|
|
|
(*
|
|
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
|
|
*
|
|
|
|
* This source code is licensed under the MIT license found in the
|
|
|
|
* LICENSE file in the root directory of this source tree.
|
|
|
|
*)
|
|
|
|
|
|
|
|
open Fol
|
|
|
|
module T = Term
|
|
|
|
module F = Formula
|
|
|
|
|
|
|
|
let reg r =
|
|
|
|
let name = Llair.Reg.name r in
|
|
|
|
let global = Llair.Reg.is_global r in
|
|
|
|
Var.program ~name ~global
|
|
|
|
|
|
|
|
let regs rs = Var.Set.of_iter (Iter.map ~f:reg (Llair.Reg.Set.to_iter rs))
|
|
|
|
let uap0 f = T.apply f [||]
|
|
|
|
let uap1 f a = T.apply f [|a|]
|
|
|
|
let uap2 f a b = T.apply f [|a; b|]
|
|
|
|
let lit2 p a b = F.lit p [|a; b|]
|
|
|
|
let nlit2 p a b = F.not_ (lit2 p a b)
|
|
|
|
|
|
|
|
let rec ap_ttt : 'a. (T.t -> T.t -> 'a) -> _ -> _ -> 'a =
|
|
|
|
fun f a b -> f (term a) (term b)
|
|
|
|
and ap_ttf (f : T.t -> T.t -> F.t) a b = F.inject (ap_ttt f a b)
|
|
|
|
|
|
|
|
and ap_fff (f : F.t -> F.t -> F.t) a b =
|
|
|
|
F.inject (f (formula a) (formula b))
|
|
|
|
|
|
|
|
and ap_uut : 'a. (T.t -> T.t -> 'a) -> _ -> _ -> _ -> 'a =
|
|
|
|
fun f typ a b ->
|
|
|
|
let bits = Llair.Typ.bit_size_of typ in
|
|
|
|
let unsigned x = uap1 (Unsigned bits) x in
|
|
|
|
f (unsigned (term a)) (unsigned (term b))
|
|
|
|
|
|
|
|
and ap_uuf (f : T.t -> T.t -> F.t) typ a b = F.inject (ap_uut f typ a b)
|
|
|
|
|
|
|
|
and term : Llair.Exp.t -> T.t =
|
|
|
|
fun e ->
|
|
|
|
let imp p q = F.or_ (F.not_ p) q in
|
|
|
|
let nimp p q = F.and_ p (F.not_ q) in
|
|
|
|
let if_ p q = F.or_ p (F.not_ q) in
|
|
|
|
let nif p q = F.and_ (F.not_ p) q in
|
|
|
|
match e with
|
|
|
|
(* formulas *)
|
|
|
|
| Ap2 (Eq, Integer {bits= 1; _}, p, q) -> ap_fff F.iff p q
|
|
|
|
| Ap2 (Dq, Integer {bits= 1; _}, p, q) -> ap_fff F.xor p q
|
|
|
|
| Ap2 ((Gt | Ugt), Integer {bits= 1; _}, p, q) -> ap_fff nimp p q
|
|
|
|
| Ap2 ((Lt | Ult), Integer {bits= 1; _}, p, q) -> ap_fff nif p q
|
|
|
|
| Ap2 ((Ge | Uge), Integer {bits= 1; _}, p, q) -> ap_fff if_ p q
|
|
|
|
| Ap2 ((Le | Ule), Integer {bits= 1; _}, p, q) -> ap_fff imp p q
|
|
|
|
| Ap2 (Add, Integer {bits= 1; _}, p, q) -> ap_fff F.xor p q
|
|
|
|
| Ap2 (Sub, Integer {bits= 1; _}, p, q) -> ap_fff F.xor p q
|
|
|
|
| Ap2 (Mul, Integer {bits= 1; _}, p, q) -> ap_fff F.and_ p q
|
|
|
|
(* div and rem are not formulas even if bits=1 due to division by 0 *)
|
|
|
|
| Ap2 (And, Integer {bits= 1; _}, p, q) -> ap_fff F.and_ p q
|
|
|
|
| Ap2 (Or, Integer {bits= 1; _}, p, q) -> ap_fff F.or_ p q
|
|
|
|
| Ap2 (Xor, Integer {bits= 1; _}, p, q) -> ap_fff F.xor p q
|
|
|
|
| Ap2 ((Shl | Lshr), Integer {bits= 1; _}, p, q) -> ap_fff nimp p q
|
|
|
|
| Ap2 (Ashr, Integer {bits= 1; _}, p, q) -> ap_fff F.or_ p q
|
|
|
|
| Ap3 (Conditional, Integer {bits= 1; _}, cnd, pos, neg) ->
|
|
|
|
F.inject
|
|
|
|
(F.cond ~cnd:(formula cnd) ~pos:(formula pos) ~neg:(formula neg))
|
|
|
|
(* terms *)
|
|
|
|
