|
|
|
bias = np.random.randn(1, num_outputs)
|
|
|
# 返回FullConnPara参数,这里用一个字典来存储
|
|
|
FullConnPara = {"weights": weights, "bias": bias, "num_outputs": num_outputs}
|
|
|
return FullConnPara
|
|
|
|
|
|
def output(self): # 输出方法
|
|
|
# 创建一个空列表
|
|
|
result = [self.ObjID, self.ObjType, self.ObjLable, self.FullConnProc, self.SetFullConnPara, self.ParaString, self.ObjX,
|
|
|
self.ObjY]
|
|
|
return result
|
|
|
|
|
|
class Nonline_Class(ModelObj): # 非线性对象
|
|
|
def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY):
|
|
|
super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY)
|
|
|
self.NonlinearProc = self.nonlinear_proc # 基本操作函数
|
|
|
self.SetNonLPara = self.setnonl_para # 参数设置函数
|
|
|
|
|
|
# 定义非线性函数
|
|
|
def nonlinear_proc(self, inputdata, NonLPara):
|
|
|
nonlinearmode = NonLPara["nonlinearmode"] # 从NonLPara参数中获取非线性函数类型
|
|
|
if nonlinearmode == "Sigmoid": # 判断nonlinearmode,进行相应的计算
|
|
|
output = 1 / (1 + np.exp(-inputdata)) # Sigmoid函数,将任何实数的输入映射到0和1之间的输出
|
|
|
elif nonlinearmode == "ReLU":
|
|
|
output = np.maximum(inputdata, 0) # ReLU函数,将负数输入置为0,而正数输入保持不变
|
|
|
elif nonlinearmode == "Tanh":
|
|
|
output = np.tanh(inputdata) # Tanh函数,将任何实数的输入映射到-1和1之间的输出
|
|
|
else:
|
|
|
raise ValueError("Invalid nonlinear mode") # 非法的非线性类型,抛出异常
|
|
|
return output # 返回计算后的值
|
|
|
|
|
|
# 定义设置非线性参数的函数
|
|
|
def setnonl_para(self):
|
|
|
# 可以选择"Sigmoid", "ReLU" 或 "Tanh"
|
|
|
nonlinearmode = "ReLU" # 确定参数信息:非线性函数的类型
|
|
|
NonLPara = {"nonlinearmode": nonlinearmode} # 返回NonLPara参数,这里用一个字典来存储
|
|
|
return NonLPara # 返回NonLPara参数
|
|
|
|
|
|
def output(self): # 输出方法
|
|
|
# 创建一个空列表
|
|
|
result = [self.ObjID, self.ObjType, self.ObjLable, self.NonlinearProc, self.SetNonLPara, self.ParaString, self.ObjX,
|
|
|
self.ObjY]
|
|
|
return result
|
|
|
class Label: # 标签
|
|
|
# 设置标签类别列表并将其转化为one-hot向量的形式
|
|
|
def setlabel_para(self, label_list):
|
|
|
num_classes = len(label_list)
|
|
|
identity_matrix = np.eye(num_classes)
|
|
|
label_dict = {label: identity_matrix[i] for i, label in enumerate(label_list)}
|
|
|
return label_dict
|
|
|
# 读取样本数据集,遍历每个样本,并将样本和对应的标签组成元组,返回标记好标签的样本列表
|
|
|
def label_proc(self, samples, labels, label_dict):
|
|
|
labeled_samples = [(sample, label_dict[label]) for sample, label in zip(samples, labels)]
|
|
|
return labeled_samples
|
|
|
def label_array(self, i):
|
|
|
# 读取标签数据
|
|
|
path_csv = 'train.csv'
|
|
|
df = pd.read_csv(path_csv, header=None, skiprows=range(0, i * 32), nrows=(i + 1) * 32 - i * 32)
|
|
|
# print(df)
|
|
|
# 将标签数据转化成数组
|
|
|
right_label = df.iloc[:, 0].tolist()
|
|
|
