You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2870 lines
111 KiB

(*
* Copyright (c) 2009 -2013 Monoidics ltd.
* Copyright (c) 2013 - Facebook.
* All rights reserved.
*)
(** Functions for Propositions (i.e., Symbolic Heaps) *)
module L = Logging
module F = Format
open Utils
(** type to describe different strategies for initializing fields of a structure. [No_init] does not
initialize any fields of the struct. [Fld_init] initializes the fields of the struct with fresh
variables (C) or default values (Java). *)
type struct_init_mode =
| No_init
| Fld_init
let cil_exp_compare (e1: Sil.exp) (e2: Sil.exp) = Pervasives.compare e1 e2
let unSome = function
| Some x -> x
| _ -> assert false
type normal = Normal (** kind for normal props, i.e. normalized *)
type exposed = Exposed (** kind for exposed props *)
(** A proposition. The following invariants are mantained. [sub] is of
the form id1 = e1 ... idn = en where: the id's are distinct and do not
occur in the e's nor in [pi] or [sigma]; the id's are in sorted
order; the id's are not existentials; if idn = yn (for yn not
existential) then idn < yn in the order on ident's. [pi] is sorted
and normalized, and does not contain x = e. [sigma] is sorted and
normalized. *)
type 'a t =
{ sigma: Sil.hpred list;
sub: Sil.subst;
pi: Sil.atom list;
foot_sigma : Sil.hpred list;
foot_pi: Sil.atom list }
exception Cannot_star of ml_location
(** Pure proposition. *)
type pure_prop = Sil.subst * Sil.atom list
(** {2 Basic Functions for Propositions} *)
(** {1 Functions for Comparison} *)
(** Comparison between lists of equalities and disequalities. Lexicographical order. *)
let rec pi_compare pi1 pi2 =
if pi1 == pi2 then 0
else match (pi1, pi2) with
| ([],[]) -> 0
| ([], _:: _) -> - 1
| (_:: _,[]) -> 1
| (a1:: pi1', a2:: pi2') ->
let n = Sil.atom_compare a1 a2 in
if n <> 0 then n
else pi_compare pi1' pi2'
let pi_equal pi1 pi2 =
pi_compare pi1 pi2 = 0
(** Comparsion between lists of heap predicates. Lexicographical order. *)
let rec sigma_compare sigma1 sigma2 =
if sigma1 == sigma2 then 0
else match (sigma1, sigma2) with
| ([],[]) -> 0
| ([], _:: _) -> - 1
| (_:: _,[]) -> 1
| (h1:: sigma1', h2:: sigma2') ->
let n = Sil.hpred_compare h1 h2 in
if n <> 0 then n
else sigma_compare sigma1' sigma2'
let sigma_equal sigma1 sigma2 =
sigma_compare sigma1 sigma2 = 0
(** Comparison between propositions. Lexicographical order. *)
let prop_compare p1 p2 =
let n = sigma_compare p1.sigma p2.sigma in
if n <> 0 then n else
let n = Sil.sub_compare p1.sub p2.sub in
if n <> 0 then n else
let n = pi_compare p1.pi p2.pi in
if n <> 0 then n else
let n = sigma_compare p1.foot_sigma p2.foot_sigma in
if n <> 0 then n else pi_compare p1.foot_pi p2.foot_pi
(** Check the equality of two propositions *)
let prop_equal p1 p2 =
(prop_compare p1 p2 = 0)
(** {1 Functions for Pretty Printing} *)
(** Pretty print a footprint. *)
let pp_footprint _pe f fp =
let pe = { _pe with pe_cmap_norm = _pe.pe_cmap_foot } in
let pp_pi f () =
if fp.foot_pi != [] then
F.fprintf f "%a ;@\n" (pp_semicolon_seq_oneline pe (Sil.pp_atom pe)) fp.foot_pi in
if fp.foot_pi != [] || fp.foot_sigma != [] then
F.fprintf f "@\n[footprint@\n @[%a%a@] ]" pp_pi () (pp_semicolon_seq pe (Sil.pp_hpred pe)) fp.foot_sigma
let pp_lseg_kind f = function
| Sil.Lseg_NE -> F.fprintf f "ne"
| Sil.Lseg_PE -> F.fprintf f ""
let pp_texp_simple pe = match pe.pe_opt with
| PP_SIM_DEFAULT -> Sil.pp_texp pe
| PP_SIM_WITH_TYP -> Sil.pp_texp_full pe
(** Pretty print a pointsto representing a stack variable as an equality *)
let pp_hpred_stackvar pe0 env f hpred =
let pe, changed = Sil.color_pre_wrapper pe0 f hpred in
begin match hpred with
| Sil.Hpointsto (Sil.Lvar pvar, se, te) ->
let pe' = match se with
| Sil.Eexp (Sil.Var id, inst) when not (Sil.pvar_is_global pvar) ->
{ pe with pe_obj_sub = None } (* dont use obj sub on the var defining it *)
| _ -> pe in
(match pe'.pe_kind with
| PP_TEXT | PP_HTML ->
F.fprintf f "%a = %a:%a" (Sil.pp_pvar_value pe') pvar (Sil.pp_sexp pe') se (pp_texp_simple pe') te
| PP_LATEX ->
F.fprintf f "%a{=}%a" (Sil.pp_pvar_value pe') pvar (Sil.pp_sexp pe') se)
| Sil.Hpointsto _ | Sil.Hlseg _ | Sil.Hdllseg _ -> assert false (* should not happen *)
end;
Sil.color_post_wrapper changed pe0 f
(** Pretty print a substitution. *)
let pp_sub pe f sub =
let pi_sub = list_map (fun (id, e) -> Sil.Aeq(Sil.Var id, e)) (Sil.sub_to_list sub) in
(pp_semicolon_seq_oneline pe (Sil.pp_atom pe)) f pi_sub
(** Dump a substitution. *)
let d_sub (sub: Sil.subst) = L.add_print_action (L.PTsub, Obj.repr sub)
let pp_sub_entry pe0 f entry =
let pe, changed = Sil.color_pre_wrapper pe0 f entry in
let (x, e) = entry in
begin
match pe.pe_kind with
| PP_TEXT | PP_HTML ->
F.fprintf f "%a = %a" (Ident.pp pe) x (Sil.pp_exp pe) e
| PP_LATEX ->
F.fprintf f "%a{=}%a" (Ident.pp pe) x (Sil.pp_exp pe) e
end;
Sil.color_post_wrapper changed pe0 f
(** Pretty print a substitution as a list of (ident,exp) pairs *)
let pp_subl pe =
if !Config.smt_output then pp_semicolon_seq pe (pp_sub_entry pe)
else pp_semicolon_seq_oneline pe (pp_sub_entry pe)
(** Pretty print a pi. *)
let pp_pi pe =
if !Config.smt_output then pp_semicolon_seq pe (Sil.pp_atom pe)
else pp_semicolon_seq_oneline pe (Sil.pp_atom pe)
(** Dump a pi. *)
let d_pi (pi: Sil.atom list) = L.add_print_action (L.PTpi, Obj.repr pi)
(** Pretty print a sigma. *)
let pp_sigma pe =
pp_semicolon_seq pe (Sil.pp_hpred pe)
(** Split sigma into stack and nonstack parts.
The boolean indicates whether the stack should only include local variales. *)
let sigma_get_stack_nonstack only_local_vars sigma =
let hpred_is_stack_var = function
| Sil.Hpointsto (Sil.Lvar pvar, _, _) -> not only_local_vars || Sil.pvar_is_local pvar
| _ -> false in
list_partition hpred_is_stack_var sigma
(** Pretty print a sigma in simple mode. *)
let pp_sigma_simple pe env fmt sigma =
let sigma_stack, sigma_nonstack = sigma_get_stack_nonstack false sigma in
let pp_stack fmt _sg =
let sg = list_sort Sil.hpred_compare _sg in
if sg != [] then Format.fprintf fmt "%a" (pp_semicolon_seq pe (pp_hpred_stackvar pe env)) sg in
let pp_nl fmt doit = if doit then
(match pe.pe_kind with
| PP_TEXT | PP_HTML -> Format.fprintf fmt " ;@\n"
| PP_LATEX -> Format.fprintf fmt " ; \\\\@\n") in
let pp_nonstack fmt = pp_semicolon_seq pe (Sil.pp_hpred_env pe (Some env)) fmt in
if sigma_stack != [] || sigma_nonstack != [] then
Format.fprintf fmt "%a%a%a" pp_stack sigma_stack pp_nl (sigma_stack != [] && sigma_nonstack != []) pp_nonstack sigma_nonstack
(** Dump a sigma. *)
let d_sigma (sigma: Sil.hpred list) = L.add_print_action (L.PTsigma, Obj.repr sigma)
(** Dump a pi and a sigma *)
let d_pi_sigma pi sigma =
let d_separator () = if pi != [] && sigma != [] then L.d_strln " *" in
d_pi pi; d_separator (); d_sigma sigma
(** Return the sub part of [prop]. *)
let get_sub (p: 'a t) : Sil.subst = p.sub
(** Return the pi part of [prop]. *)
let get_pi (p: 'a t) : Sil.atom list = p.pi
(** Return the pure part of [prop]. *)
let get_pure (p: 'a t) : Sil.atom list =
list_map (fun (id1, e2) -> Sil.Aeq (Sil.Var id1, e2)) (Sil.sub_to_list p.sub) @ p.pi
(** Print existential quantification *)
let pp_evars pe f evars =
if evars != []
then match pe.pe_kind with
| PP_TEXT | PP_HTML ->
F.fprintf f "exists [%a]. " (pp_comma_seq (Ident.pp pe)) evars
| PP_LATEX ->
F.fprintf f "\\exists %a. " (pp_comma_seq (Ident.pp pe)) evars
(** Print an hpara in simple mode *)
let pp_hpara_simple _pe env n f pred =
let pe = pe_reset_obj_sub _pe in (* no free vars: disable object substitution *)
match pe.pe_kind with
| PP_TEXT | PP_HTML ->
F.fprintf f "P%d = %a%a" n (pp_evars pe) pred.Sil.evars (pp_semicolon_seq pe (Sil.pp_hpred_env pe (Some env))) pred.Sil.body
