|
|
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
|
"""
|
|
|
|
|
@Author: packy945
|
|
|
|
|
@FileName: fitting.py
|
|
|
|
|
@DateTime: 2023/5/31 14:16
|
|
|
|
|
@SoftWare: PyCharm
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
from scipy.optimize import curve_fit
|
|
|
|
|
import pylab as mpl
|
|
|
|
|
from tkinter import *
|
|
|
|
|
import mpl_toolkits.axisartist as axisartist
|
|
|
|
|
import data as gl_data
|
|
|
|
|
# import function
|
|
|
|
|
|
|
|
|
|
mpl.rcParams['font.sans-serif'] = ['SimHei'] # 解决中文不显示问题
|
|
|
|
|
plt.rcParams['axes.unicode_minus'] = False #解决负数坐标显示问题
|
|
|
|
|
|
|
|
|
|
def draw_axis(low, high, step=250):
|
|
|
|
|
fig = plt.figure(figsize=(4.4, 3.2))
|
|
|
|
|
ax = axisartist.Subplot(fig, 111)# 使用axisartist.Subplot方法创建一个绘图区对象ax
|
|
|
|
|
fig.add_axes(ax)# 将绘图区对象添加到画布中
|
|
|
|
|
ax.axis[:].set_visible(False)# 通过set_visible方法设置绘图区所有坐标轴隐藏
|
|
|
|
|
ax.axis["x"] = ax.new_floating_axis(0, 0)# 添加新的x坐标轴
|
|
|
|
|
ax.axis["x"].set_axisline_style("-|>", size=1.0)# 给x坐标轴加上箭头
|
|
|
|
|
ax.axis["y"] = ax.new_floating_axis(1, 0)# 添加新的y坐标轴
|
|
|
|
|
ax.axis["y"].set_axisline_style("-|>", size=1.0)# y坐标轴加上箭头
|
|
|
|
|
ax.axis["x"].set_axis_direction("bottom")# 设置x、y轴上刻度显示方向
|
|
|
|
|
ax.axis["y"].set_axis_direction("left")# 设置x、y轴上刻度显示方向
|
|
|
|
|
plt.xlim(low, high) # 把x轴的刻度范围设置
|
|
|
|
|
plt.ylim(low, high) # 把y轴的刻度范围设置
|
|
|
|
|
ax.set_xticks(np.arange(low, high + 5, step))# 把x轴的刻度间隔设置
|
|
|
|
|
ax.set_yticks(np.arange(low, high + 5, step))# 把y轴的刻度间隔设置
|
|
|
|
|
|
|
|
|
|
def generate_and_plot_sample_data(low, high):
|
|
|
|
|
num_samples = 25#设置样本点数量
|
|
|
|
|
gl_data.X = np.random.randint(low=low, high=high, size=num_samples)#随机生成x值
|
|
|
|
|
gl_data.Y = np.random.randint(low=low, high=high, size=num_samples)#随机生成y值
|
|
|
|
|
draw_axis(low, high)#绘制坐标轴
|
|
|
|
|
plt.scatter(gl_data.X, gl_data.Y, color='red') # 绘制样本数据点
|
|
|
|
|
plt.savefig(r"dot.png", facecolor='w')#保存到本地
|
|
|
|
|
plt.close()#清除内存
|
|
|
|
|
set_phtot(1)#显示到主界面
|
|
|
|
|
|
|
|
|
|
# 显示数据集
|
|
|
|
|
def selfdata_show(x, y, low, high):# 显示数据集
|
|
|
|
|
num_points = len(x) # 样本数据点的数量
|
|
|
|
|
colors = np.random.rand(num_points, 3)# 生成随机颜色
|
|
|
|
|
draw_axis(low, high)
|
|
|
|
|
plt.scatter(x, y, c=colors)# 绘制样本数据点
|
|
|
|
|
plt.savefig(r"dot.png", facecolor='w') # 保存为png文件
|
|
|
|
|
plt.clf()
|
|
|
|
|
set_phtot(1)
|
|
|
|
|
|
|
|
|
|
def fitting(letters,result):
|
|
|
|
|
code_str = '''
|
|
|
|
|
def func({}):
|
|
|
|
|
return {}
|
|
|
|
|
'''.format(letters,result)
|
|
|
|
|
return code_str
|
|
|
|
|
|
|
|
|
|
def create_func(code_str):
|
|
|
|
|
# 创建一个空的命名空间
|
|
|
|
|
namespace = {}
|
|
|
|
|
# 使用exec函数执行字符串代码,并指定命名空间为locals
|
|
|
|
|
exec(code_str, globals(), namespace)
|
|
|
|
|
# 返回命名空间中的函数对象
|
|
|
|
|
return namespace['func']
|
|
|
|
|
|
|
|
|
|
def draw_line(xian_index, low, high, sx, sy):
|
|
|
|
|
draw_axis(low, high)#绘制坐标轴
|
|
|
|
|
popt = []#初始化curve_fit
|
|
|
|
|
pcov = []#初始化curve_fit
|
|
|
|
|
letters, result = gl_data.FITT_SAVE['variable'][xian_index], gl_data.FITT_SAVE['function'][xian_index]
|
|
|
|
|
code_str = fitting(letters, result)
|
|
|
|
|
func = create_func(code_str) # 获取当前函数func
|
|
|
|
|
# cur = function.Fun[xian_index] # 装载正在选择的函数
|
|
|
|
|
# func = cur.get_fun()#获取当前函数func
|
|
|
|
|
popt, pcov = curve_fit(func, sx, sy)# 用curve_fit来对点进行拟合
|
|
|
|
|
curve_x = np.arange(low, high)#按照步长生成的一串数字
