You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

36 lines
1.7 KiB

class AjFullconn_Class(ModelObj): # 全连接调整对象
def __init__(self, ObjID,ObjType,ObjLable,ParaString,ObjX,ObjY):
super().__init__(ObjID,ObjType,ObjLable,ParaString,ObjX,ObjY)
self.AjFullconnProc = self.ajfullconn_proc # 基本操作函数
self.SetAjFCPara = self.setajfc_para # 参数设置函数
def ajfullconn_proc(self, AjFCPara):
# 根据激活函数的参数选择相应的函数和导数
# 计算权重矩阵和偏置向量的梯度,使用链式法则
gradient_weights = np.outer(AjFCPara['loss'],
AjFCPara['learning_rate'])
# 更新权重矩阵和偏置向量
weight_matrix = AjFCPara['weights'] - gradient_weights
bias_vector = AjFCPara['bias'] - AjFCPara[
'learning_rate'] * AjFCPara['bias']
# 返回更新后的权重矩阵和偏置向量
return weight_matrix, bias_vector
def setajfc_para(self, loss, FullConnPara):
weights = FullConnPara["weights"]
bias = FullConnPara["bias"]
loss = np.array([loss])
AjFCPara = {
'weights': weights, # 全连接权重
'bias': bias, # 全连接偏置
'learning_rate': 0.01, # 学习率
'loss': loss # 误差值
}
return AjFCPara
if __name__ == '__main__':
AjFullconn = AjFullconn_Class("AjFullconn1", 9,
"全连接调整1", [], 510, 120)
···
AjFCPara = AjFullconn.SetAjFCPara(loss, FullConnPara)
weight, bias = AjFullconn.AjFullconnProc(AjFCPara)
FullConnPara['weights'] = weight
FullConnPara['bias'] = bias