diff --git a/输出.py b/输出.py new file mode 100644 index 0000000..ce3df2d --- /dev/null +++ b/输出.py @@ -0,0 +1,64 @@ +import re +import pandas as pd +from collections import Counter + +# 读取文本 +def read_file(file_path): + with open(file_path, 'r', encoding='utf-8') as file: + return file.read() + + +# 将文本拆分为句子 +def split_into_sentences(text): + # 使用正则表达式将文本分割 + sentences = re.split(r'[.!?。!?]', text) + return [sentence.strip() for sentence in sentences if sentence.strip()] + +# 查找包含关键词的句子并统计关键词出现次数 +def find_top_sentences_by_keyword(sentences, keyword, top_n=8): + keyword_counts = [] + for sentence in sentences: + count = sentence.lower().count(keyword.lower()) + if count > 0: + keyword_counts.append((sentence, count)) + + # 根据关键词出现次数排序,并取前n个 + keyword_counts.sort(key=lambda x: x[1], reverse=True) + return [sentence for sentence, _ in keyword_counts[:top_n]] + + +# 将结果保存到TXT文件中 +def save_to_file(file_path, keyword, sentences): + with open(file_path, 'a', encoding='utf-8') as file: + file.write(f"关键词: {keyword}\n") + for i, sentence in enumerate(sentences, 1): + file.write(f"{i}. {sentence}\n") + file.write("\n") # 分隔不同关键词的结果 + + +# 主函数 +def main(): + # 输入TXT文件路径 + input_file = '3.txt' + output_file = 'output.txt' + # 要查找的关键词列表 + keywords = [ + 'AI', '人工智能', '机器学习', '深度学习', '神经网络', '自动化', '算法', '数据科学', + '自然语言处理', '计算机视觉', '人工智能技术', 'AI技术', 'AI应用', 'AI模型', + '大数据', '预测分析', '机器视觉', '自动驾驶', + '智能推荐', '计算机科学', '人工智能应用', + '数据分析','智能化', '情感计算','ai','字幕','推荐','gpt','机器','直播','机翻','实时','技术' +] + + # 读取文本并拆分为句子 + text = read_file(input_file) + sentences = split_into_sentences(text) + + # 对每个关键词查找出现次数前八的句子 + for keyword in keywords: + top_sentences = find_top_sentences_by_keyword(sentences, keyword, top_n=8) + save_to_file(output_file, keyword, top_sentences) +if __name__ == "__main__": + main() + +