|
|
from tkinter import *
|
|
|
import tkinter as tk
|
|
|
import mpl_toolkits.axisartist as axisartist
|
|
|
import matplotlib.pyplot as plt
|
|
|
from scipy.optimize import curve_fit
|
|
|
import data as gl_data
|
|
|
import numpy as np
|
|
|
from X1 import random_points
|
|
|
|
|
|
def window():
|
|
|
root_window = Tk()
|
|
|
root_window.title('函数拟合')
|
|
|
|
|
|
root_window.geometry('900x600') # 设置窗口大小:宽x高,注,此处不能为 "*",必须使用 "x"
|
|
|
# 设置主窗口的背景颜色,颜色值可以是英文单词,或者颜色值的16进制数,除此之外还可以使用Tk内置的颜色常量
|
|
|
root_window["background"] = "white"
|
|
|
root_window.resizable(0, 0) # 防止用户调整尺寸
|
|
|
label1 = tk.Label(root_window, text="样本数据\n集文件", font=('Times', 8), bg="white",
|
|
|
width=13, height=3, # 设置标签内容区大小
|
|
|
padx=0, pady=0, borderwidth=0, )
|
|
|
label1.place(x=10, y=4) # 设置填充区距离、边框宽度和其样式(凹陷式)
|
|
|
label3 = tk.Label(root_window, text="", font=('Times', 8), bg="white", fg="black",
|
|
|
width=39, height=2, padx=0, pady=0, borderwidth=0, relief="ridge", highlightcolor="blue")
|
|
|
label3.place(x=122, y=10)
|
|
|
return root_window
|
|
|
# if __name__ == '__main__':
|
|
|
# root_window = window()
|
|
|
# root_window.mainloop()
|
|
|
|
|
|
def draw_axis(low, high, step=250):
|
|
|
fig = plt.figure(figsize=(4.4, 3.2)) # 设置显示大小
|
|
|
ax = axisartist.Subplot(fig, 111) # 使用axisartist.Subplot方法创建一个绘图区对象ax
|
|
|
fig.add_axes(ax) # 将绘图区对象添加到画布中
|
|
|
ax.axis[:].set_visible(False)# 通过set_visible方法设置绘图区所有坐标轴隐藏
|
|
|
ax.axis["x"] = ax.new_floating_axis(0, 0) # 添加新的x坐标轴
|
|
|
ax.axis["x"].set_axisline_style("-|>", size=1.0) # 给x坐标轴加上箭头
|
|
|
ax.axis["y"] = ax.new_floating_axis(1, 0) # 添加新的y坐标轴
|
|
|
ax.axis["y"].set_axisline_style("-|>", size=1.0) # y坐标轴加上箭头
|
|
|
ax.axis["x"].set_axis_direction("bottom") # 设置x、y轴上刻度显示方向
|
|
|
ax.axis["y"].set_axis_direction("left") # 设置x、y轴上刻度显示方向
|
|
|
plt.xlim(low, high) # 把x轴的刻度范围设置
|
|
|
plt.ylim(low, high) # 把y轴的刻度范围设置
|
|
|
ax.set_xticks(np.arange(low, high + 5, step)) # 把x轴的刻度间隔设置
|
|
|
ax.set_yticks(np.arange(low, high + 5, step)) # 把y轴的刻度间隔设置
|
|
|
# plt.show()
|
|
|
# if __name__ == '__main__':
|
|
|
# draw_axis(-1000, 1000)
|
|
|
|
|
|
def selfdata_show(sampleData):
|
|
|
num_points = len(sampleData) # 样本数据点的数量
|
|
|
colors = np.random.rand(num_points, 3) # 生成随机颜色
|
|
|
draw_axis(0, 1000)
|
|
|
plt.scatter(sampleData[:, 0], sampleData[:, 1], c=colors) # 绘制样本数据点
|
|
|
plt.show() #显示图片
|
|
|
# if __name__ == '__main__':
|
|
|
# sampleData = random_points() # 生成样本点
|
|
|
# selfdata_show(sampleData) # 绘制样本数据点
|
|
|
|
|
|
def quadratic_function(x, a, b, c, d): #构造三次函数y = a * X^3 + b * X^2 + C * x + d
|
|
|
return a * x ** 3 + b * x **2 + c * x + d
|
|
|
def draw_line(low, high, sx, sy):
|
|
|
draw_axis(low, high) #绘制坐标轴
|
|
|
popt = [] #初始化curve_fit
|
|
|
pcov = [] #初始化curve_fit
|
|
|
gl_data.yvals_pow = [] #初始化curve_fit
|
|
|
popt, pcov = curve_fit(quadratic_function, sx, sy) # 用curve_fit来对点进行拟合
|
|
|
curve_x = np.arange(low, high) #按照步长生成的一串数字
|
|
|
curve_y = [quadratic_function (i, *popt) for i in curve_x] # 根据x0(按照步长生成的一串数字)来计算y1值
|
|
|
plt.plot(curve_x, curve_y, color='blue', label='Fitted Curve') #绘制拟合曲线
|
|
|
plt.legend()
|
|
|
plt.show() #显示函数图像
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
curve_data = [[-375,250],[-750,0],[-1000,-500],[0,0],[375,-250],[750,0],[1000,500]]
|
|
|
x = np.array([point[0] for point in curve_data]) # 为二次函数.txt
|
|
|
y = np.array([point[1] for point in curve_data])
|
|
|
draw_line(-1000, 1000, x, y)
|
|
|
|
|
|
# 下面是一个用于拟合曲线的最小二乘法的Python代码示例:
|
|
|
|
|
|
# import numpy as np
|
|
|
# import matplotlib.pyplot as plt
|
|
|
#
|
|
|
# # 定义x和y坐标数据
|
|
|
# x = np.array([1, 2, 3, 4, 5])
|
|
|
# y = np.array([2, 3, 4, 5, 6])
|
|
|
#
|
|
|
# # 定义多项式阶数m
|
|
|
# m = 2
|
|
|
#
|
|
|
# # 构造A矩阵
|
|
|
# A = np.vander(x, m + 1, increasing=True)
|
|
|
#
|
|
|
# # 计算拟合系数theta
|
|
|
# theta = np.linalg.lstsq(A, y, rcond=None)[0]
|
|
|
#
|
|
|
# # 使用theta和x的幂次计算拟合曲线
|
|
|
# x_fit = np.linspace(x.min(), x.max(), 100)
|
|
|
# y_fit = np.polyval(theta[::-1], x_fit)
|
|
|
#
|
|
|
# # 创建图形对象并绘制拟合曲线和样本点
|
|
|
# fig, ax = plt.subplots()
|
|
|
# ax.plot(x_fit, y_fit, label='Fitted curve')
|
|
|
# ax.scatter(x, y, label='Data points')
|
|
|
#
|
|
|
# # 添加标签
|
|
|
# ax.set_xlabel('x')
|
|
|
# ax.set_ylabel('y')
|
|
|
# ax.set_title('Curve fitting using Least Squares')
|
|
|
#
|
|
|
# # 显示图形
|
|
|
# plt.legend()
|
|
|
# plt.show() |