right_label = list(map(int, right_label))
|
|
|
right_label = [x for x in right_label]
|
|
|
# print(right_label)
|
|
|
return right_label
|
|
|
|
|
|
class Classifier_Class(ModelObj): # 分类对象
|
|
|
def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY):
|
|
|
super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY)
|
|
|
self.ClassifierProc = self.classifier_proc # 基本操作函数
|
|
|
self.SetClassifyPara = self.setclassify_para # 参数设置函数
|
|
|
|
|
|
def classifier_proc(self, inputdata, ClassifyPara):
|
|
|
def softmax(x): # 定义softmax函数
|
|
|
x -= np.max(x) # 减去最大值,防止数值溢出
|
|
|
return np.exp(x) / np.sum(np.exp(x)) # 计算指数和归一化
|
|
|
|
|
|
threshold = ClassifyPara["threshold"] # 从ClassifyPara参数中获取阈值
|
|
|
output = -1 # 初始化输出为-1
|
|
|
prob = softmax(inputdata) # 调用softmax函数,得到概率分布向量
|
|
|
prob1 = prob[prob >= threshold] # 如果概率高于阈值,就将该类别加入输出结果
|
|
|
index = np.where(prob == max(prob1)) # 使用where()函数来返回等于概率最大值的元素的索引
|
|
|
output = index[1].item(0) + 1 # 使用item()方法来将索引转换为标准Python标量
|
|
|
return output # 返回分类标签
|
|
|
|
|
|
# 定义设置分类函数参数的函数
|
|
|
def setclassify_para(self):
|
|
|
threshold = 0.1 # 设定阈值,可以根据你的数据和任务来调整阈值
|
|
|
ClassifyPara = {"threshold": threshold} # 返回ClassifyPara参数,这里用一个字典来存储
|
|
|
return ClassifyPara # 返回ClassifyPara参数
|
|
|
|
|
|
def output(self): # 输出方法
|
|
|
# 创建一个空列表
|
|
|
result = [self.ObjID, self.ObjType, self.ObjLable, self.ClassifierProc, self.SetClassifyPara, self.ParaString, self.ObjX,
|
|
|
self.ObjY]
|
|
|
return result
|
|
|
|
|
|
class Error_Class(ModelObj): # 误差计算对象
|
|
|
def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY):
|
|
|
super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY)
|
|
|
self.ErrorProc = self.error_proc # 基本操作函数
|
|
|
self.SetErrorPara = self.seterror_para # 参数设置函数
|
|
|
|
|
|
def error_proc(self, input, label, ErrorPara):
|
|
|
label_list, loss_type = ErrorPara # 读取标签列表和损失函数类型
|
|
|
one_hot_matrix = np.eye(len(label_list)) # 创建一个单位矩阵,大小为标签类别的个数
|
|
|
index = [x for x in label]
|
|
|
# print(label)
|
|
|
label_one_hot = np.take(one_hot_matrix, index, axis=0) # 从one-hot矩阵中取出对应的向量
|
|
|
# print(label_one_hot)
|
|
|
if loss_type == "CEE": # 确定损失函数类别,实现不同的损失函数,计算输入值与label之间的误差
|
|
|
# 使用交叉熵损失函数,公式为:-sum(label_one_hot * log(input)) / n
|
|
|
loss = -np.sum(label_one_hot * np.log(input)) / len(input)
|
|
|
elif loss_type == "MSE":
|
|
|
# 使用均方误差损失函数,公式为:sum((input - label_one_hot) ** 2) / n
|
|
|
loss = np.sum((input - label_one_hot) ** 2) / len(input)
|
|
|
elif loss_type == "MAE":
|
|
|
# 使用平均绝对误差损失函数,公式为:sum(abs(input - label_one_hot)) / n
|
|
|