| PP_LATEX ->
F.fprintf f "P_{%d} = %a%a\\\\" n (pp_evars pe) pred.Sil.evars (pp_semicolon_seq pe (Sil.pp_hpred_env pe (Some env))) pred.Sil.body
(** Print an hpara_dll in simple mode *)
let pp_hpara_dll_simple _pe env n f pred =
let pe = pe_reset_obj_sub _pe in (* no free vars: disable object substitution *)
match pe.pe_kind with
| PP_TEXT | PP_HTML ->
F.fprintf f "P%d = %a%a" n (pp_evars pe) pred.Sil.evars_dll (pp_semicolon_seq pe (Sil.pp_hpred_env pe (Some env))) pred.Sil.body_dll
| PP_LATEX ->
F.fprintf f "P_{%d} = %a%a" n (pp_evars pe) pred.Sil.evars_dll (pp_semicolon_seq pe (Sil.pp_hpred_env pe (Some env))) pred.Sil.body_dll
(** Create an environment mapping (ident) expressions to the program variables containing them *)
let create_pvar_env (sigma: Sil.hpred list) : (Sil.exp -> Sil.exp) =
let env = ref [] in
let filter = function
| Sil.Hpointsto (Sil.Lvar pvar, Sil.Eexp (Sil.Var v, inst), _) ->
if not (Sil.pvar_is_global pvar) then env := (Sil.Var v, Sil.Lvar pvar) :: !env
| _ -> () in
list_iter filter sigma;
let find e =
try
snd (list_find (fun (e1, e2) -> Sil.exp_equal e1 e) !env)
with Not_found -> e in
find
(** Update the object substitution given the stack variables in the prop *)
let prop_update_obj_sub pe prop =
if !Config.pp_simple
then pe_set_obj_sub pe (create_pvar_env prop.sigma)
else pe
(** Pretty print a footprint in simple mode. *)
let pp_footprint_simple _pe env f fp =
let pe = { _pe with pe_cmap_norm = _pe.pe_cmap_foot } in
let pp_pure f pi =
if pi != [] then
F.fprintf f "%a *@\n" (pp_pi pe) pi in
if fp.foot_pi != [] || fp.foot_sigma != [] then
F.fprintf f "@\n[footprint@\n @[%a%a@] ]"
pp_pure fp.foot_pi
(pp_sigma_simple pe env) fp.foot_sigma
(** Create a predicate environment for a prop *)
let prop_pred_env prop =
let env = Sil.Predicates.empty_env () in
list_iter (Sil.Predicates.process_hpred env) prop.sigma;
list_iter (Sil.Predicates.process_hpred env) prop.foot_sigma;
env
(** Pretty print a proposition. *)
let pp_prop pe0 f prop =
let pe = prop_update_obj_sub pe0 prop in
let latex = pe.pe_kind == PP_LATEX in
let do_print f () =
let subl = Sil.sub_to_list (get_sub prop) in (* since prop diff is based on physical equality, we need to extract the sub verbatim *)
let pi = get_pi prop in
let pp_pure f () =
if subl != [] then F.fprintf f "%a ;@\n" (pp_subl pe) subl;
if pi != [] then F.fprintf f "%a ;@\n" (pp_pi pe) pi in
if !Config.pp_simple || latex then
begin
let env = prop_pred_env prop in
let iter_f n hpara = F.fprintf f "@,@[<h>%a@]" (pp_hpara_simple pe env n) hpara in
let iter_f_dll n hpara_dll = F.fprintf f "@,@[<h>%a@]" (pp_hpara_dll_simple pe env n) hpara_dll in
let pp_predicates fmt () =
if Sil.Predicates.is_empty env
then ()
else if latex then
begin
F.fprintf f "@\n\\\\\\textsf{where }";
Sil.Predicates.iter env iter_f iter_f_dll
end
else
begin
F.fprintf f "@,where";
Sil.Predicates.iter env iter_f iter_f_dll
end in
F.fprintf f "%a%a%a%a"
pp_pure () (pp_sigma_simple pe env) prop.sigma
(pp_footprint_simple pe env) prop pp_predicates ()
end
else
F.fprintf f "%a%a%a" pp_pure () (pp_sigma pe) prop.sigma (pp_footprint pe) prop in
if !Config.forcing_delayed_prints then (** print in html mode *)
F.fprintf f "%a%a%a" Io_infer.Html.pp_start_color Blue do_print () Io_infer.Html.pp_end_color ()
else
do_print f () (** print in text mode *)
let pp_prop_with_typ pe f p = pp_prop { pe with pe_opt = PP_SIM_WITH_TYP } f p
(** Dump a proposition. *)
let d_prop (prop: 'a t) = L.add_print_action (L.PTprop, Obj.repr prop)
(** Dump a proposition. *)
let d_prop_with_typ (prop: 'a t) = L.add_print_action (L.PTprop_with_typ, Obj.repr prop)
(** Print a list of propositions, prepending each one with the given string *)
let pp_proplist_with_typ pe f plist =
let rec pp_seq_newline f = function
| [] -> ()
| [x] -> F.fprintf f "@[%a@]" (pp_prop_with_typ pe) x
| x:: l -> F.fprintf f "@[%a@]@\n(||)@\n%a" (pp_prop_with_typ pe) x pp_seq_newline l in
F.fprintf f "@[<v>%a@]" pp_seq_newline plist
(** dump a proplist *)
let d_proplist_with_typ (pl: 'a t list) =
L.add_print_action (L.PTprop_list_with_typ, Obj.repr pl)
(** {1 Functions for computing free non-program variables} *)
let pi_fav_add fav pi =
list_iter (Sil.atom_fav_add fav) pi
let pi_fav =
Sil.fav_imperative_to_functional pi_fav_add
let sigma_fav_add fav sigma =
list_iter (Sil.hpred_fav_add fav) sigma
let sigma_fav =
Sil.fav_imperative_to_functional sigma_fav_add
let prop_footprint_fav_add fav prop =
sigma_fav_add fav prop.foot_sigma;
pi_fav_add fav prop.foot_pi
(** Find fav of the footprint part of the prop *)
let prop_footprint_fav prop =
Sil.fav_imperative_to_functional prop_footprint_fav_add prop
let prop_fav_add fav prop =
sigma_fav_add fav prop.sigma;
sigma_fav_add fav prop.foot_sigma;
Sil.sub_fav_add fav prop.sub;
pi_fav_add fav prop.pi;
pi_fav_add fav prop.foot_pi
let prop_fav p =
Sil.fav_imperative_to_functional prop_fav_add p
(** free vars of the prop, excluding the pure part *)
let prop_fav_nonpure_add fav prop =
sigma_fav_add fav prop.sigma;
sigma_fav_add fav prop.foot_sigma
(** free vars, except pi and sub, of current and footprint parts *)
let prop_fav_nonpure =
Sil.fav_imperative_to_functional prop_fav_nonpure_add
let rec hpred_fav_in_pvars_add fav = function
| Sil.Hpointsto (Sil.Lvar _, sexp, _) -> Sil.strexp_fav_add fav sexp
| Sil.Hpointsto _ | Sil.Hlseg _ | Sil.Hdllseg _ -> ()
let sigma_fav_in_pvars_add fav sigma =
list_iter (hpred_fav_in_pvars_add fav) sigma
let sigma_fpv sigma =
list_flatten (list_map Sil.hpred_fpv sigma)
let pi_fpv pi =
list_flatten (list_map Sil.atom_fpv pi)
let prop_fpv prop =
(Sil.sub_fpv prop.sub) @
(pi_fpv prop.pi) @
(pi_fpv prop.foot_pi) @
(sigma_fpv prop.foot_sigma) @
(sigma_fpv prop.sigma)
(** {1 Functions for computing free or bound non-program variables} *)
let pi_av_add fav pi =
list_iter (Sil.atom_av_add fav) pi
let sigma_av_add fav sigma =
list_iter (Sil.hpred_av_add fav) sigma
let prop_av_add fav prop =
Sil.sub_av_add fav prop.sub;
pi_av_add fav prop.pi;
sigma_av_add fav prop.sigma;
pi_av_add fav prop.foot_pi;
sigma_av_add fav prop.foot_sigma
let prop_av =
Sil.fav_imperative_to_functional prop_av_add
(** {2 Functions for Subsitition} *)
let pi_sub (subst: Sil.subst) pi =
let f = Sil.atom_sub subst in
list_map f pi
let sigma_sub subst sigma =
let f = Sil.hpred_sub subst in
list_map f sigma
(** {2 Functions for normalization} *)
(** This function assumes that if (x,Sil.Var(y)) in sub, then compare x y = 1 *)
let sub_normalize sub =
let f (id, e) = (not (Ident.is_primed id)) && (not (Sil.ident_in_exp id e)) in
let sub' = Sil.sub_filter_pair f sub in
if Sil.sub_equal sub sub' then sub else sub'
let (--) = Sil.Int.sub
let (++) = Sil.Int.add
let iszero_int_float = function
| Sil.Cint i -> Sil.Int.iszero i
| Sil.Cfloat 0.0 -> true
| _ -> false
let isone_int_float = function
| Sil.Cint i -> Sil.Int.isone i
| Sil.Cfloat 1.0 -> true
| _ -> false
let isminusone_int_float = function
| Sil.Cint i -> Sil.Int.isminusone i
| Sil.Cfloat (-1.0) -> true
| _ -> false
let sym_eval abs e =
let rec eval e =
(* L.d_str " ["; Sil.d_exp e; L.d_str"] "; *)
match e with
| Sil.Var _ ->
e
| Sil.Const (Sil.Ctuple el) ->
Sil.Const (Sil.Ctuple (list_map eval el))
| Sil.Const _ ->
e
| Sil.Sizeof (Sil.Tarray (Sil.Tint ik, e), _) when Sil.ikind_is_char ik && !Sil.curr_language <> Sil.Java ->
eval e
| Sil.Sizeof _ ->
e
| Sil.Cast (_, e1) ->
eval e1
| Sil.UnOp (Sil.LNot, e1, topt) ->
begin
match eval e1 with
| Sil.Const (Sil.Cint i) when Sil.Int.iszero i ->
Sil.exp_one
| Sil.Const (Sil.Cint _) ->
Sil.exp_zero
| Sil.UnOp(Sil.LNot, e1', _) ->
e1'
| e1' ->
if abs then Sil.exp_get_undefined false else Sil.UnOp(Sil.LNot, e1', topt)
