You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
76 lines
2.3 KiB
76 lines
2.3 KiB
11 months ago
|
import random
|
||
|
|
||
|
def initialize_population(num_points, pop_size):
|
||
|
population = []
|
||
|
for _ in range(pop_size):
|
||
|
individual = list(range(num_points))
|
||
|
random.shuffle(individual)
|
||
|
population.append(individual)
|
||
|
return population
|
||
|
|
||
|
def evaluate_fitness(individual, distances):
|
||
|
fitness = 0
|
||
|
num_points = len(individual)
|
||
|
for i in range(num_points):
|
||
|
city1 = individual[i]
|
||
|
city2 = individual[(i + 1) % num_points]
|
||
|
fitness += distances[city1][city2]
|
||
|
return fitness
|
||
|
|
||
|
def crossover(parent1, parent2):
|
||
|
child = [-1] * len(parent1)
|
||
|
start_idx = random.randint(0, len(parent1)-1)
|
||
|
end_idx = random.randint(start_idx+1, len(parent1))
|
||
|
child[start_idx:end_idx] = parent1[start_idx:end_idx]
|
||
|
for city in parent2:
|
||
|
if city not in child:
|
||
|
for i in range(len(child)):
|
||
|
if child[i] == -1:
|
||
|
child[i] = city
|
||
|
break
|
||
|
return child
|
||
|
|
||
|
def mutate(individual):
|
||
|
idx1, idx2 = random.sample(range(len(individual)), 2)
|
||
|
individual[idx1], individual[idx2] = individual[idx2], individual[idx1]
|
||
|
|
||
|
def genetic_algorithm(distances, pop_size, num_generations):
|
||
|
num_points = len(distances)
|
||
|
population = initialize_population(num_points, pop_size)
|
||
|
|
||
|
for generation in range(num_generations):
|
||
|
population_fitness = []
|
||
|
for individual in population:
|
||
|
fitness = evaluate_fitness(individual, distances)
|
||
|
population_fitness.append((individual, fitness))
|
||
|
|
||
|
population_fitness.sort(key=lambda x: x[1]) # 按适应度排序
|
||
|
elite_individual = population_fitness[0][0]
|
||
|
new_population = [elite_individual]
|
||
|
|
||
|
while len(new_population) < pop_size:
|
||
|
parent1, parent2 = random.choices(population_fitness, k=2)
|
||
|
child = crossover(parent1[0], parent2[0])
|
||
|
mutate(child)
|
||
|
new_population.append(child)
|
||
|
|
||
|
population = new_population
|
||
|
|
||
|
best_individual = population_fitness[0][0]
|
||
|
return best_individual
|
||
|
|
||
|
# 示例使用
|
||
|
# distances为距离矩阵
|
||
|
distances = [
|
||
|
[0, 50, 99, 0, 64, 0],
|
||
|
[50, 0, 12, 45, 74, 13],
|
||
|
[99, 12, 0, 25, 0, 61],
|
||
|
[0, 45, 25, 0, 45, 47],
|
||
|
[64, 74, 0, 45, 0, 0],
|
||
|
[0, 13, 61, 47, 0, 0]
|
||
|
]
|
||
|
population_size = 100
|
||
|
num_generations = 1000
|
||
|
|
||
|
best_solution = genetic_algorithm(distances, population_size, num_generations)
|
||
|
print(best_solution)
|