You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

66 lines
2.2 KiB

import numpy as np
def tsp_backtracking(distances):
num_cities = len(distances)
path = [0] # 起始城市为0
visited = [False] * num_cities
visited[0] = True
min_distance = float('inf')
shortest_path = None
def backtrack(curr_city, curr_distance, visited, path):
nonlocal min_distance, shortest_path
if len(path) == num_cities:
# 到达所有城市,更新最短路径
if curr_distance + distances[curr_city][0] < min_distance:
min_distance = curr_distance + distances[curr_city][0]
shortest_path = path + [0]
else:
for next_city in range(num_cities):
if not visited[next_city]:
# 选择下一个未访问的城市
visited[next_city] = True
path.append(next_city)
new_distance = curr_distance + distances[curr_city][next_city]
# 剪枝条件:当前路径已经大于最短路径,不继续搜索
if new_distance < min_distance:
backtrack(next_city, new_distance, visited, path)
# 回溯
visited[next_city] = False
path.pop()
backtrack(0, 0, visited, path)
return shortest_path
# 示例用法
# distances = np.array([
# [np.inf, 50, 99, np.inf, 64, np.inf],
# [50, np.inf, 12, 45, 74, 13],
# [99, 12, np.inf, 25, np.inf, 61],
# [np.inf, 45, 25, np.inf, 45, 47],
# [64, 74, np.inf, 45, np.inf, np.inf],
# [np.inf, 13, 61, 47, np.inf, np.inf]
# ])
# inf = np.inf
# distances = np.array(
# [[inf, 69, 48, inf, 41, 78],
# [69, inf, 48, 53, 91, inf],
# [48, 48, inf, 19, 86, inf],
# [inf, 53, 19, inf, 96, 10],
# [41, 91, 86, 96, inf, inf],
# [78, inf, inf, 10, inf, inf]]
# )
inf = float('inf')
distances = np.array([
[inf, 72, inf, inf, 81, 67],
[72, inf, 26, inf, 61, inf],
[inf, 26, inf, 53, 97, inf],
[inf, inf, 53, inf, inf, inf],
[81, 61, 97, inf, inf, 38],
[67, inf, inf, inf, 38, inf]
])
path = tsp_backtracking(distances)
if path:
print(path)
else:
print('不存在')