loss = np.sum(np.abs(input - label_one_hot)) / len(input)
|
|
|
else:
|
|
|
raise ValueError("Invalid loss type") # 如果损失函数类型不在以上三种中,抛出异常
|
|
|
return loss # 返回误差值loss
|
|
|
|
|
|
# 定义设置误差参数的函数
|
|
|
def seterror_para(self):
|
|
|
label_list = [0, 1, 2, 3, 4, 5, 6] # 确定参数信息: 标签类别,损失函数类型
|
|
|
loss_type = "CEE" # 假设损失函数类型为交叉熵(Cross Entropy Error,CEE)
|
|
|
ErrorPara = (label_list, loss_type) # 返回ErrorProc参数,这里用一个元组来存储
|
|
|
return ErrorPara # 返回ErrorPara参数
|
|
|
|
|
|
def output(self): # 输出方法
|
|
|
# 创建一个空列表
|
|
|
result = [self.ObjID, self.ObjType, self.ObjLable, self.ErrorProc, self.SetErrorPara, self.ParaString, self.ObjX,
|
|
|
self.ObjY]
|
|
|
return result
|
|
|
|
|
|
class AjConv_Class(ModelObj): # 卷积调整对象
|
|
|
def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY):
|
|
|
super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY)
|
|
|
self.AjConvProc = self.ajconv_proc # 基本操作函数
|
|
|
self.SetAjConvPara = self.setajconv_para # 参数设置函数
|
|
|
|
|
|
def ajconv_proc(self, images, AjConvPara):
|
|
|
kernel_grad_list = []
|
|
|
bias_grad = 0 # 初始化偏置项梯度为零
|
|
|
for c in images:
|
|
|
# 计算卷积核和偏置项的梯度
|
|
|
kernel_grad = np.zeros_like(AjConvPara['kernel_info']) # 初始化卷积核梯度为零矩阵
|
|
|
for i in range(AjConvPara['loss'].shape[0]): # 遍历误差值矩阵的行
|
|
|
for j in range(AjConvPara['loss'].shape[1]): # 遍历误差值矩阵的列
|
|
|
# 将输入数据数组中对应的子矩阵旋转180度,与误差值相乘,累加到卷积核梯度上
|
|
|
kernel_grad += np.rot90(c[i:i + kernel_grad.shape[0], j:j + kernel_grad.shape[0]], 2) * AjConvPara['loss'][i, j]
|
|
|
# 将误差值累加到偏置项梯度上
|
|
|
bias_grad += AjConvPara['loss'][i, j]
|
|
|
kernel_grad_list.append(kernel_grad)
|
|
|
# 使用stack函数沿着第0个轴把一百个a数组堆叠起来
|
|
|
result = np.stack(kernel_grad_list, axis=0)
|
|
|
kernel_grad = np.sum(result, axis=0) / len(images) # 沿着第0个维度求和
|
|
|
# 更新卷积核和偏置项参数
|
|
|
kernel = AjConvPara['kernel_info'] - AjConvPara['learning_rate'] * kernel_grad # 卷积核参数减去学习率乘以卷积核梯度
|
|
|
return kernel # 返回更新后的卷积核
|
|
|
def setajconv_para(self, loss, ConvPara):
|
|
|
kernel = ConvPara['kernel'] # 卷积核信息
|
|
|
learning_rate = 0.01 # 学习率
|
|
|
loss = np.array([[loss]])
|
|
|
AjConvPara = {'kernel_info': kernel, 'learning_rate': learning_rate, 'loss': loss}
|
|
|
return AjConvPara
|
|
|
|
|
|
class AjFullconn_Class(ModelObj): # 全连接调整对象
|
|
|
def __init__(self, ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY):
|
|
|
super().__init__(ObjID, ObjType, ObjLable, ParaString, ObjX, ObjY)
|
|
|
self.AjFullconnProc = self.ajfullconn_proc # 基本操作函数
|
|
|
self.SetAjFCPara = self.setajfc_para # 参数设置函数
|
|
|
def ajfullconn_proc(self, AjFCPara):
|
|
|
# 根据激活函数的参数选择相应的函数和导数
|
|