end
| Sil.UnOp (Sil.Neg, e1, topt) ->
begin
match eval e1 with
| Sil.UnOp (Sil.Neg, e2', _) ->
e2'
| Sil.Const (Sil.Cint i) ->
Sil.exp_int (Sil.Int.neg i)
| Sil.Const (Sil.Cfloat v) ->
Sil.exp_float (-. v)
| Sil.Var id ->
Sil.UnOp (Sil.Neg, Sil.Var id, topt)
| e1' ->
if abs then Sil.exp_get_undefined false else Sil.UnOp (Sil.Neg, e1', topt)
end
| Sil.UnOp (Sil.BNot, e1, topt) ->
begin
match eval e1 with
| Sil.UnOp(Sil.BNot, e2', _) ->
e2'
| Sil.Const (Sil.Cint i) ->
Sil.exp_int (Sil.Int.lognot i)
| e1' ->
if abs then Sil.exp_get_undefined false else Sil.UnOp (Sil.BNot, e1', topt)
end
| Sil.BinOp (Sil.Le, e1, e2) ->
begin
match eval e1, eval e2 with
| Sil.Const (Sil.Cint n), Sil.Const (Sil.Cint m) ->
Sil.exp_bool (Sil.Int.leq n m)
| Sil.Const (Sil.Cfloat v), Sil.Const (Sil.Cfloat w) ->
Sil.exp_bool (v <= w)
| Sil.BinOp (Sil.PlusA, e3, Sil.Const (Sil.Cint n)), Sil.Const (Sil.Cint m) ->
Sil.BinOp (Sil.Le, e3, Sil.exp_int (m -- n))
| e1', e2' ->
Sil.exp_le e1' e2'
end
| Sil.BinOp (Sil.Lt, e1, e2) ->
begin
match eval e1, eval e2 with
| Sil.Const (Sil.Cint n), Sil.Const (Sil.Cint m) ->
Sil.exp_bool (Sil.Int.lt n m)
| Sil.Const (Sil.Cfloat v), Sil.Const (Sil.Cfloat w) ->
Sil.exp_bool (v < w)
| Sil.Const (Sil.Cint n), Sil.BinOp (Sil.MinusA, f1, f2) ->
Sil.BinOp(Sil.Le, Sil.BinOp (Sil.MinusA, f2, f1), Sil.exp_int (Sil.Int.minus_one -- n))
| Sil.BinOp(Sil.MinusA, f1 , f2), Sil.Const(Sil.Cint n) ->
Sil.exp_le (Sil.BinOp(Sil.MinusA, f1 , f2)) (Sil.exp_int (n -- Sil.Int.one))
| Sil.BinOp (Sil.PlusA, e3, Sil.Const (Sil.Cint n)), Sil.Const (Sil.Cint m) ->
Sil.BinOp (Sil.Lt, e3, Sil.exp_int (m -- n))
| e1', e2' ->
Sil.exp_lt e1' e2'
end
| Sil.BinOp (Sil.Ge, e1, e2) ->
eval (Sil.exp_le e2 e1)
| Sil.BinOp (Sil.Gt, e1, e2) ->
eval (Sil.exp_lt e2 e1)
| Sil.BinOp (Sil.Eq, e1, e2) ->
begin
match eval e1, eval e2 with
| Sil.Const (Sil.Cint n), Sil.Const (Sil.Cint m) ->
Sil.exp_bool (Sil.Int.eq n m)
| Sil.Const (Sil.Cfloat v), Sil.Const (Sil.Cfloat w) ->
Sil.exp_bool (v = w)
| e1', e2' ->
Sil.exp_eq e1' e2'
end
| Sil.BinOp (Sil.Ne, e1, e2) ->
begin
match eval e1, eval e2 with
| Sil.Const (Sil.Cint n), Sil.Const (Sil.Cint m) ->
Sil.exp_bool (Sil.Int.neq n m)
| Sil.Const (Sil.Cfloat v), Sil.Const (Sil.Cfloat w) ->
Sil.exp_bool (v <> w)
| e1', e2' ->
Sil.exp_ne e1' e2'
end
| Sil.BinOp (Sil.LAnd, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
begin match e1', e2' with
| Sil.Const (Sil.Cint i), _ when Sil.Int.iszero i ->
e1'
| Sil.Const (Sil.Cint _), _ ->
e2'
| _, Sil.Const (Sil.Cint i) when Sil.Int.iszero i ->
e2'
| _, Sil.Const (Sil.Cint _) ->
e1'
| _ ->
Sil.BinOp (Sil.LAnd, e1', e2')
end
| Sil.BinOp (Sil.LOr, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
begin
match e1', e2' with
| Sil.Const (Sil.Cint i), _ when Sil.Int.iszero i ->
e2'
| Sil.Const (Sil.Cint _), _ ->
e1'
| _, Sil.Const (Sil.Cint i) when Sil.Int.iszero i ->
e1'
| _, Sil.Const (Sil.Cint _) ->
e2'
| _ ->
Sil.BinOp (Sil.LOr, e1', e2')
end
| Sil.BinOp(Sil.PlusPI, Sil.Lindex (ep, e1), e2) -> (* array access with pointer arithmetic *)
let e' = Sil.BinOp (Sil.PlusA, e1, e2) in
eval (Sil.Lindex (ep, e'))
| Sil.BinOp (Sil.PlusPI, (Sil.BinOp (Sil.PlusPI, e11, e12)), e2) -> (* take care of pattern ((ptr + off1) + off2) *)
(* progress: convert inner +I to +A *)
let e2' = Sil.BinOp (Sil.PlusA, e12, e2) in
eval (Sil.BinOp (Sil.PlusPI, e11, e2'))
| Sil.BinOp (Sil.PlusA, (Sil.Sizeof (Sil.Tstruct (ftal, sftal, csu, name_opt, supers, def_mthds, iann), st) as e1), e2) -> (* pattern for extensible structs
given a struct declatead as struct s { ... t arr[n] ... }, allocation pattern malloc(sizeof(struct s) + k * siezof(t))
turn it into struct s { ... t arr[n + k] ... } *)
let e1' = eval e1 in
let e2' = eval e2 in
(match list_rev ftal, e2' with
(fname, Sil.Tarray(typ, size), _):: ltfa, Sil.BinOp(Sil.Mult, num_elem, Sil.Sizeof (texp, st)) when ftal != [] && Sil.typ_equal typ texp ->
let size' = Sil.BinOp(Sil.PlusA, size, num_elem) in
let ltfa' = (fname, Sil.Tarray(typ, size'), Sil.item_annotation_empty) :: ltfa in
Sil.Sizeof(Sil.Tstruct (list_rev ltfa', sftal, csu, name_opt, supers, def_mthds, iann), st)
| _ -> Sil.BinOp(Sil.PlusA, e1', e2'))
| Sil.BinOp (Sil.PlusA as oplus, e1, e2)
| Sil.BinOp (Sil.PlusPI as oplus, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
let isPlusA = oplus = Sil.PlusA in
let ominus = if isPlusA then Sil.MinusA else Sil.MinusPI in
let (+++) x y = match y with
| Sil.Const (Sil.Cint i) when Sil.Int.iszero i -> x
| _ -> Sil.BinOp (oplus, x, y) in
let (---) x y = match y with
| Sil.Const (Sil.Cint i) when Sil.Int.iszero i -> x
| _ -> Sil.BinOp (ominus, x, y) in
begin
match e1', e2' with
| Sil.Const c, _ when iszero_int_float c ->
e2'
| _, Sil.Const c when iszero_int_float c ->
e1'
| Sil.Const (Sil.Cint n), Sil.Const (Sil.Cint m) ->
Sil.exp_int (n ++ m)
| Sil.Const (Sil.Cfloat v), Sil.Const (Sil.Cfloat w) ->
Sil.exp_float (v +. w)
| Sil.UnOp(Sil.Neg, f1, _), f2
| f2, Sil.UnOp(Sil.Neg, f1, _) ->
Sil.BinOp (ominus, f2, f1)
| Sil.BinOp (Sil.PlusA, e, Sil.Const (Sil.Cint n1)), Sil.Const (Sil.Cint n2)
| Sil.BinOp (Sil.PlusPI, e, Sil.Const (Sil.Cint n1)), Sil.Const (Sil.Cint n2)
| Sil.Const (Sil.Cint n2), Sil.BinOp (Sil.PlusA, e, Sil.Const (Sil.Cint n1))
| Sil.Const (Sil.Cint n2), Sil.BinOp (Sil.PlusPI, e, Sil.Const (Sil.Cint n1)) ->
e +++ (Sil.exp_int (n1 ++ n2))
| Sil.BinOp (Sil.MinusA, Sil.Const (Sil.Cint n1), e), Sil.Const (Sil.Cint n2)
| Sil.Const (Sil.Cint n2), Sil.BinOp (Sil.MinusA, Sil.Const (Sil.Cint n1), e) ->
Sil.exp_int (n1 ++ n2) --- e
| Sil.BinOp (Sil.MinusA, e1, e2), e3 -> (* (e1-e2)+e3 --> e1 + (e3-e2) *)
(* progress: brings + to the outside *)
eval (e1 +++ (e3 --- e2))
| _, Sil.Const _ ->
e1' +++ e2'
| Sil.Const _, _ ->
if isPlusA then e2' +++ e1' else e1' +++ e2'
| Sil.Var _, Sil.Var _ ->
e1' +++ e2'
| _ ->
if abs && isPlusA then Sil.exp_get_undefined false else
if abs && not isPlusA then e1' +++ (Sil.exp_get_undefined false)
else e1' +++ e2'
end
| Sil.BinOp (Sil.MinusA as ominus, e1, e2)
| Sil.BinOp (Sil.MinusPI as ominus, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
let isMinusA = ominus = Sil.MinusA in
let oplus = if isMinusA then Sil.PlusA else Sil.PlusPI in
let (+++) x y = Sil.BinOp (oplus, x, y) in
let (---) x y = Sil.BinOp (ominus, x, y) in
if Sil.exp_equal e1' e2' then Sil.exp_zero
else begin
match e1', e2' with
| Sil.Const c, _ when iszero_int_float c ->
eval (Sil.UnOp(Sil.Neg, e2', None))
| _, Sil.Const c when iszero_int_float c ->
e1'
| Sil.Const (Sil.Cint n), Sil.Const (Sil.Cint m) ->
Sil.exp_int (n -- m)
| Sil.Const (Sil.Cfloat v), Sil.Const (Sil.Cfloat w) ->
Sil.exp_float (v -. w)
| _, Sil.UnOp (Sil.Neg, f2, _) ->
eval (e1 +++ f2)
| _ , Sil.Const(Sil.Cint n) ->
eval (e1' +++ (Sil.exp_int (Sil.Int.neg n)))
| Sil.Const _, _ ->
e1' --- e2'
| Sil.Var _, Sil.Var _ ->
e1' --- e2'
| _, _ ->
if abs then Sil.exp_get_undefined false else e1' --- e2'
end
| Sil.BinOp (Sil.MinusPP, e1, e2) ->
if abs then Sil.exp_get_undefined false
else Sil.BinOp (Sil.MinusPP, eval e1, eval e2)
| Sil.BinOp (Sil.Mult, esize, Sil.Sizeof (t, st)) | Sil.BinOp(Sil.Mult, Sil.Sizeof (t, st), esize) ->
begin
match eval esize, eval (Sil.Sizeof (t, st)) with
| Sil.Const (Sil.Cint i), e' when Sil.Int.isone i -> e'
| esize', e' -> Sil.BinOp(Sil.Mult, esize', e')
end
| Sil.BinOp (Sil.Mult, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
begin
match e1', e2' with
| Sil.Const c, _ when iszero_int_float c ->
Sil.exp_zero
| Sil.Const c, _ when isone_int_float c ->
e2'
| Sil.Const c, _ when isminusone_int_float c ->
eval (Sil.UnOp (Sil.Neg, e2', None))
| _, Sil.Const c when iszero_int_float c ->
Sil.exp_zero
| _, Sil.Const c when isone_int_float c ->
e1'
