You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
fitt/data.py

132 lines
4.1 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# -*- encoding: utf-8 -*-
"""
@Author: packy945
@FileName: data.py
@DateTime: 2023/5/31 11:42
@SoftWare: PyCharm
"""
import tkinter as tk
from tkinter import *
import random
import numpy as np
FITT_SAVE = {}
FITT_LIST = []
X = [] # 等待拟合的x值
Y = [] # 等待拟合的y值
global Canvas2 # 用于显示函数的画布
Img1 = None # 绘制的dot.png图像
Img2 = None # 绘制的line.png图像
Xian_index = 0 # 当前选择的函数编号
Quadrant = 0 # 当前选择的象限信息0为四象限1为一象限
MAXV = 1000 # 最大值
INDEX = 5 # 拟合函数索引
Out = '' # 拟合输出信息
LOW = -MAXV # 坐标轴显示上界
HIGH = MAXV # 坐标轴显示下界
MAGNIDICATION = 1.0 # 放大倍数
def random_points():
x=[]
y=[]
for i in range(20):
x_= random.uniform(0, 1000)#生成随机浮点数
y_= random.uniform(0, 1000)#生成随机浮点数
x.append(x_) #加入列表
y.append(y_)
x=np.array(x) #列表转数组
y=np.array(y)
arr = np.array(list(zip(x, y)))# 将两个一维数组拼接成二维数组
return arr
def compute_curveData(num, step, coefficient):#coefficient代表二次函数系数数组形式
def quadratic_function(x):#构造二次函数y = a * X^2 + b * X + C
return coefficient[0] * x ** 2 + coefficient[1] * x + coefficient[2]
x_values = np.arange(-num, num, step)
y_values = quadratic_function(x_values)#调用quadratic_function(x)函数得到y值
curve_data = np.column_stack((x_values, y_values))#将两个一维数组堆叠成二维数组,形成(x,y)的形式
return curve_data
# #################################拟合优度R^2的计算######################################
def __sst(y_no_fitting):
"""
计算SST(total sum of squares) 总平方和
:param y_no_predicted: List[int] or array[int] 待拟合的y
:return: 总平方和SST
"""
y_mean = sum(y_no_fitting) / len(y_no_fitting)
s_list =[(y - y_mean)**2 for y in y_no_fitting]
sst = sum(s_list)
return sst
def __ssr(y_fitting, y_no_fitting):
"""
计算SSR(regression sum of squares) 回归平方和
:param y_fitting: List[int] or array[int] 拟合好的y值
:param y_no_fitting: List[int] or array[int] 待拟合y值
:return: 回归平方和SSR
"""
y_mean = sum(y_no_fitting) / len(y_no_fitting)
s_list =[(y - y_mean)**2 for y in y_fitting]
ssr = sum(s_list)
return ssr
def __sse(y_fitting, y_no_fitting):
"""
计算SSE(error sum of squares) 残差平方和
:param y_fitting: List[int] or array[int] 拟合好的y值
:param y_no_fitting: List[int] or array[int] 待拟合y值
:return: 残差平方和SSE
"""
s_list = [(y_fitting[i] - y_no_fitting[i])**2 for i in range(len(y_fitting))]
sse = sum(s_list)
return sse
def goodness_of_fit(y_fitting, y_no_fitting):
"""
计算拟合优度R^2
:param y_fitting: List[int] or array[int] 拟合好的y值
:param y_no_fitting: List[int] or array[int] 待拟合y值
:return: 拟合优度R^2
"""
ssr = __ssr(y_fitting, y_no_fitting)
sst = __sst(y_no_fitting)
rr = ssr /sst
return rr
def least_sqaure(x,y):
n = len(x)
sumx, sumy, sumxy, sumxx = 0, 0, 0, 0
for i in range(0, n):
sumx += x[i]
sumy += y[i]
sumxx += x[i] * x[i]
sumxy += x[i] * y[i]
a = (n * sumxy - sumx * sumy) / (n * sumxx - sumx * sumx)
b = (sumxx * sumy - sumx * sumxy) / (n * sumxx - sumx * sumx)
return a, b
import time
def gradient_descent(x, y):
s = time.time()
x = 10000 * np.random.randn(1) # 产生服从正太分布的一个数(均值=0方差=1)扩大10000倍
eta = 0.09
i = 1
while True:
y = x ^ 2 / 2 - 2 * x
x -= eta * 2 * x
if y <= 0.0001:
print('x is %.6f\ny is %.6f\nand steps are %d' % (x, y, i))
break
i += 1
e = time.time()
print('time is %.4f second' % (e - s))
if __name__ == '__main__':
random_points()
pass