You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

387 lines
12 KiB

/*
* Copyright (c) 2016 - present Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*/
#pragma once
// ASSERT that __cplusplus >= 201103L
#include <infer_model/common.h>
#include <infer_model/infer_traits.h>
INFER_NAMESPACE_STD_BEGIN
// use inheritance to avoid compilation errors when using
// methods / non-member functions that are not modeled
// WARNING: if sizeof(shared_ptr) becomes different than 16, it may
// lead to compilation errors
template <class T>
class shared_ptr : public std__shared_ptr<T> {
// translate shared_ptr as type T*
friend class infer_traits::TranslateAsType<T*>;
// shared_ptr<T> in infer is translated as T*.
// Some facts:
// 1. shared_ptr<T>* translated as T**
// 2. typeof(this) translated as T**
// 3. typeof(this) in clang's AST is shared_ptr<T>*
// When writing models for shared_ptr, we need to use infer's representation
// In order to achieve that and not break compilation, there is some ugly
// casting going around. We are using void* and void** to make compilation
// happy - infer doesn't care about those types that much since they are
// pointers anyway.
// Example of model_X function declaration:
// static void model_X(infer_shared_ptr_t self, ... params)
// model_X are really C functions, but to simplify linking process, they are
// defined inside shared_ptr class as static methods.
// When using model_X functions, call them like so:
// model_X(__cast_to_infer_ptr(this), args)
/// type of 'this' in shared_ptr<T> as seen by infer
typedef const void** infer_shared_ptr_t;
// use it to avoid compilation errors and make infer analyzer happy
#define __cast_to_infer_ptr(self) ((infer_shared_ptr_t)self)
static void model_set(infer_shared_ptr_t self, const void* value) {
*self = value;
}
static void model_copy(infer_shared_ptr_t self, infer_shared_ptr_t other) {
/* TODO - increase refcount*/
*self = *other;
}
static void model_move(infer_shared_ptr_t self, infer_shared_ptr_t other) {
model_copy(self, other);
model_set(other, nullptr);
}
static T* model_get(infer_shared_ptr_t self) { return (T*)(*self); }
static void model_swap(infer_shared_ptr_t infer_self,
infer_shared_ptr_t infer_other) {
const void* t = *infer_self;
*infer_self = *infer_other;
*infer_other = t;
}
public:
// Conversion constructors to allow implicit conversions.
// it's here purely to avoid compilation errors
template <class Y,
typename = typename enable_if<is_convertible<Y*, T*>::value>::type>
shared_ptr(const std__shared_ptr<Y>& r) {}
template <class Y>
shared_ptr(const std__shared_ptr<Y>& r, T* p) noexcept {}
// constructors:
constexpr shared_ptr() noexcept {
model_set(__cast_to_infer_ptr(this), nullptr);
}
shared_ptr(nullptr_t) : shared_ptr() {}
// Extra template argument is used to create constructors/assignment overloads
// for Y types where it's possible to convert Y* to T*.
// typename = typename enable_if<is_convertible<Y*, T*>::value>::type
// thanks to that, clang will not create some functions that would cause
// compilation errors. More info:
// http://en.cppreference.com/w/cpp/language/sfinae
template <class Y,
typename = typename enable_if<is_convertible<Y*, T*>::value>::type>
explicit shared_ptr(Y* p) {
model_set(__cast_to_infer_ptr(this), p);
}
template <class Y,
class D,
typename = typename enable_if<is_convertible<Y*, T*>::value>::type>
shared_ptr(Y* p, D d) : shared_ptr<T>(p) {}
template <class Y,
class D,
class A,
typename = typename enable_if<is_convertible<Y*, T*>::value>::type>
shared_ptr(Y* p, D d, A a) : shared_ptr<T>(p) {}
template <class D>
shared_ptr(nullptr_t p, D d) : shared_ptr<T>(p) {}
template <class D, class A>
shared_ptr(nullptr_t p, D d, A a) : shared_ptr<T>(p) {}
template <class Y>
shared_ptr(const shared_ptr<Y>& r, T* p) noexcept {
model_set(__cast_to_infer_ptr(this), nullptr); /* TODO */
}
shared_ptr(const shared_ptr& r) noexcept {
model_copy(__cast_to_infer_ptr(this), __cast_to_infer_ptr(&r));
}
template <class Y,
typename = typename enable_if<is_convertible<Y*, T*>::value>::type>
shared_ptr(const shared_ptr<Y>& r) noexcept {
model_copy(__cast_to_infer_ptr(this), __cast_to_infer_ptr(&r));
}
shared_ptr(shared_ptr&& r) noexcept {
model_move(__cast_to_infer_ptr(this), __cast_to_infer_ptr(&r));
}
template <class Y,
typename = typename enable_if<is_convertible<Y*, T*>::value>::type>
shared_ptr(shared_ptr<Y>&& r) noexcept {
model_move(__cast_to_infer_ptr(this), __cast_to_infer_ptr(&r));
}
template <class Y,
typename = typename enable_if<is_convertible<Y*, T*>::value>::type>
explicit shared_ptr(const weak_ptr<Y>& r) {}
/* Because of implementation differences between libc++ and stdlibc++, don't
* define this constructor (it will be defined elsewhere in case of
* stdlibc++). Because it may be defined elsewhere, don't check whether Y*
* converts to T* - otherwise there might be compilation error (out-of-line
* definition).