| _, Sil.Const c when isminusone_int_float c ->
eval (Sil.UnOp (Sil.Neg, e1', None))
| Sil.Const (Sil.Cint n), Sil.Const (Sil.Cint m) ->
Sil.exp_int (Sil.Int.mul n m)
| Sil.Const (Sil.Cfloat v), Sil.Const (Sil.Cfloat w) ->
Sil.exp_float (v *. w)
| Sil.Var v, Sil.Var w ->
Sil.BinOp(Sil.Mult, e1', e2')
| _, _ ->
if abs then Sil.exp_get_undefined false else Sil.BinOp(Sil.Mult, e1', e2')
end
| Sil.BinOp (Sil.Div, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
begin
match e1', e2' with
| _, Sil.Const c when iszero_int_float c ->
Sil.exp_get_undefined false
| Sil.Const c, _ when iszero_int_float c ->
e1'
| _, Sil.Const c when isone_int_float c ->
e1'
| Sil.Const (Sil.Cint n), Sil.Const (Sil.Cint m) ->
Sil.exp_int (Sil.Int.div n m)
| Sil.Const (Sil.Cfloat v), Sil.Const (Sil.Cfloat w) ->
Sil.exp_float (v /.w)
| Sil.Sizeof(Sil.Tarray(typ, size), _), Sil.Sizeof(_typ, _) (* pattern: sizeof(arr) / sizeof(arr[0]) = size of arr *)
when Sil.typ_equal _typ typ ->
size
| _ ->
if abs then Sil.exp_get_undefined false else Sil.BinOp (Sil.Div, e1', e2')
end
| Sil.BinOp (Sil.Mod, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
begin
match e1', e2' with
| _, Sil.Const (Sil.Cint i) when Sil.Int.iszero i ->
Sil.exp_get_undefined false
| Sil.Const (Sil.Cint i), _ when Sil.Int.iszero i ->
e1'
| _, Sil.Const (Sil.Cint i) when Sil.Int.isone i ->
Sil.exp_zero
| Sil.Const (Sil.Cint n), Sil.Const (Sil.Cint m) ->
Sil.exp_int (Sil.Int.rem n m)
| _ ->
if abs then Sil.exp_get_undefined false else Sil.BinOp (Sil.Mod, e1', e2')
end
| Sil.BinOp (Sil.Shiftlt, e1, e2) ->
if abs then Sil.exp_get_undefined false else Sil.BinOp (Sil.Shiftlt, eval e1, eval e2)
| Sil.BinOp (Sil.Shiftrt, e1, e2) ->
if abs then Sil.exp_get_undefined false else Sil.BinOp (Sil.Shiftrt, eval e1, eval e2)
| Sil.BinOp (Sil.BAnd, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
begin match e1', e2' with
| Sil.Const (Sil.Cint i), _ when Sil.Int.iszero i ->
e1'
| _, Sil.Const (Sil.Cint i) when Sil.Int.iszero i ->
e2'
| Sil.Const (Sil.Cint i1), Sil.Const(Sil.Cint i2) ->
Sil.exp_int (Sil.Int.logand i1 i2)
| _ ->
if abs then Sil.exp_get_undefined false else Sil.BinOp (Sil.BAnd, e1', e2')
end
| Sil.BinOp (Sil.BOr, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
begin match e1', e2' with
| Sil.Const (Sil.Cint i), _ when Sil.Int.iszero i ->
e2'
| _, Sil.Const (Sil.Cint i) when Sil.Int.iszero i ->
e1'
| Sil.Const (Sil.Cint i1), Sil.Const(Sil.Cint i2) ->
Sil.exp_int (Sil.Int.logor i1 i2)
| _ ->
if abs then Sil.exp_get_undefined false else Sil.BinOp (Sil.BOr, e1', e2')
end
| Sil.BinOp (Sil.BXor, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
begin match e1', e2' with
| Sil.Const (Sil.Cint i), _ when Sil.Int.iszero i ->
e2'
| _, Sil.Const (Sil.Cint i) when Sil.Int.iszero i ->
e1'
| Sil.Const (Sil.Cint i1), Sil.Const(Sil.Cint i2) ->
Sil.exp_int (Sil.Int.logxor i1 i2)
| _ ->
if abs then Sil.exp_get_undefined false else Sil.BinOp (Sil.BXor, e1', e2')
end
| Sil.BinOp (Sil.PtrFld, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
begin
match e2' with
| Sil.Const (Sil.Cptr_to_fld (fn, typ)) ->
eval (Sil.Lfield(e1', fn, typ))
| Sil.Const (Sil.Cint i) when Sil.Int.iszero i ->
Sil.exp_zero (* cause a NULL dereference *)
| _ -> Sil.BinOp (Sil.PtrFld, e1', e2')
end
| Sil.Lvar _ ->
e
| Sil.Lfield (e1, fld, typ) ->
let e1' = eval e1 in
Sil.Lfield (e1', fld, typ)
| Sil.Lindex(Sil.Lvar pv, e2) when false (* removed: it interferes with re-arrangement and error messages *) -> (* &x[n] --> &x + n *)
eval (Sil.BinOp (Sil.PlusPI, Sil.Lvar pv, e2))
| Sil.Lindex (Sil.BinOp(Sil.PlusPI, ep, e1), e2) -> (* array access with pointer arithmetic *)
let e' = Sil.BinOp (Sil.PlusA, e1, e2) in
eval (Sil.Lindex (ep, e'))
| Sil.Lindex (e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
Sil.Lindex(e1', e2') in
let e' = eval e in
(* L.d_str "sym_eval "; Sil.d_exp e; L.d_str" --> "; Sil.d_exp e'; L.d_ln (); *)
e'
let exp_normalize sub exp =
let exp' = Sil.exp_sub sub exp in
if !Config.abs_val >= 1 then sym_eval true exp'
else sym_eval false exp'
let rec texp_normalize sub exp = match exp with
| Sil.Sizeof (typ, st) -> Sil.Sizeof (typ_normalize sub typ, st)
| _ -> exp_normalize sub exp
and typ_normalize sub typ = match typ with
| Sil.Tvar _
| Sil.Tint _
| Sil.Tfloat _
| Sil.Tvoid
| Sil.Tfun _ ->
typ
| Sil.Tptr (t', pk) ->
Sil.Tptr (typ_normalize sub t', pk)
| Sil.Tstruct (ftal, sftal, csu, nameo, supers, def_mthds, iann) ->
let fld_norm = list_map (fun (f, t, a) -> (f, typ_normalize sub t, a)) in
Sil.Tstruct (fld_norm ftal, fld_norm sftal, csu, nameo, supers, def_mthds, iann)
| Sil.Tarray (t, e) ->
Sil.Tarray (typ_normalize sub t, exp_normalize sub e)
| Sil.Tenum econsts ->
typ
let run_with_abs_val_eq_zero f =
let abs_val_old = !Config.abs_val in
Config.abs_val := 0;
let res = f () in
Config.abs_val := abs_val_old;
res
let exp_normalize_noabs sub exp =
run_with_abs_val_eq_zero
(fun () -> exp_normalize sub exp)
(** Return [true] if the atom is an inequality *)
let atom_is_inequality = function
| Sil.Aeq (Sil.BinOp (Sil.Le, _, _), Sil.Const (Sil.Cint i)) when Sil.Int.isone i -> true
| Sil.Aeq (Sil.BinOp (Sil.Lt, _, _), Sil.Const (Sil.Cint i)) when Sil.Int.isone i -> true
| _ -> false
(** If the atom is [e<=n] return [e,n] *)
let atom_exp_le_const = function
| Sil.Aeq(Sil.BinOp (Sil.Le, e1, Sil.Const (Sil.Cint n)), Sil.Const (Sil.Cint i)) when Sil.Int.isone i ->
Some (e1, n)
| _ -> None
(** If the atom is [n<e] return [n,e] *)
let atom_const_lt_exp = function
| Sil.Aeq(Sil.BinOp (Sil.Lt, Sil.Const (Sil.Cint n), e1), Sil.Const (Sil.Cint i)) when Sil.Int.isone i ->
Some (n, e1)
| _ -> None
(** Turn an inequality expression into an atom *)
let mk_inequality e =
match e with
| Sil.BinOp (Sil.Le, base, Sil.Const (Sil.Cint n)) ->
(* base <= n case *)
let nbase = exp_normalize_noabs Sil.sub_empty base in
(match nbase with
| Sil.BinOp(Sil.PlusA, base', Sil.Const (Sil.Cint n')) ->
let new_offset = Sil.exp_int (n -- n') in
let new_e = Sil.BinOp (Sil.Le, base', new_offset) in
Sil.Aeq (new_e, Sil.exp_one)
| Sil.BinOp(Sil.PlusA, Sil.Const (Sil.Cint n'), base') ->
let new_offset = Sil.exp_int (n -- n') in
let new_e = Sil.BinOp (Sil.Le, base', new_offset) in
Sil.Aeq (new_e, Sil.exp_one)
| Sil.BinOp(Sil.MinusA, base', Sil.Const (Sil.Cint n')) ->
let new_offset = Sil.exp_int (n ++ n') in
let new_e = Sil.BinOp (Sil.Le, base', new_offset) in
Sil.Aeq (new_e, Sil.exp_one)
| Sil.BinOp(Sil.MinusA, Sil.Const (Sil.Cint n'), base') ->
let new_offset = Sil.exp_int (n' -- n -- Sil.Int.one) in
let new_e = Sil.BinOp (Sil.Lt, new_offset, base') in
Sil.Aeq (new_e, Sil.exp_one)
| Sil.UnOp(Sil.Neg, new_base, _) ->
(* In this case, base = -new_base. Construct -n-1 < new_base. *)
let new_offset = Sil.exp_int (Sil.Int.zero -- n -- Sil.Int.one) in
let new_e = Sil.BinOp (Sil.Lt, new_offset, new_base) in
Sil.Aeq (new_e, Sil.exp_one)
| _ -> Sil.Aeq (e, Sil.exp_one))
| Sil.BinOp (Sil.Lt, Sil.Const (Sil.Cint n), base) ->
(* n < base case *)
let nbase = exp_normalize_noabs Sil.sub_empty base in
(match nbase with
| Sil.BinOp(Sil.PlusA, base', Sil.Const (Sil.Cint n')) ->
let new_offset = Sil.exp_int (n -- n') in
let new_e = Sil.BinOp (Sil.Lt, new_offset, base') in
Sil.Aeq (new_e, Sil.exp_one)
| Sil.BinOp(Sil.PlusA, Sil.Const (Sil.Cint n'), base') ->
let new_offset = Sil.exp_int (n -- n') in
let new_e = Sil.BinOp (Sil.Lt, new_offset, base') in
Sil.Aeq (new_e, Sil.exp_one)
| Sil.BinOp(Sil.MinusA, base', Sil.Const (Sil.Cint n')) ->
let new_offset = Sil.exp_int (n ++ n') in
let new_e = Sil.BinOp (Sil.Lt, new_offset, base') in
Sil.Aeq (new_e, Sil.exp_one)
| Sil.BinOp(Sil.MinusA, Sil.Const (Sil.Cint n'), base') ->
let new_offset = Sil.exp_int (n' -- n -- Sil.Int.one) in