|
|
|
|
|
curve_y = [func(i, *popt) for i in curve_x]# 根据x0(按照步长生成的一串数字)来计算y1值
|
|
|
|
|
plt.plot(curve_x, curve_y, color='blue', label='Fitted Curve')#绘制拟合曲线
|
|
|
|
|
plt.legend()
|
|
|
|
|
# plt.show()#显示函数图像
|
|
|
|
|
plt.savefig(r"line.png", facecolor='w')#将图片保存到本地
|
|
|
|
|
plt.close()#清除内存
|
|
|
|
|
set_phtot(2)#将图片显示到程序中
|
|
|
|
|
|
|
|
|
|
def draw_dots_and_line(xian_index, low, high, sx, sy):
|
|
|
|
|
if gl_data.Quadrant:
|
|
|
|
|
x = sx.tolist()
|
|
|
|
|
y = sy.tolist()
|
|
|
|
|
negative_x = [i for i, num in enumerate(x) if num < 0]
|
|
|
|
|
negative_y = [i for i, num in enumerate(y) if num < 0]
|
|
|
|
|
negative = list(set(negative_x + negative_y))
|
|
|
|
|
for index in range(len(negative)):
|
|
|
|
|
# print(negative[-index-1])
|
|
|
|
|
x.pop(negative[-index - 1])
|
|
|
|
|
y.pop(negative[-index - 1])
|
|
|
|
|
sx = np.array(x)
|
|
|
|
|
sy = np.array(y)
|
|
|
|
|
print(sx)
|
|
|
|
|
############## begin #####################
|
|
|
|
|
draw_axis(low, high)
|
|
|
|
|
popt = []
|
|
|
|
|
pcov = []
|
|
|
|
|
letters, result = gl_data.FITT_SAVE['variable'][xian_index], gl_data.FITT_SAVE['function'][xian_index]
|
|
|
|
|
code_str = fitting(letters, result)
|
|
|
|
|
func = create_func(code_str) # 获取当前函数func
|
|
|
|
|
print(code_str)
|
|
|
|
|
# cur = function.Fun[xian_index] # 装载正在选择的函数
|
|
|
|
|
# func = cur.get_fun()#获取当前函数func
|
|
|
|
|
popt, pcov = curve_fit(func, sx, sy)# 用curve_fit来对点进行拟合
|
|
|
|
|
positive_mask = sy >= 0.0#给样本点分类
|
|
|
|
|
negative_mask = sy < 0.0#给样本点分类
|
|
|
|
|
positive_colors = ['red' if x >= 0.0 else 'red' for x in sx]#给样本点分类
|
|
|
|
|
negative_colors = ['red' if x >= 0.0 else 'red' for x in sx]#给样本点分类
|
|
|
|
|
#根据样本点类型决定样本点颜色
|
|
|
|
|
plt.scatter(sx[positive_mask], sy[positive_mask], color=np.array(positive_colors)[positive_mask], lw=1)
|
|
|
|
|
plt.scatter(sx[negative_mask], sy[negative_mask], color=np.array(negative_colors)[negative_mask], lw=1)
|
|
|
|
|
curve_x = np.arange(low, high)#按照步长生成的一串数字
|
|
|
|
|
curve_y = [func(i, *popt) for i in curve_x]# 根据x0(按照步长生成的一串数字)来计算y1值
|
|
|
|
|
############## end #######################
|
|
|
|
|
plt.plot(curve_x, curve_y, color='blue', label='Fitted Curve')#绘制拟合曲线
|
|
|
|
|
plt.legend()
|
|
|
|
|
plt.savefig(r"line.png", facecolor='w')#将图片保存到本地
|
|
|
|
|
plt.close()#清除内存
|
|
|
|
|
set_phtot(2)#将图片显示到程序中
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def set_phtot(index1):
|
|
|
|
|
# 显示图像
|
|
|
|
|
Canvas2 = gl_data.Canvas2
|
|
|
|
|
if index1 == 1:
|
|
|
|
|
gl_data.Img1=PhotoImage(file=r"dot.png")
|
|
|
|
|
# print(gl_data.Img1)
|
|
|
|
|
gl_data.Img1 = gl_data.Img1.zoom(2, 2)
|
|
|
|
|
set_img1=Canvas2.create_image(2, 10, image=gl_data.Img1, anchor=NW)
|
|
|
|
|
# Canvas2.itemconfigure(set_img1,int(420 * gl_data.MAGNIDICATION), int(300 * gl_data.MAGNIDICATION))
|
|
|
|
|
Canvas2.update()
|
|
|
|
|
print("已输出数据点")
|
|
|
|
|
elif index1 == 2:
|
|
|
|
|
gl_data.Img2=PhotoImage(file=r"line.png")
|
|
|
|
|
# print(gl_data.Img2)
|
|
|
|
|
gl_data.Img2 = gl_data.Img2.zoom(2, 2)
|
|
|
|
|
set_img2=Canvas2.create_image(2, 10, image=gl_data.Img2, anchor=NW)
|
|
|
|
|
# Canvas2.itemconfigure(set_img2, 0,0,int(420*gl_data.MAGNIDICATION), int(300*gl_data.MAGNIDICATION))
|
|
|
|
|
Canvas2.update()
|
|
|
|
|
print("已输出数据点和曲线")
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
# random_points()
|
|
|
|
|
|
|
|
|
|
pass
|