* No definition here might cause compilation problems if project is
* using auto_ptrs with libc++ */
template <class Y>
shared_ptr(auto_ptr<Y>&& r); // {}
template <class Y,
class D,
typename = typename enable_if<is_convertible<Y*, T*>::value>::type>
shared_ptr(unique_ptr<Y, D>&& r) : shared_ptr<T>(r.release()) {}
// destructor:
~shared_ptr() { reset((T*)nullptr); }
// assignment:
shared_ptr& operator=(const shared_ptr& r) noexcept {
// shared_ptr<T>(r).swap(*this);
model_copy(__cast_to_infer_ptr(this), __cast_to_infer_ptr(&r));
return *this;
}
template <class Y,
typename = typename enable_if<is_convertible<Y*, T*>::value>::type>
shared_ptr& operator=(const shared_ptr<Y>& r) noexcept {
// shared_ptr<T>(r).swap(*this);
model_copy(__cast_to_infer_ptr(this), __cast_to_infer_ptr(&r));
return *this;
}
shared_ptr& operator=(shared_ptr&& r) noexcept {
// shared_ptr<T>(std::move(r)).swap(*this);
model_move(__cast_to_infer_ptr(this), __cast_to_infer_ptr(&r));
return *this;
}
template <class Y,
typename = typename enable_if<is_convertible<Y*, T*>::value>::type>
shared_ptr& operator=(shared_ptr<Y>&& r) {
// shared_ptr<T>(std::move(r)).swap(*this);
model_move(__cast_to_infer_ptr(this), __cast_to_infer_ptr(&r));
return *this;
}
template <class Y,
typename = typename enable_if<is_convertible<Y*, T*>::value>::type>
shared_ptr& operator=(auto_ptr<Y>&& r) { /* ?? */
}
template <class Y,
class D,
typename = typename enable_if<is_convertible<Y*, T*>::value>::type>
shared_ptr& operator=(unique_ptr<Y, D>&& r) {
// shared_ptr<T>(std::move(r)).swap(*this);
return *this;
}
// modifiers:
void swap(shared_ptr& r) noexcept {
model_swap(__cast_to_infer_ptr(this), __cast_to_infer_ptr(&r));
}
void reset() noexcept { reset((T*)nullptr); }
template <class Y,
typename = typename enable_if<is_convertible<Y*, T*>::value>::type>
void reset(Y* p) {
/*
if (unique()) {
delete __data;
}
*/
model_set(__cast_to_infer_ptr(this), p);
// TODO adjust refcounts
}
template <class Y,
class D,
typename = typename enable_if<is_convertible<Y*, T*>::value>::type>
void reset(Y* p, D d) {
reset(p);
}
template <class Y,
class D,
class A,
typename = typename enable_if<is_convertible<Y*, T*>::value>::type>
void reset(Y* p, D d, A a) {
reset(p);
}
// observers:
T* get() const noexcept INFER_MODEL_AS_DEREF_FIRST_ARG;
typename std::add_lvalue_reference<T>::type operator*() const
noexcept INFER_MODEL_AS_DEREF_FIRST_ARG;
T* operator->() const noexcept INFER_MODEL_AS_DEREF_FIRST_ARG;
long use_count() const noexcept { return 2; /* FIXME */ }
bool unique() const noexcept { return use_count() == 1; /* FIXME */ }
explicit operator bool() const noexcept {
// for some reason analyzer can't cast to bool correctly, trick with two
// negations creates right specs for this function
return !!(bool)(model_get(__cast_to_infer_ptr(this)));
}
template <class U>
bool owner_before(shared_ptr<U> const& b) const {
return true; /* FIXME - use non-det*/
}
template <class U>
bool owner_before(weak_ptr<U> const& b) const {
return true; /* FIXME - use non-det */
}
};
template <class _Tp, class _Up>
inline bool operator==(const shared_ptr<_Tp>& __x,
const shared_ptr<_Up>& __y) noexcept {