let new_e = Sil.BinOp (Sil.Le, base', new_offset) in
Sil.Aeq (new_e, Sil.exp_one)
| Sil.UnOp(Sil.Neg, new_base, _) ->
(* In this case, base = -new_base. Construct new_base <= -n-1 *)
let new_offset = Sil.exp_int (Sil.Int.zero -- n -- Sil.Int.one) in
let new_e = Sil.BinOp (Sil.Le, new_base, new_offset) in
Sil.Aeq (new_e, Sil.exp_one)
| _ -> Sil.Aeq (e, Sil.exp_one))
| _ -> Sil.Aeq (e, Sil.exp_one)
(** Normalize an inequality *)
let inequality_normalize a =
(** turn an expression into a triple (pos,neg,off) of positive and negative occurrences, and integer offset *)
(** representing inequality [sum(pos) - sum(neg) + off <= 0] *)
let rec exp_to_posnegoff e = match e with
| Sil.Const (Sil.Cint n) -> [],[], n
| Sil.BinOp(Sil.PlusA, e1, e2) | Sil.BinOp(Sil.PlusPI, e1, e2) ->
let pos1, neg1, n1 = exp_to_posnegoff e1 in
let pos2, neg2, n2 = exp_to_posnegoff e2 in
(pos1@pos2, neg1@neg2, n1 ++ n2)
| Sil.BinOp(Sil.MinusA, e1, e2) | Sil.BinOp(Sil.MinusPI, e1, e2) | Sil.BinOp(Sil.MinusPP, e1, e2) ->
let pos1, neg1, n1 = exp_to_posnegoff e1 in
let pos2, neg2, n2 = exp_to_posnegoff e2 in
(pos1@neg2, neg1@pos2, n1 -- n2)
| Sil.UnOp(Sil.Neg, e1, _) ->
let pos1, neg1, n1 = exp_to_posnegoff e1 in
(neg1, pos1, Sil.Int.zero -- n1)
| _ -> [e],[], Sil.Int.zero in
(** sort and filter out expressions appearing in both the positive and negative part *)
let normalize_posnegoff (pos, neg, off) =
let pos' = list_sort Sil.exp_compare pos in
let neg' = list_sort Sil.exp_compare neg in
let rec combine pacc nacc = function
| x:: ps, y:: ng ->
(match Sil.exp_compare x y with
| n when n < 0 -> combine (x:: pacc) nacc (ps, y :: ng)
| 0 -> combine pacc nacc (ps, ng)
| _ -> combine pacc (y:: nacc) (x :: ps, ng))
| ps, ng -> (list_rev pacc) @ ps, (list_rev nacc) @ ng in
let pos'', neg'' = combine [] [] (pos', neg') in
(pos'', neg'', off) in
(** turn a non-empty list of expressions into a sum expression *)
let rec exp_list_to_sum = function
| [] -> assert false
| [e] -> e
| e:: el -> Sil.BinOp(Sil.PlusA, e, exp_list_to_sum el) in
let norm_from_exp e =
match normalize_posnegoff (exp_to_posnegoff e) with
| [],[], n -> Sil.BinOp(Sil.Le, Sil.exp_int n, Sil.exp_zero)
| [], neg, n -> Sil.BinOp(Sil.Lt, Sil.exp_int (n -- Sil.Int.one), exp_list_to_sum neg)
| pos, [], n -> Sil.BinOp(Sil.Le, exp_list_to_sum pos, Sil.exp_int (Sil.Int.zero -- n))
| pos, neg, n ->
let lhs_e = Sil.BinOp(Sil.MinusA, exp_list_to_sum pos, exp_list_to_sum neg) in
Sil.BinOp(Sil.Le, lhs_e, Sil.exp_int (Sil.Int.zero -- n)) in
let ineq = match a with
| Sil.Aeq (ineq, Sil.Const (Sil.Cint i)) when Sil.Int.isone i ->
ineq
| _ -> assert false in
match ineq with
| Sil.BinOp(Sil.Le, e1, e2) ->
let e = Sil.BinOp(Sil.MinusA, e1, e2) in
mk_inequality (norm_from_exp e)
| Sil.BinOp(Sil.Lt, e1, e2) ->
let e = Sil.BinOp(Sil.MinusA, Sil.BinOp(Sil.MinusA, e1, e2), Sil.exp_minus_one) in
mk_inequality (norm_from_exp e)
| _ -> a
let exp_reorder e1 e2 = if Sil.exp_compare e1 e2 <= 0 then (e1, e2) else (e2, e1)
(** Normalize an atom.
We keep the convention that inequalities with constants
are only of the form [e <= n] and [n < e]. *)
let atom_normalize sub a0 =
let a = Sil.atom_sub sub a0 in
let rec normalize_eq eq = match eq with
| Sil.BinOp(Sil.PlusA, e1, Sil.Const (Sil.Cint n1)), Sil.Const (Sil.Cint n2) (* e1+n1==n2 ---> e1==n2-n1 *)
| Sil.BinOp(Sil.PlusPI, e1, Sil.Const (Sil.Cint n1)), Sil.Const (Sil.Cint n2) ->
(e1, Sil.exp_int (n2 -- n1))
| Sil.BinOp(Sil.MinusA, e1, Sil.Const (Sil.Cint n1)), Sil.Const (Sil.Cint n2) (* e1-n1==n2 ---> e1==n1+n2 *)
| Sil.BinOp(Sil.MinusPI, e1, Sil.Const (Sil.Cint n1)), Sil.Const (Sil.Cint n2) ->
(e1, Sil.exp_int (n1 ++ n2))
| Sil.BinOp(Sil.MinusA, Sil.Const (Sil.Cint n1), e1), Sil.Const (Sil.Cint n2) -> (* n1-e1 == n2 -> e1==n1-n2 *)
(e1, Sil.exp_int (n1 -- n2))
| Sil.Lfield (e1', fld1, typ1), Sil.Lfield (e2', fld2, typ2) ->
if Sil.fld_equal fld1 fld2
then normalize_eq (e1', e2')
else eq
| Sil.Lindex (e1', idx1), Sil.Lindex (e2', idx2) ->
if Sil.exp_equal idx1 idx2 then normalize_eq (e1', e2')
else if Sil.exp_equal e1' e2' then normalize_eq (idx1, idx2)
else eq
| _ -> eq in
let handle_unary_negation e1 e2 =
match e1, e2 with
| Sil.UnOp (Sil.LNot, e1', _), Sil.Const (Sil.Cint i)
| Sil.Const (Sil.Cint i), Sil.UnOp (Sil.LNot, e1', _) when Sil.Int.iszero i ->
(e1', Sil.exp_zero, true)
| _ -> (e1, e2, false) in
let handle_boolean_operation from_equality e1 e2 =
let ne1 = exp_normalize sub e1 in
let ne2 = exp_normalize sub e2 in
let ne1', ne2', op_negated = handle_unary_negation ne1 ne2 in
let (e1', e2') = normalize_eq (ne1', ne2') in
let (e1'', e2'') = exp_reorder e1' e2' in
let use_equality =
if op_negated then not from_equality else from_equality in
if use_equality then
Sil.Aeq (e1'', e2'')
else
Sil.Aneq (e1'', e2'') in
let a' = match a with
| Sil.Aeq (e1, e2) ->
handle_boolean_operation true e1 e2
| Sil.Aneq (e1, e2) ->
handle_boolean_operation false e1 e2 in
if atom_is_inequality a' then inequality_normalize a' else a'
(** Negate an atom *)
let atom_negate = function
| Sil.Aeq (Sil.BinOp (Sil.Le, e1, e2), Sil.Const (Sil.Cint i)) when Sil.Int.isone i ->
mk_inequality (Sil.exp_lt e2 e1)
| Sil.Aeq (Sil.BinOp (Sil.Lt, e1, e2), Sil.Const (Sil.Cint i)) when Sil.Int.isone i ->
mk_inequality (Sil.exp_le e2 e1)
| Sil.Aeq (e1, e2) -> Sil.Aneq (e1, e2)
| Sil.Aneq (e1, e2) -> Sil.Aeq (e1, e2)
let rec remove_duplicates_from_sorted special_equal = function
| [] -> []
| [x] -> [x]
| x:: y:: l ->
if (special_equal x y)
then remove_duplicates_from_sorted special_equal (y:: l)
else x:: (remove_duplicates_from_sorted special_equal (y:: l))
let rec strexp_normalize sub se =
match se with
| Sil.Eexp (e, inst) ->
Sil.Eexp (exp_normalize sub e, inst)
| Sil.Estruct (fld_cnts, inst) ->
begin
match fld_cnts with
| [] -> se
| _ ->
let fld_cnts' =
list_map (fun (fld, cnt) ->
fld, strexp_normalize sub cnt) fld_cnts in
let fld_cnts'' = list_sort Sil.fld_strexp_compare fld_cnts' in
Sil.Estruct (fld_cnts'', inst)
end
| Sil.Earray (size, idx_cnts, inst) ->
begin
let size' = exp_normalize_noabs sub size in
match idx_cnts with
| [] ->
if Sil.exp_equal size size' then se else Sil.Earray (size', idx_cnts, inst)
| _ ->
let idx_cnts' =
list_map (fun (idx, cnt) ->
let idx' = exp_normalize sub idx in
idx', strexp_normalize sub cnt) idx_cnts in
let idx_cnts'' =
list_sort Sil.exp_strexp_compare idx_cnts' in
Sil.Earray (size', idx_cnts'', inst)
end
(** create a strexp of the given type, populating the structures if [expand_structs] is true *)
let rec create_strexp_of_type tenvo struct_init_mode typ inst =
let init_value () =
let create_fresh_var () =
let fresh_id =
(Ident.create_fresh (if !Config.footprint then Ident.kfootprint else Ident.kprimed)) in
Sil.Var fresh_id in
if !Sil.curr_language = Sil.Java && inst = Sil.Ialloc
then
match typ with
| Sil.Tfloat _ -> Sil.Const (Sil.Cfloat 0.0)
| _ -> Sil.exp_zero
else
create_fresh_var () in
match typ with
| Sil.Tint _ | Sil.Tfloat _ | Sil.Tvoid | Sil.Tfun _ | Sil.Tptr _ | Sil.Tenum _ ->
Sil.Eexp (init_value (), inst)
| Sil.Tstruct (ftal, sftal, _, _, _, _, _) ->
begin
match struct_init_mode with
| No_init -> Sil.Estruct ([], inst)
| Fld_init ->
let f (fld, t, a) =
if Sil.is_objc_ref_counter_field (fld, t, a) then
(fld, Sil.Eexp (Sil.exp_one, inst))
else
(fld, create_strexp_of_type tenvo struct_init_mode t inst) in
Sil.Estruct (list_map f ftal, inst)
end
| Sil.Tarray (_, size) ->
Sil.Earray (size, [], inst)
| Sil.Tvar name ->
L.out "@[<2>ANALYSIS BUG@\n";
L.out "type %a should be expanded to " (Sil.pp_typ_full pe_text) typ;
begin
match tenvo with
| None -> L.out "nothing@\n@."
| Some tenv ->
begin
match Sil.tenv_lookup tenv name with
| None -> L.out "nothing@\n@."
