You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

70 lines
2.5 KiB

2 months ago
import re
import pandas as pd
# 读取文本
def read_file(file_path):
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
# 将文本拆分为句子
def split(text):
# 使用正则表达式将文本分割
sentences = re.split(r'[.!?。!?]', text)
return [sentence.strip() for sentence in sentences if sentence.strip()]
# 查找包含关键词的句子并统计关键词出现次数
def find(sentences, keyword, top_n=8):
keyword_lower = keyword.lower()
keyword_counts = []
for sentence in sentences:
sentence_lower = sentence.lower()
count = sentence_lower.count(keyword_lower)
if count > 0:
keyword_counts.append((sentence, count))
if not keyword_counts:
return []
# 根据关键词出现次数排序并取前n个
keyword_counts.sort(key=lambda x: x[1], reverse=True)
return [sentence for sentence, _ in keyword_counts[:top_n]]
# 将结果保存到Excel文件中
def save(file_path, result_dict):
with pd.ExcelWriter(file_path, engine='openpyxl') as writer:
for keyword, sentences in result_dict.items():
# 如果某个关键词没有找到对应的句子,跳过保存
if sentences:
df = pd.DataFrame(sentences, columns=[f'{keyword}'])
df.to_excel(writer, sheet_name=keyword[:30], index=False)
def main():
input_file = '3.txt'
output_file = 'results.xlsx'
# 要查找的关键词列表
keywords = [
'AI', '人工智能', '机器学习', '深度学习', '神经网络', '自动化', '算法', '数据科学',
'自然语言处理', '计算机视觉', '人工智能技术', 'AI技术', 'AI应用', 'AI模型',
'大数据', '预测分析', '机器视觉', '自动驾驶',
'智能推荐', '计算机科学', '人工智能应用',
'数据分析', '智能化', '情感计算', 'ai', '字幕', '推荐', 'gpt', '机器', '直播', '机翻', '实时', '技术'
]
# 读取文本并拆分为句子
text = read_file(input_file)
sentences = split(text)
result_dict = {}
# 对每个关键词查找出现次数前八的句子
for keyword in keywords:
top_sentences = find(sentences, keyword, top_n=8)
result_dict[keyword] = top_sentences
# 将结果保存到Excel文件
save(output_file, result_dict)
if __name__ == "__main__":
main()