|
# 计算权重矩阵和偏置向量的梯度,使用链式法则
|
|
|
gradient_weights = np.outer(AjFCPara['loss'], AjFCPara['learning_rate'])
|
|
|
# 更新权重矩阵和偏置向量
|
|
|
weight_matrix = AjFCPara['weights'] - gradient_weights
|
|
|
bias_vector = AjFCPara['bias'] - AjFCPara['learning_rate'] * AjFCPara['bias']
|
|
|
# 返回更新后的权重矩阵和偏置向量
|
|
|
return weight_matrix, bias_vector
|
|
|
|
|
|
def setajfc_para(self, loss, FullConnPara):
|
|
|
weights = FullConnPara["weights"]
|
|
|
bias = FullConnPara["bias"]
|
|
|
loss = np.array([loss])
|
|
|
AjFCPara = {
|
|
|
'weights': weights, # 全连接权重
|
|
|
'bias': bias, # 全连接偏置
|
|
|
'learning_rate': 0.01, # 学习率
|
|
|
'loss': loss # 误差值
|
|
|
}
|
|
|
return AjFCPara
|
|
|
|
|
|
def main():
|
|
|
DataPara = DataSet.SetDataPara() # setload_data()函数,获取加载数据集的参数
|
|
|
train_images, test_images = DataSet.LoadData(DataPara)
|
|
|
ConvPara = Conv.SetConvPara() # 调用SetConvPara()函数,获取卷积层参数
|
|
|
PoolPara = Pool.SetPollPara()
|
|
|
FullConnPara = FullConn.SetFullConnPara((1, 23, 23), 7)
|
|
|
NonLPara = Nonline.SetNonLPara()
|
|
|
ClassifyPara = Classifier.SetClassifyPara()
|
|
|
ErrorPara = Error.SetErrorPara()
|
|
|
LabelPara = Label()
|
|
|
# AjFCPara = AjFullconn.SetAjFCPara()
|
|
|
for i in range(len(train_images) // 32):
|
|
|
images = train_images[i * 32:(i + 1) * 32]
|
|
|
# 存储卷积处理后的图片的列表
|
|
|
conv_images = []
|
|
|
# 获取训练集的图片数据
|
|
|
for image in images:
|
|
|
# 获取矩阵的维度
|
|
|
dim = len(image.shape)
|
|
|
# 如果是二维矩阵,则转化为三维矩阵
|
|
|
if dim == 2:
|
|
|
image_h, image_w = image.shape
|
|
|
image = np.reshape(image, (1, image_h, image_w))
|
|
|
# 调用ConvProc()函数,根据ConvPara参数完成卷积计算
|
|
|
output = Conv.ConvProc(image, ConvPara)
|
|
|
# 将卷积结果存储到列表
|
|
|
conv_images.append(output)
|
|
|
# 若为三维矩阵,则保持不变直接卷积处理
|
|
|
elif dim == 3:
|
|
|
output = Conv.ConvProc(image, ConvPara)
|
|
|
conv_images.append(output)
|
|
|
# 将卷积处理后的图片列表转换为数组形式,方便后续处理
|
|
|
conv_images = np.array(conv_images)
|
|
|
|
|
|
|
|
|
pool_images = [] # 存储池化处理后的图片的列表
|
|
|
for image in conv_images: # 获取卷积后的图片数据
|
|
|
output = Pool.MaxPoolProc(image, PoolPara)
|
|
|
pool_images.append(output) # 将池化结果存储到列表
|
|
|
pool_images = np.array(pool_images) # 将池化处理后的图片列表转换为数组形式,方便后续处理
|
|
|
# print(conv_images)
|
|
|
|
|
|
# print(pool_images[0].shape)
|
|
|
# 存储全连接处理后的图片的列表
|
|
|
fullconn_images = []
|
|
|
# 获取池化后的图片数据
|
|
|
for image in pool_images:
|
|
|
output = FullConn.FullConnProc(image, FullConnPara)
|
|
|
# 将全连接处理后的结果存储到列表
|
|
|
fullconn_images.append(output)
|
|
|
# 将全连接处理后的图片列表转换为数组形式,方便后续处理
|
|
|
fullconn_images = np.array(fullconn_images)
|
|
|
# print(fullconn_images)
|