| Some typ' -> L.out "%a@\n@." (Sil.pp_typ_full pe_text) typ'
end;
end;
assert false
(** Sil.Construct a pointsto. *)
let mk_ptsto lexp sexp te =
let nsexp = strexp_normalize Sil.sub_empty sexp in
Sil.Hpointsto(lexp, nsexp, te)
(** Construct a points-to predicate for an expression using either the provided expression [name] as
base for fresh identifiers. If [expand_structs] is true, initialize the fields of structs with fresh variables. *)
let mk_ptsto_exp tenvo struct_init_mode (exp, te, expo) inst : Sil.hpred =
let default_strexp () = match te with
| Sil.Sizeof (typ, st) ->
create_strexp_of_type tenvo struct_init_mode typ inst
| Sil.Var id ->
Sil.Estruct ([], inst)
| te ->
L.err "trying to create ptsto with type: %a@\n@." (Sil.pp_texp_full pe_text) te;
assert false in
let strexp = match expo with
| Some e -> Sil.Eexp (e, inst)
| None -> default_strexp () in
mk_ptsto exp strexp te
let replace_array_contents hpred esel = match hpred with
| Sil.Hpointsto (root, Sil.Earray (size, [], inst), te) ->
Sil.Hpointsto (root, Sil.Earray (size, esel, inst), te)
| _ -> assert false
let rec hpred_normalize sub hpred =
let replace_hpred hpred' =
L.d_strln "found array with sizeof(..) size";
L.d_str "converting original hpred: "; Sil.d_hpred hpred; L.d_ln ();
L.d_str "into the following: "; Sil.d_hpred hpred'; L.d_ln ();
hpred' in
match hpred with
| Sil.Hpointsto (root, cnt, te) ->
let normalized_root = exp_normalize sub root in
let normalized_cnt = strexp_normalize sub cnt in
let normalized_te = texp_normalize sub te in
begin match normalized_cnt, normalized_te with
| Sil.Earray (Sil.Sizeof (t, st1), [], inst), Sil.Sizeof (Sil.Tarray _, st2) ->
(* check for an empty array whose size expression is (Sizeof type), and turn the array into a strexp of the given type *)
let hpred' = mk_ptsto_exp None Fld_init (root, Sil.Sizeof (t, st1), None) inst in
replace_hpred hpred'
| Sil.Earray (Sil.BinOp(Sil.Mult, Sil.Sizeof (t, st1), x), esel, inst), Sil.Sizeof (Sil.Tarray _, st2)
| Sil.Earray (Sil.BinOp(Sil.Mult, x, Sil.Sizeof (t, st1)), esel, inst), Sil.Sizeof (Sil.Tarray _, st2) ->
(* check for an array whose size expression is n * (Sizeof type), and turn the array into a strexp of the given type *)
let hpred' = mk_ptsto_exp None Fld_init (root, Sil.Sizeof (Sil.Tarray(t, x), st1), None) inst in
replace_hpred (replace_array_contents hpred' esel)
| _ -> Sil.Hpointsto (normalized_root, normalized_cnt, normalized_te)
end
| Sil.Hlseg (k, para, e1, e2, elist) ->
let normalized_e1 = exp_normalize sub e1 in
let normalized_e2 = exp_normalize sub e2 in
let normalized_elist = list_map (exp_normalize sub) elist in
let normalized_para = hpara_normalize sub para in
Sil.Hlseg (k, normalized_para, normalized_e1, normalized_e2, normalized_elist)
| Sil.Hdllseg (k, para, e1, e2, e3, e4, elist) ->
let norm_e1 = exp_normalize sub e1 in
let norm_e2 = exp_normalize sub e2 in
let norm_e3 = exp_normalize sub e3 in
let norm_e4 = exp_normalize sub e4 in
let norm_elist = list_map (exp_normalize sub) elist in
let norm_para = hpara_dll_normalize sub para in
Sil.Hdllseg (k, norm_para, norm_e1, norm_e2, norm_e3, norm_e4, norm_elist)
and hpara_normalize sub para =
let normalized_body = list_map (hpred_normalize Sil.sub_empty) (para.Sil.body) in
let sorted_body = list_sort Sil.hpred_compare normalized_body in
{ para with Sil.body = sorted_body }
and hpara_dll_normalize sub para =
let normalized_body = list_map (hpred_normalize Sil.sub_empty) (para.Sil.body_dll) in
let sorted_body = list_sort Sil.hpred_compare normalized_body in
{ para with Sil.body_dll = sorted_body }
let pi_tighten_ineq pi =
let ineq_list, nonineq_list = list_partition atom_is_inequality pi in
let diseq_list =
let get_disequality_info acc = function
| Sil.Aneq(Sil.Const (Sil.Cint n), e) | Sil.Aneq(e, Sil.Const (Sil.Cint n)) -> (e, n):: acc
| _ -> acc in
list_fold_left get_disequality_info [] nonineq_list in
let is_neq e n =
list_exists (fun (e', n') -> Sil.exp_equal e e' && Sil.Int.eq n n') diseq_list in
let le_list_tightened =
let get_le_inequality_info acc a =
match atom_exp_le_const a with
| Some (e, n) -> (e, n):: acc
| _ -> acc in
let rec le_tighten le_list_done = function
| [] -> list_rev le_list_done
| (e, n):: le_list_todo -> (* e <= n *)
if is_neq e n then le_tighten le_list_done ((e, n -- Sil.Int.one):: le_list_todo)
else le_tighten ((e, n):: le_list_done) (le_list_todo) in
let le_list = list_rev (list_fold_left get_le_inequality_info [] ineq_list) in
le_tighten [] le_list in
let lt_list_tightened =
let get_lt_inequality_info acc a =
match atom_const_lt_exp a with
| Some (n, e) -> (n, e):: acc
| _ -> acc in
let rec lt_tighten lt_list_done = function
| [] -> list_rev lt_list_done
| (n, e):: lt_list_todo -> (* n < e *)
let n_plus_one = n ++ Sil.Int.one in
if is_neq e n_plus_one then lt_tighten lt_list_done ((n ++ Sil.Int.one, e):: lt_list_todo)
else lt_tighten ((n, e):: lt_list_done) (lt_list_todo) in
let lt_list = list_rev (list_fold_left get_lt_inequality_info [] ineq_list) in
lt_tighten [] lt_list in
let ineq_list' =
let le_ineq_list =
list_map
(fun (e, n) -> mk_inequality (Sil.BinOp(Sil.Le, e, Sil.exp_int n)))
le_list_tightened in
let lt_ineq_list =
list_map
(fun (n, e) -> mk_inequality (Sil.BinOp(Sil.Lt, Sil.exp_int n, e)))
lt_list_tightened in
le_ineq_list @ lt_ineq_list in
let nonineq_list' =
list_filter
(function
| Sil.Aneq(Sil.Const (Sil.Cint n), e) | Sil.Aneq(e, Sil.Const (Sil.Cint n)) ->
(not (list_exists (fun (e', n') -> Sil.exp_equal e e' && Sil.Int.lt n' n) le_list_tightened)) &&
(not (list_exists (fun (n', e') -> Sil.exp_equal e e' && Sil.Int.leq n n') lt_list_tightened))
| _ -> true)
nonineq_list in
(ineq_list', nonineq_list')
(** remove duplicate atoms and redundant inequalities from a sorted pi *)
let rec pi_sorted_remove_redundant = function
| (Sil.Aeq(Sil.BinOp (Sil.Le, e1, Sil.Const (Sil.Cint n1)), Sil.Const (Sil.Cint i1)) as a1) ::
Sil.Aeq(Sil.BinOp (Sil.Le, e2, Sil.Const (Sil.Cint n2)), Sil.Const (Sil.Cint i2)) :: rest
when Sil.Int.isone i1 && Sil.Int.isone i2 && Sil.exp_equal e1 e2 && Sil.Int.lt n1 n2 -> (* second inequality redundant *)
pi_sorted_remove_redundant (a1 :: rest)
| Sil.Aeq(Sil.BinOp (Sil.Lt, Sil.Const (Sil.Cint n1), e1), Sil.Const (Sil.Cint i1)) ::
(Sil.Aeq(Sil.BinOp (Sil.Lt, Sil.Const (Sil.Cint n2), e2), Sil.Const (Sil.Cint i2)) as a2) :: rest
when Sil.Int.isone i1 && Sil.Int.isone i2 && Sil.exp_equal e1 e2 && Sil.Int.lt n1 n2 -> (* first inequality redundant *)
pi_sorted_remove_redundant (a2 :: rest)
| a1:: a2:: rest ->
if Sil.atom_equal a1 a2 then pi_sorted_remove_redundant (a2 :: rest)
else a1 :: pi_sorted_remove_redundant (a2 :: rest)
| [a] -> [a]
| [] -> []
(** find the unsigned expressions in sigma (immediately inside a pointsto, for now) *)
let sigma_get_unsigned_exps sigma =
let uexps = ref [] in
let do_hpred = function
| Sil.Hpointsto(_, Sil.Eexp(e, _), Sil.Sizeof (Sil.Tint ik, _)) when Sil.ikind_is_unsigned ik ->
uexps := e :: !uexps
| _ -> () in
list_iter do_hpred sigma;
!uexps
(** Normalization of pi.
