import re import pandas as pd # 读取文本 def read_file(file_path): with open(file_path, 'r', encoding='utf-8') as file: return file.read() # 将文本拆分为句子 def split(text): # 使用正则表达式将文本分割 sentences = re.split(r'[.!?。!?]', text) return [sentence.strip() for sentence in sentences if sentence.strip()] # 查找包含关键词的句子并统计关键词出现次数 def find(sentences, keyword, top_n=8): keyword_lower = keyword.lower() keyword_counts = [] for sentence in sentences: sentence_lower = sentence.lower() count = sentence_lower.count(keyword_lower) if count > 0: keyword_counts.append((sentence, count)) if not keyword_counts: return [] # 根据关键词出现次数排序,并取前n个 keyword_counts.sort(key=lambda x: x[1], reverse=True) return [sentence for sentence, _ in keyword_counts[:top_n]] # 将结果保存到Excel文件中 def save(file_path, result_dict): with pd.ExcelWriter(file_path, engine='openpyxl') as writer: for keyword, sentences in result_dict.items(): # 如果某个关键词没有找到对应的句子,跳过保存 if sentences: df = pd.DataFrame(sentences, columns=[f'{keyword}']) df.to_excel(writer, sheet_name=keyword[:30], index=False) def main(): input_file = '3.txt' output_file = 'results.xlsx' # 要查找的关键词列表 keywords = [ 'AI', '人工智能', '机器学习', '深度学习', '神经网络', '自动化', '算法', '数据科学', '自然语言处理', '计算机视觉', '人工智能技术', 'AI技术', 'AI应用', 'AI模型', '大数据', '预测分析', '机器视觉', '自动驾驶', '智能推荐', '计算机科学', '人工智能应用', '数据分析', '智能化', '情感计算', 'ai', '字幕', '推荐', 'gpt', '机器', '直播', '机翻', '实时', '技术' ] # 读取文本并拆分为句子 text = read_file(input_file) sentences = split(text) result_dict = {} # 对每个关键词查找出现次数前八的句子 for keyword in keywords: top_sentences = find(sentences, keyword, top_n=8) result_dict[keyword] = top_sentences # 将结果保存到Excel文件 save(output_file, result_dict) if __name__ == "__main__": main()