|
|
|
|
|
# 存储非线性处理后的图片的列表
|
|
|
nonlinear_images = []
|
|
|
for image in fullconn_images: # 获取全连接处理后的图片数据
|
|
|
output = Nonline.NonlinearProc(image, NonLPara)
|
|
|
# 将非线性处理后的结果存储到列表
|
|
|
nonlinear_images.append(output)
|
|
|
# 将非线性处理后的图片列表转换为数组形式,方便后续处理
|
|
|
nonlinear_images = np.array(nonlinear_images)
|
|
|
# print(nonlinear_images)
|
|
|
|
|
|
|
|
|
classifier_images = [] # 存储分类处理后的图片的列表
|
|
|
prob_images = [] # 存储分类处理后的概率向量
|
|
|
def softmax(x): # 定义softmax函数
|
|
|
x -= np.max(x) # 减去最大值,防止数值溢出
|
|
|
return np.exp(x) / np.sum(np.exp(x)) # 计算指数和归一化
|
|
|
for image in nonlinear_images: # 获取非线性处理后的图片数据
|
|
|
prob = softmax(image) # 调用softmax函数,得到概率分布向量
|
|
|
prob_images.append(prob) # 将概率向量结果存储到列表
|
|
|
output = Classifier.ClassifierProc(image, ClassifyPara) # 进行分类处理
|
|
|
classifier_images.append(output) # 将分类结果存储到列表
|
|
|
classifier_images = np.array(classifier_images) # 将分类的结果列表转换为数组形式,方便后续处理
|
|
|
print(classifier_images)
|
|
|
# print(setlabel_para())
|
|
|
label_dict = LabelPara.setlabel_para([0, 1, 2, 3, 4, 5, 6])
|
|
|
right_label = LabelPara.label_array(i)
|
|
|
labeled_samples = LabelPara.label_proc(images, right_label, label_dict)
|
|
|
print(right_label)
|
|
|
|
|
|
|
|
|
# 假设有以下输入值和真实标签值,输入值是一个概率矩阵,真实标签值是一个类别列表
|
|
|
prob_images = np.squeeze(prob_images)
|
|
|
# print(prob_images)
|
|
|
loss = Error.ErrorProc(prob_images, right_label, ErrorPara) # 计算误差值
|
|
|
print(loss)
|
|
|
AjConvPara = AjConv.SetAjConvPara(loss, ConvPara)
|
|
|
ConvPara['kernel'] = AjConv.AjConvProc(images, AjConvPara)
|
|
|
print(ConvPara['kernel'])
|
|
|
|
|
|
AjFCPara = AjFullconn.SetAjFCPara(loss, FullConnPara)
|
|
|
weight, bias = AjFullconn.AjFullconnProc(AjFCPara)
|
|
|
FullConnPara['weights'] = weight
|
|
|
FullConnPara['bias'] = bias
|
|
|
# print(weight, bias)
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
DataSet = Data_Class("DataSet1", 1, "数据集1", [], 120, 330)
|
|
|
Conv = Conv_Class("Conv1", 2, "卷积1", [], 250, 330)
|
|
|
Pool = Pool_Class("Pool1", 3, "最大池化1", [], 380, 330)
|
|
|
FullConn = FullConn_Class("FullConn1", 4, "全连接1", [], 510, 330)
|
|
|
Nonline = Nonline_Class("Nonline1", 5, "非线性函数1", [], 640, 330)
|
|
|
Classifier = Classifier_Class("Classifier1", 6, "分类1", [], 780, 330)
|
|
|
Error = Error_Class("Error1", 7, "误差计算1", [], 710, 124)
|
|
|
AjConv = AjConv_Class("AjConv1", 8, "卷积调整1", [], 250, 70)
|
|
|
AjFullconn = AjFullconn_Class("AjFullconn1", 9, "全连接调整1", [], 510, 120)
|
|
|
# AllModelObj = [DataSet, Conv, Pool, FullConn, Nonline, Classifier, Error, AjConv, AjFullconn]
|
|
|
main()
|