The normalization filters out obviously - true disequalities, such as e <> e + 1. *)
let pi_normalize sub sigma pi0 =
let pi = list_map (atom_normalize sub) pi0 in
let ineq_list, nonineq_list = pi_tighten_ineq pi in
let syntactically_different = function
| Sil.BinOp(op1, e1, Sil.Const(c1)), Sil.BinOp(op2, e2, Sil.Const(c2))
when Sil.exp_equal e1 e2 ->
Sil.binop_equal op1 op2 && Sil.binop_injective op1 && not (Sil.const_equal c1 c2)
| e1, Sil.BinOp(op2, e2, Sil.Const(c2))
when Sil.exp_equal e1 e2 ->
Sil.binop_injective op2 && Sil.binop_is_zero_runit op2 && not (Sil.const_equal (Sil.Cint Sil.Int.zero) c2)
| Sil.BinOp(op1, e1, Sil.Const(c1)), e2
when Sil.exp_equal e1 e2 ->
Sil.binop_injective op1 && Sil.binop_is_zero_runit op1 && not (Sil.const_equal (Sil.Cint Sil.Int.zero) c1)
| _ -> false in
let filter_useful_atom =
let unsigned_exps = lazy (sigma_get_unsigned_exps sigma) in
function
| Sil.Aneq ((Sil.Var _) as e, Sil.Const (Sil.Cint n)) when Sil.Int.isnegative n ->
not (list_exists (Sil.exp_equal e) (Lazy.force unsigned_exps))
| Sil.Aneq(e1, e2) ->
not (syntactically_different (e1, e2))
| Sil.Aeq(Sil.Const c1, Sil.Const c2) ->
not (Sil.const_equal c1 c2)
| a -> true in
let pi' = list_stable_sort Sil.atom_compare ((list_filter filter_useful_atom nonineq_list) @ ineq_list) in
let pi'' = pi_sorted_remove_redundant pi' in
if pi_equal pi0 pi'' then pi0 else pi''
let sigma_normalize sub sigma =
let sigma' =
list_stable_sort Sil.hpred_compare (list_map (hpred_normalize sub) sigma) in
if sigma_equal sigma sigma' then sigma else sigma'
(** normalize the footprint part, and rename any primed vars in the footprint with fresh footprint vars *)
let footprint_normalize prop =
let nsigma = sigma_normalize Sil.sub_empty prop.foot_sigma in
let npi = pi_normalize Sil.sub_empty nsigma prop.foot_pi in
let fp_vars =
let fav = pi_fav npi in
sigma_fav_add fav nsigma;
fav in
(* TODO (t4893479): make this check less angelic *)
if Sil.fav_exists fp_vars Ident.is_normal && not !Config.angelic_execution then
begin
L.d_strln "footprint part contains normal variables";
d_pi npi; L.d_ln ();
d_sigma nsigma; L.d_ln ();
assert false
end;
Sil.fav_filter_ident fp_vars Ident.is_primed; (* only keep primed vars *)
let npi', nsigma' =
if Sil.fav_is_empty fp_vars then npi, nsigma
else (* replace primed vars by fresh footprint vars *)
let ids_primed = Sil.fav_to_list fp_vars in
let ids_footprint =
list_map (fun id -> (id, Ident.create_fresh Ident.kfootprint)) ids_primed in
let ren_sub = Sil.sub_of_list (list_map (fun (id1, id2) -> (id1, Sil.Var id2)) ids_footprint) in
let nsigma' = sigma_normalize Sil.sub_empty (sigma_sub ren_sub nsigma) in
let npi' = pi_normalize Sil.sub_empty nsigma' (pi_sub ren_sub npi) in
(npi', nsigma') in
{ prop with foot_pi = npi'; foot_sigma = nsigma' }
let exp_normalize_prop prop exp =
run_with_abs_val_eq_zero
(fun () -> exp_normalize prop.sub exp)
let lexp_normalize_prop p lexp =
let root = Sil.root_of_lexp lexp in
let offsets = Sil.exp_get_offsets lexp in
let nroot = exp_normalize_prop p root in
let noffsets =
list_map (fun n -> match n with
| Sil.Off_fld _ -> n
| Sil.Off_index e -> Sil.Off_index (exp_normalize_prop p e)
) offsets in
Sil.exp_add_offsets nroot noffsets
(** Collapse consecutive indices that should be added. For instance,
this function reduces x[1][1] to x[2]. The [typ] argument is used
to ensure the soundness of this collapsing. *)
let exp_collapse_consecutive_indices_prop p typ exp =
let typ_is_base = function
| Sil.Tint _ | Sil.Tfloat _ | Sil.Tstruct _ | Sil.Tvoid | Sil.Tfun _ -> true
| _ -> false in
let typ_is_one_step_from_base =
match typ with
| Sil.Tptr (t, _) | Sil.Tarray (t, _) -> typ_is_base t
| _ -> false in
let rec exp_remove e0 =
match e0 with
| Sil.Lindex(Sil.Lindex(base, e1), e2) ->
let e0' = Sil.Lindex(base, Sil.BinOp(Sil.PlusA, e1, e2)) in
exp_remove e0'
| _ -> e0 in
begin
if typ_is_one_step_from_base then exp_remove exp else exp
end
let atom_normalize_prop prop atom =
run_with_abs_val_eq_zero
(fun () -> atom_normalize prop.sub atom)
let strexp_normalize_prop prop strexp =
run_with_abs_val_eq_zero
(fun () -> strexp_normalize prop.sub strexp)
let hpred_normalize_prop prop hpred =
run_with_abs_val_eq_zero
(fun () -> hpred_normalize prop.sub hpred)
let sigma_normalize_prop prop sigma =
run_with_abs_val_eq_zero
(fun () -> sigma_normalize prop.sub sigma)
let pi_normalize_prop prop pi =
run_with_abs_val_eq_zero
(fun () -> pi_normalize prop.sub prop.sigma pi)
(** {2 Compaction} *)
(** Return a compact representation of the prop *)
let prop_compact sh prop =
let sigma' = list_map (Sil.hpred_compact sh) prop.sigma in
{ prop with sigma = sigma'}
(** {2 Function for replacing occurrences of expressions.} *)
let replace_pi pi eprop =
{ eprop with pi = pi }
let replace_sigma sigma eprop =
{ eprop with sigma = sigma }
exception No_Footprint
let unSome_footprint = function
| None -> raise No_Footprint
| Some fp -> fp
let replace_sigma_footprint sigma (prop : 'a t) : exposed t =
{ prop with foot_sigma = sigma }
let replace_pi_footprint pi (prop : 'a t) : exposed t =
{ prop with foot_pi = pi }
let rec sigma_replace_exp epairs sigma =
let sigma' = list_map (Sil.hpred_replace_exp epairs) sigma in
sigma_normalize Sil.sub_empty sigma'
let sigma_map prop f =
let sigma' = list_map f prop.sigma in
{ prop with sigma = sigma' }
(** {2 Query about Proposition} *)
(** Check if the sigma part of the proposition is emp *)
let prop_is_emp p = match p.sigma with
| [] -> true
| _ -> false
(** {2 Functions for changing and generating propositions} *)
(** Replace the sub part of [prop]. *)
let prop_replace_sub sub p =
let nsub = sub_normalize sub in
{ p with sub = nsub }
(** Sil.Construct a disequality. *)
let mk_neq e1 e2 =
run_with_abs_val_eq_zero
(fun () ->
let ne1 = exp_normalize Sil.sub_empty e1 in
let ne2 = exp_normalize Sil.sub_empty e2 in
atom_normalize Sil.sub_empty (Sil.Aneq (ne1, ne2)))
(** Sil.Construct an equality. *)
let mk_eq e1 e2 =
run_with_abs_val_eq_zero
(fun () ->
let ne1 = exp_normalize Sil.sub_empty e1 in
let ne2 = exp_normalize Sil.sub_empty e2 in
atom_normalize Sil.sub_empty (Sil.Aeq (ne1, ne2)))
let unstructured_type = function
| Sil.Tstruct _ | Sil.Tarray _ -> false
| _ -> true
(** Construct a points-to predicate for a single program variable.
If [expand_structs] is true, initialize the fields of structs with fresh variables. *)
let mk_ptsto_lvar tenv expand_structs inst ((pvar: Sil.pvar), texp, expo) : Sil.hpred =
mk_ptsto_exp tenv expand_structs (Sil.Lvar pvar, texp, expo) inst
(** Sil.Construct a lseg predicate *)
let mk_lseg k para e_start e_end es_shared =
let npara = hpara_normalize Sil.sub_empty para in
Sil.Hlseg (k, npara, e_start, e_end, es_shared)
(** Sil.Construct a dllseg predicate *)
let mk_dllseg k para exp_iF exp_oB exp_oF exp_iB exps_shared =
let npara = hpara_dll_normalize Sil.sub_empty para in
Sil.Hdllseg (k, npara, exp_iF, exp_oB , exp_oF, exp_iB, exps_shared)
(** Sil.Construct a hpara *)
let mk_hpara root next svars evars body =
let para = { Sil.root = root; Sil.next = next; Sil.svars = svars; Sil.evars = evars; Sil.body = body } in
hpara_normalize Sil.sub_empty para
(** Sil.Construct a dll_hpara *)
let mk_dll_hpara iF oB oF svars evars body =
let para = { Sil.cell = iF; Sil.blink = oB; Sil.flink = oF; Sil.svars_dll = svars; Sil.evars_dll = evars; Sil.body_dll = body } in
hpara_dll_normalize Sil.sub_empty para
(** Proposition [true /\ emp]. *)
let prop_emp : normal t = { sub = Sil.sub_empty; pi =[]; sigma =[]; foot_pi =[]; foot_sigma =[] }
(** Conjoin a heap predicate by separating conjunction. *)
let prop_hpred_star (p : 'a t) (h : Sil.hpred) : exposed t =
let sigma' = h:: p.sigma in
{ p with sigma = sigma'}
let prop_sigma_star (p : 'a t) (sigma : Sil.hpred list) : exposed t =
let sigma' = sigma @ p.sigma in
{ p with sigma = sigma' }
(** Eliminates all empty lsegs from sigma, and collect equalities
The empty lsegs include
(a) "lseg_pe para 0 e elist",
(b) "dllseg_pe para iF oB oF iB elist" with iF = 0 or iB = 0,
(c) "lseg_pe para e1 e2 elist" and the rest of sigma contains the "cell" e1,
(d) "dllseg_pe para iF oB oF iB elist" and the rest of sigma contains
cell iF or iB. *)
module ExpSet = Set.Make(struct
type t = Sil.exp
let compare = Sil.exp_compare
end)
let sigma_remove_emptylseg sigma =
let alloc_set =
let rec f_alloc set = function
| [] ->
set
| Sil.Hpointsto (e, _, _) :: sigma' | Sil.Hlseg (Sil.Lseg_NE, _, e, _, _) :: sigma' ->
f_alloc (ExpSet.add e set) sigma'
| Sil.Hdllseg (Sil.Lseg_NE, _, iF, _, _, iB, _) :: sigma' ->
f_alloc (ExpSet.add iF (ExpSet.add iB set)) sigma'
| _ :: sigma' ->
f_alloc set sigma' in
f_alloc ExpSet.empty sigma
in
let rec f eqs_zero sigma_passed = function
| [] ->
(list_rev eqs_zero, list_rev sigma_passed)
| Sil.Hpointsto _ as hpred :: sigma' ->
f eqs_zero (hpred :: sigma_passed) sigma'
| Sil.Hlseg (Sil.Lseg_PE, _, e1, e2, _) :: sigma'
when (Sil.exp_equal e1 Sil.exp_zero) || (ExpSet.mem e1 alloc_set) ->
f (Sil.Aeq(e1, e2) :: eqs_zero) sigma_passed sigma'
| Sil.Hlseg _ as hpred :: sigma' ->
f eqs_zero (hpred :: sigma_passed) sigma'
| Sil.Hdllseg (Sil.Lseg_PE, _, iF, oB, oF, iB, _) :: sigma'
when (Sil.exp_equal iF Sil.exp_zero) || (ExpSet.mem iF alloc_set)
|| (Sil.exp_equal iB Sil.exp_zero) || (ExpSet.mem iB alloc_set) ->
f (Sil.Aeq(iF, oF):: Sil.Aeq(iB, oB):: eqs_zero) sigma_passed sigma'
| Sil.Hdllseg _ as hpred :: sigma' ->
f eqs_zero (hpred :: sigma_passed) sigma'
in
f [] [] sigma
let sigma_intro_nonemptylseg e1 e2 sigma =
let rec f sigma_passed = function
| [] ->
list_rev sigma_passed
| Sil.Hpointsto _ as hpred :: sigma' ->
f (hpred :: sigma_passed) sigma'
| Sil.Hlseg (Sil.Lseg_PE, para, f1, f2, shared) :: sigma'