| Reg {name; global; typ= _} -> T.var (Var.program ~name ~global)
|
|
|
|
| Label {parent; name} ->
|
|
|
|
uap0 (Funsym.uninterp ("label_" ^ parent ^ "_" ^ name))
|
|
|
|
| Integer {typ= _; data} -> T.integer data
|
|
|
|
| Float {data; typ= _} -> (
|
|
|
|
match Q.of_float (Float.of_string_exn data) with
|
|
|
|
| q when Q.is_real q -> T.rational q
|
|
|
|
| _ | (exception Invalid_argument _) ->
|
|
|
|
uap0 (Funsym.uninterp ("float_" ^ data)) )
|
|
|
|
| Ap1 (Signed {bits}, _, e) ->
|
|
|
|
let a = term e in
|
|
|
|
if bits = 1 then
|
|
|
|
match F.project a with
|
|
|
|
| Some fml -> F.inject fml
|
|
|
|
| _ -> uap1 (Signed bits) a
|
|
|
|
else uap1 (Signed bits) a
|
|
|
|
| Ap1 (Unsigned {bits}, _, e) ->
|
|
|
|
let a = term e in
|
|
|
|
if bits = 1 then
|
|
|
|
match F.project a with
|
|
|
|
| Some fml -> F.inject fml
|
|
|
|
| _ -> uap1 (Unsigned bits) a
|
|
|
|
else uap1 (Unsigned bits) a
|
|
|
|
| Ap1 (Convert {src}, dst, e) ->
|
|
|
|
let s =
|
|
|
|
Format.asprintf "convert_%a_%a" Llair.Typ.pp src Llair.Typ.pp dst
|
|
|
|
in
|
|
|
|
uap1 (Funsym.uninterp s) (term e)
|
|
|
|
| Ap2 (Eq, _, d, e) -> ap_ttf F.eq d e
|
|
|
|
| Ap2 (Dq, _, d, e) -> ap_ttf F.dq d e
|
|
|
|
| Ap2 (Gt, _, d, e) -> ap_ttf F.gt d e
|
|
|
|
| Ap2 (Lt, _, d, e) -> ap_ttf F.lt d e
|
|
|
|
| Ap2 (Ge, _, d, e) -> ap_ttf F.ge d e
|
|
|
|
| Ap2 (Le, _, d, e) -> ap_ttf F.le d e
|
|
|
|
| Ap2 (Ugt, typ, d, e) -> ap_uuf F.gt typ d e
|
|
|
|
| Ap2 (Ult, typ, d, e) -> ap_uuf F.lt typ d e
|
|
|
|
| Ap2 (Uge, typ, d, e) -> ap_uuf F.ge typ d e
|
|
|
|
| Ap2 (Ule, typ, d, e) -> ap_uuf F.le typ d e
|
|
|
|
| Ap2 (Ord, _, d, e) -> ap_ttf (lit2 (Predsym.uninterp "ord")) d e
|
|
|
|
| Ap2 (Uno, _, d, e) -> ap_ttf (nlit2 (Predsym.uninterp "ord")) d e
|
|
|
|
| Ap2 (Add, _, d, e) -> ap_ttt T.add d e
|
|
|
|
| Ap2 (Sub, _, d, e) -> ap_ttt T.sub d e
|
|
|
|
| Ap2 (Mul, _, d, e) -> ap_ttt T.mul d e
|
|
|
|
| Ap2 (Div, _, d, e) -> ap_ttt T.div d e
|
|
|
|
| Ap2 (Rem, _, d, e) -> ap_ttt (uap2 Rem) d e
|
|
|
|
| Ap2 (Udiv, typ, d, e) -> ap_uut T.div typ d e
|
|
|
|
| Ap2 (Urem, typ, d, e) -> ap_uut (uap2 Rem) typ d e
|
|
|
|
| Ap2 (And, _, d, e) -> ap_ttt (uap2 BitAnd) d e
|
|
|
|
| Ap2 (Or, _, d, e) -> ap_ttt (uap2 BitOr) d e
|
|
|
|
| Ap2 (Xor, _, d, e) -> ap_ttt (uap2 BitXor) d e
|
|
|
|
| Ap2 (Shl, _, d, e) -> ap_ttt (uap2 BitShl) d e
|
|
|
|
| Ap2 (Lshr, _, d, e) -> ap_ttt (uap2 BitLshr) d e
|
|
|
|
| Ap2 (Ashr, _, d, e) -> ap_ttt (uap2 BitAshr) d e
|
|
|
|
| Ap3 (Conditional, _, cnd, thn, els) ->
|
|
|
|
T.ite ~cnd:(formula cnd) ~thn:(term thn) ~els:(term els)
|
|
|
|
| Ap1 (Select idx, _, rcd) -> T.select ~rcd:(term rcd) ~idx
|
|
|
|
| Ap2 (Update idx, _, rcd, elt) ->
|
|
|
|
T.update ~rcd:(term rcd) ~idx ~elt:(term elt)
|
|
|
|
| ApN (Record, _, elts) ->
|
|
|
|
T.record (Array.map ~f:term (IArray.to_array elts))
|
|
|
|
| RecRecord (i, _) -> T.ancestor i
|
|
|
|
| Ap1 (Splat, _, byt) -> T.splat (term byt)
|
|
|
|
|
|
|
|
and formula e = F.dq0 (term e)
|