return __x.get() == __y.get();
}
template <class _Tp, class _Up>
inline bool operator!=(const shared_ptr<_Tp>& __x,
const shared_ptr<_Up>& __y) noexcept {
return !(__x == __y);
}
template <class _Tp, class _Up>
inline bool operator<(const shared_ptr<_Tp>& __x,
const shared_ptr<_Up>& __y) noexcept {
typedef typename common_type<_Tp*, _Up*>::type _Vp;
return less<_Vp>()(__x.get(), __y.get());
}
template <class _Tp, class _Up>
inline bool operator>(const shared_ptr<_Tp>& __x,
const shared_ptr<_Up>& __y) noexcept {
return __y < __x;
}
template <class _Tp, class _Up>
inline bool operator<=(const shared_ptr<_Tp>& __x,
const shared_ptr<_Up>& __y) noexcept {
return !(__y < __x);
}
template <class _Tp, class _Up>
inline bool operator>=(const shared_ptr<_Tp>& __x,
const shared_ptr<_Up>& __y) noexcept {
return !(__x < __y);
}
template <class _Tp>
inline bool operator==(const shared_ptr<_Tp>& __x, nullptr_t) noexcept {
return !__x;
}
template <class _Tp>
inline bool operator==(nullptr_t, const shared_ptr<_Tp>& __x) noexcept {
return !__x;
}
template <class _Tp>
inline bool operator!=(const shared_ptr<_Tp>& __x, nullptr_t) noexcept {
return static_cast<bool>(__x);
}
template <class _Tp>
inline bool operator!=(nullptr_t, const shared_ptr<_Tp>& __x) noexcept {
return static_cast<bool>(__x);
}
template <class _Tp>
inline bool operator<(const shared_ptr<_Tp>& __x, nullptr_t) noexcept {
return less<_Tp*>()(__x.get(), nullptr);
}
template <class _Tp>
inline bool operator<(nullptr_t, const shared_ptr<_Tp>& __x) noexcept {
return less<_Tp*>()(nullptr, __x.get());
}
template <class _Tp>
inline bool operator>(const shared_ptr<_Tp>& __x, nullptr_t) noexcept {
return nullptr < __x;
}
template <class _Tp>
inline bool operator>(nullptr_t, const shared_ptr<_Tp>& __x) noexcept {
return __x < nullptr;
}
template <class _Tp>
inline bool operator<=(const shared_ptr<_Tp>& __x, nullptr_t) noexcept {
return !(nullptr < __x);
}
template <class _Tp>
inline bool operator<=(nullptr_t, const shared_ptr<_Tp>& __x) noexcept {
return !(__x < nullptr);
}
template <class _Tp>
inline bool operator>=(const shared_ptr<_Tp>& __x, nullptr_t) noexcept {
return !(__x < nullptr);
}
template <class _Tp>
inline bool operator>=(nullptr_t, const shared_ptr<_Tp>& __x) noexcept {
return !(nullptr < __x);
}
template <class T>
struct hash<shared_ptr<T>> : public hash<std__shared_ptr<T>> {};
// shared_ptr casts - call original functions but change return type to
// std::shared_ptr
template <class T, class U>
shared_ptr<T> static_pointer_cast(shared_ptr<U> const& r) noexcept {
return static_pointer_cast<T, U>((const std__shared_ptr<U>&)r);
}
template <class T, class U>
shared_ptr<T> dynamic_pointer_cast(shared_ptr<U> const& r) noexcept {
return dynamic_pointer_cast<T, U>((const std__shared_ptr<U>&)r);
}
template <class T, class U>
shared_ptr<T> const_pointer_cast(shared_ptr<U> const& r) noexcept {
return const_pointer_cast<T, U>((const std__shared_ptr<U>&)r);
}
template <class T, class... Args>
shared_ptr<T> make_shared(Args&&... args) {
return shared_ptr<T>(new T(std::forward<Args>(args)...));
}
#undef __cast_to_infer_ptr
INFER_NAMESPACE_STD_END