# -*- coding: utf-8 -*- import cv2 import os import numpy as np from PIL import Image from skimage import io from psd_tools import PSDImage # 均值哈希算法 def aHash(img,shape=(10,10)): # 缩放为10*10 img = cv2.resize(img, shape) # 转换为灰度图 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # s为像素和初值为0,hash_str为hash值初值为'' s = 0 hash_str = '' # 遍历累加求像素和 for i in range(shape[0]): for j in range(shape[1]): s = s + gray[i, j] # 求平均灰度 avg = s / 100 # 灰度大于平均值为1相反为0生成图片的hash值 for i in range(shape[0]): for j in range(shape[1]): if gray[i, j] > avg: hash_str = hash_str + '1' else: hash_str = hash_str + '0' return hash_str # 差值感知算法 def dHash(img,shape=(10,10)): # 缩放10*11 img = cv2.resize(img, (shape[0]+1, shape[1])) # 转换灰度图 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) hash_str = '' # 每行前一个像素大于后一个像素为1,相反为0,生成哈希 for i in range(shape[0]): for j in range(shape[1]): if gray[i, j] > gray[i, j + 1]: hash_str = hash_str + '1' else: hash_str = hash_str + '0' return hash_str # 感知哈希算法(pHash) def pHash(img,shape=(10,10)): # 缩放32*32 img = cv2.resize(img, (32, 32)) # , interpolation=cv2.INTER_CUBIC # 转换为灰度图 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 将灰度图转为浮点型,再进行dct变换 dct = cv2.dct(np.float32(gray)) # opencv实现的掩码操作 dct_roi = dct[0:10, 0:10] hash = [] avreage = np.mean(dct_roi) for i in range(dct_roi.shape[0]): for j in range(dct_roi.shape[1]): if dct_roi[i, j] > avreage: hash.append(1) else: hash.append(0) return hash # 通过得到RGB每个通道的直方图来计算相似度 def classify_hist_with_split(image1, image2, size=(256, 256)): # 将图像resize后,分离为RGB三个通道,再计算每个通道的相似值 image1 = cv2.resize(image1, size) image2 = cv2.resize(image2, size) sub_image1 = cv2.split(image1) sub_image2 = cv2.split(image2) sub_data = 0 for im1, im2 in zip(sub_image1, sub_image2): sub_data += calculate(im1, im2) sub_data = sub_data / 3 return sub_data # 计算单通道的直方图的相似值 def calculate(image1, image2): hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0]) hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0]) # 计算直方图的重合度 degree = 0 for i in range(len(hist1)): if hist1[i] != hist2[i]: degree = degree + (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i])) else: degree = degree + 1 degree = degree / len(hist1) return degree # Hash值对比 def cmpHash(hash1, hash2,shape=(10,10)): n = 0 # hash长度不同则返回-1代表传参出错 if len(hash1)!=len(hash2): return -1 # 遍历判断 for i in range(len(hash1)): # 相等则n计数+1,n最终为相似度 if hash1[i] == hash2[i]: n = n + 1 return n/(shape[0]*shape[1]) def file_inspect(): # 文件路径 png_file = 'K:/work/mine_clearance/class1/userfiles2/result.png' psd_file = 'K:/work/mine_clearance/class1/userfiles2/result.psd' result_png = 'K:/work/mine_clearance/class1/userfiles2/result3.png' # 检查文件是否存在 if os.path.exists(png_file) and os.path.exists(psd_file): psd_to_png(psd_file, result_png) if image_similarity(png_file, result_png) != 1: print('result.psd文件与result.png不匹配') return 0 return 1 else: print('缺少文件') return 0 def image_specifications(): # 打开图像文件 image = Image.open('K:/work/mine_clearance/class1/userfiles2/result.psd') image2 = Image.open('K:/work/mine_clearance/class1/userfiles2/result2.png') # 获取图像尺寸(宽度和高度) width, height = image2.size width2, height2 = image.size width_difference = abs(width - width2) height_difference = abs(height - height2) if width_difference > 20 or height_difference > 20: print('图片未按照规格修改,请修改在测试!') def similitude(): img1 = cv2.imread('K:/work/mine_clearance/class1/userfiles2/result.png') img2 = cv2.imread('K:/work/mine_clearance/class1/userfiles2/image.png') data = [] hash1 = aHash(img1) hash2 = aHash(img2) data.append(cmpHash(hash1, hash2)) hash1 = dHash(img1) hash2 = dHash(img2) data.append(cmpHash(hash1, hash2)) hash1 = pHash(img1) hash2 = pHash(img2) data.append(cmpHash(hash1, hash2)) data.append(classify_hist_with_split(img1, img2)[0]) data.append(calculate(img1, img2)[0]) flage = 1 for item in data: print(item) if item < 0.7: flage = 0 if flage == 1: print('恭喜你制作明信片成功!') else: print('制作失败') def psd_to_png(psd_path, png_path): try: psd_image = PSDImage.open(psd_path) image_pil = psd_image.topil() image_np = cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR) cv2.imwrite(png_path, image_np) return 1 except Exception as e: print("psd文件与png文件相同大小") return 0 def image_similarity(image1, image2): # 读取图片 img1 = cv2.imread(image1) img2 = cv2.imread(image2) # 将图片调整为相同尺寸 img1 = cv2.resize(img1, img2.shape[:2][::-1]) # 计算直方图差异 hist1 = cv2.calcHist([img1], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256]) hist2 = cv2.calcHist([img2], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256]) similarity = cv2.compareHist(hist1, hist2, cv2.HISTCMP_CORREL) return similarity if __name__=="__main__": # file_inspect() similitude() # if file_inspect(): # similitude() # image_specifications()