when (Sil.exp_equal e1 f1 && Sil.exp_equal e2 f2)
|| (Sil.exp_equal e2 f1 && Sil.exp_equal e1 f2) ->
f (Sil.Hlseg (Sil.Lseg_NE, para, f1, f2, shared) :: sigma_passed) sigma'
| Sil.Hlseg _ as hpred :: sigma' ->
f (hpred :: sigma_passed) sigma'
| Sil.Hdllseg (Sil.Lseg_PE, para, iF, oB, oF, iB, shared) :: sigma'
when (Sil.exp_equal e1 iF && Sil.exp_equal e2 oF)
|| (Sil.exp_equal e2 iF && Sil.exp_equal e1 oF)
|| (Sil.exp_equal e1 iB && Sil.exp_equal e2 oB)
|| (Sil.exp_equal e2 iB && Sil.exp_equal e1 oB) ->
f (Sil.Hdllseg (Sil.Lseg_NE, para, iF, oB, oF, iB, shared) :: sigma_passed) sigma'
| Sil.Hdllseg _ as hpred :: sigma' ->
f (hpred :: sigma_passed) sigma'
in
f [] sigma
let normalize_and_strengthen_atom (p : normal t) (a : Sil.atom) : Sil.atom =
let a' = atom_normalize p.sub a in
match a' with
| Sil.Aeq (Sil.BinOp (Sil.Le, Sil.Var id, Sil.Const (Sil.Cint n)), Sil.Const (Sil.Cint i)) when Sil.Int.isone i ->
let lower = Sil.exp_int (n -- Sil.Int.one) in
let a_lower = Sil.Aeq (Sil.BinOp (Sil.Lt, lower, Sil.Var id), Sil.exp_one) in
if not (list_mem Sil.atom_equal a_lower p.pi) then a'
else Sil.Aeq (Sil.Var id, Sil.exp_int n)
| Sil.Aeq (Sil.BinOp (Sil.Lt, Sil.Const (Sil.Cint n), Sil.Var id), Sil.Const (Sil.Cint i)) when Sil.Int.isone i ->
let upper = Sil.exp_int (n ++ Sil.Int.one) in
let a_upper = Sil.Aeq (Sil.BinOp (Sil.Le, Sil.Var id, upper), Sil.exp_one) in
if not (list_mem Sil.atom_equal a_upper p.pi) then a'
else Sil.Aeq (Sil.Var id, upper)
| Sil.Aeq (Sil.BinOp (Sil.Ne, e1, e2), Sil.Const (Sil.Cint i)) when Sil.Int.isone i ->
Sil.Aneq (e1, e2)
| _ -> a'
(** Conjoin a pure atomic predicate by normal conjunction. *)
let rec prop_atom_and ?(footprint = false) (p : normal t) (a : Sil.atom) : normal t =
let a' = normalize_and_strengthen_atom p a in
if list_mem Sil.atom_equal a' p.pi then p
else begin
let p' =
match a' with
| Sil.Aeq (Sil.Var i, e) when Sil.ident_in_exp i e -> p
| Sil.Aeq (Sil.Var i, e) ->
let sub_list = [(i, e)] in
let mysub = Sil.sub_of_list sub_list in
let p_sub = Sil.sub_filter (fun i' -> not (Ident.equal i i')) p.sub in
let sub' = Sil.sub_join mysub (Sil.sub_range_map (Sil.exp_sub mysub) p_sub) in
let (nsub', npi', nsigma') =
let nsigma' = sigma_normalize sub' p.sigma in
(sub_normalize sub', pi_normalize sub' nsigma' p.pi, nsigma') in
let (eqs_zero, nsigma'') = sigma_remove_emptylseg nsigma' in
let p' = { p with sub = nsub'; pi = npi'; sigma = nsigma''} in
list_fold_left (prop_atom_and ~footprint: footprint) p' eqs_zero
| Sil.Aeq (e1, e2) when (Sil.exp_compare e1 e2 = 0) ->
p
| Sil.Aneq (e1, e2) ->
let sigma' = sigma_intro_nonemptylseg e1 e2 p.sigma in
let pi' = pi_normalize p.sub sigma' (a':: p.pi) in
{ p with pi = pi'; sigma = sigma'}
| _ ->
let pi' = pi_normalize p.sub p.sigma (a':: p.pi) in
{ p with pi = pi'} in
if not footprint then p'
else begin
let fav_a' = Sil.atom_fav a' in
let fav_nofootprint_a' =
Sil.fav_copy_filter_ident fav_a' (fun id -> not (Ident.is_footprint id)) in
let predicate_warning =
not (Sil.fav_is_empty fav_nofootprint_a') in
let p'' =
if predicate_warning then footprint_normalize p'
else
match a' with
| Sil.Aeq (Sil.Var i, e) when not (Sil.ident_in_exp i e) ->
let mysub = Sil.sub_of_list [(i, e)] in
let foot_sigma' = sigma_normalize mysub p'.foot_sigma in
let foot_pi' = a' :: pi_normalize mysub foot_sigma' p'.foot_pi in
footprint_normalize { p' with foot_pi = foot_pi'; foot_sigma = foot_sigma' }
| _ ->
footprint_normalize { p' with foot_pi = a' :: p'.foot_pi } in
if predicate_warning then (L.d_warning "dropping non-footprint "; Sil.d_atom a'; L.d_ln ());
p''
end
end
(** Conjoin [exp1]=[exp2] with a symbolic heap [prop]. *)
let conjoin_eq ?(footprint = false) exp1 exp2 prop =
prop_atom_and ~footprint: footprint prop (Sil.Aeq(exp1, exp2))
(** Conjoin [exp1!=exp2] with a symbolic heap [prop]. *)
let conjoin_neq ?(footprint = false) exp1 exp2 prop =
prop_atom_and ~footprint: footprint prop (Sil.Aneq (exp1, exp2))
(** Return the spatial part *)
let get_sigma (p: 'a t) : Sil.hpred list = p.sigma
(** Return the pure part of the footprint *)
let get_pi_footprint p =
p.foot_pi
(** Return the spatial part of the footprint *)
let get_sigma_footprint p =
p.foot_sigma
(** Create a [prop] without any normalization *)
let from_pi_sigma pi sigma =
{ prop_emp with
pi = pi;
sigma = sigma }
(** Reset every inst in the prop using the given map *)
let prop_reset_inst inst_map prop =
let sigma' = list_map (Sil.hpred_instmap inst_map) (get_sigma prop) in
let sigma_fp' = list_map (Sil.hpred_instmap inst_map) (get_sigma_footprint prop) in
replace_sigma_footprint sigma_fp' (replace_sigma sigma' prop)
(** {2 Attributes} *)
(** Return the exp and attribute marked in the atom if any, and return None otherwise *)
let atom_get_exp_attribute = function
| Sil.Aneq (Sil.Const (Sil.Cattribute att), e)
| Sil.Aneq (e, Sil.Const (Sil.Cattribute att)) -> Some (e, att)
| _ -> None
(** Check whether an atom is used to mark an attribute *)
let atom_is_attribute a =
atom_get_exp_attribute a <> None
(** Get the attribute associated to the expression, if any *)
let get_exp_attributes prop exp =
let nexp = exp_normalize_prop prop exp in
let atom_get_attr attributes atom =
match atom with
| Sil.Aneq (e, Sil.Const (Sil.Cattribute att))
| Sil.Aneq (Sil.Const (Sil.Cattribute att), e) when Sil.exp_equal e nexp -> att:: attributes
| _ -> attributes in
list_fold_left atom_get_attr [] prop.pi
let attributes_in_same_category attr1 attr2 =
let cat1 = Sil.attribute_to_category attr1 in
let cat2 = Sil.attribute_to_category attr2 in
Sil.attribute_category_equal cat1 cat2
let get_attribute prop exp category =
let atts = get_exp_attributes prop exp in
try Some (list_find
(fun att ->
Sil.attribute_category_equal
(Sil.attribute_to_category att) category)
atts)
with Not_found -> None
let get_resource_undef_attribute prop exp =
get_attribute prop exp Sil.ACresource
let get_taint_attribute prop exp =
get_attribute prop exp Sil.ACtaint
let get_autorelease_attribute prop exp =
get_attribute prop exp Sil.ACautorelease
let get_objc_null_attribute prop exp =
get_attribute prop exp Sil.ACobjc_null
let get_div0_attribute prop exp =
get_attribute prop exp Sil.ACdiv0
(** Get all the attributes of the prop *)
let get_all_attributes prop =
let res = ref [] in
let do_atom a = match atom_get_exp_attribute a with
| Some (e, att) -> res := (e, att) :: !res
| None -> () in
list_iter do_atom prop.pi;
list_rev !res
(** Set an attribute associated to the expression *)
let set_exp_attribute prop exp att =
let exp_att = Sil.Const (Sil.Cattribute att) in
conjoin_neq exp exp_att prop
(** Replace an attribute associated to the expression *)
let add_or_replace_exp_attribute check_attribute_change prop exp att =
let nexp = exp_normalize_prop prop exp in
let found = ref false in
let atom_map a = match a with
| Sil.Aneq (e, Sil.Const (Sil.Cattribute att_old))
| Sil.Aneq (Sil.Const (Sil.Cattribute att_old), e) ->
if Sil.exp_equal nexp e && (attributes_in_same_category att_old att) then
begin
found := true;
check_attribute_change att_old att;
let e1, e2 = exp_reorder e (Sil.Const (Sil.Cattribute att)) in
Sil.Aneq (e1, e2)
end
else a
| _ -> a in
let pi' = list_map atom_map (get_pi prop) in
if !found then replace_pi pi' prop
else set_exp_attribute prop nexp att
(** mark Sil.Var's or Sil.Lvar's as undefined *)
let mark_vars_as_undefined prop vars_to_mark callee_pname loc path_pos =
let att_undef = Sil.Aundef (callee_pname, loc, path_pos) in
let mark_var_as_undefined exp prop =
let do_nothing _ _ = () in
match exp with
| Sil.Var _ | Sil.Lvar _ -> add_or_replace_exp_attribute do_nothing prop exp att_undef
| _ -> prop in
list_fold_left (fun prop id -> mark_var_as_undefined id prop) prop vars_to_mark
(** Remove an attribute from all the atoms in the heap *)
let remove_attribute att prop =
let atom_remove atom pi = match atom with
| Sil.Aneq (e, Sil.Const (Sil.Cattribute att_old))
| Sil.Aneq (Sil.Const (Sil.Cattribute att_old), e) ->
if Sil.attribute_equal att_old att then
pi
else atom:: pi
| _ -> atom:: pi in
let pi' = list_fold_right atom_remove (get_pi prop) [] in
replace_pi pi' prop
let remove_attribute_from_exp att prop exp =
let nexp = exp_normalize_prop prop exp in
let atom_remove atom pi = match atom with
| Sil.Aneq (e, Sil.Const (Sil.Cattribute att_old))
| Sil.Aneq (Sil.Const (Sil.Cattribute att_old), e) ->
if Sil.attribute_equal att_old att && Sil.exp_equal nexp e then
pi
else atom:: pi
| _ -> atom:: pi in
let pi' = list_fold_right atom_remove (get_pi prop) [] in
replace_pi pi' prop
(* Replace an attribute OBJC_NULL($n1) with OBJC_NULL(var) when var = $n1, and also sets $n1 = 0 *)
let replace_objc_null prop lhs_exp rhs_exp =
match get_objc_null_attribute prop rhs_exp, rhs_exp with
| Some att, Sil.Var var ->
let prop = remove_attribute_from_exp att prop rhs_exp in
let prop = conjoin_eq rhs_exp Sil.exp_zero prop in
add_or_replace_exp_attribute (fun a1 a2 -> ()) prop lhs_exp att
| _ -> prop
(** Get all the attributes of the prop *)
let get_atoms_with_attribute att prop =
let atom_remove atom autoreleased_atoms = match atom with
| Sil.Aneq (e, Sil.Const (Sil.Cattribute att_old))
| Sil.Aneq (Sil.Const (Sil.Cattribute att_old), e) ->
if Sil.attribute_equal att_old att then
e:: autoreleased_atoms
else autoreleased_atoms
| _ -> autoreleased_atoms in
list_fold_right atom_remove (get_pi prop) []
(** Apply f to every resource attribute in the prop *)
let attribute_map_resource prop f =
let pi = get_pi prop in
let attribute_map e = function
| Sil.Aresource ra ->
Sil.Aresource (f e ra)
| att -> att in
let atom_map a = match a with
| Sil.Aneq (e, Sil.Const (Sil.Cattribute att))
| Sil.Aneq (Sil.Const (Sil.Cattribute att), e) ->
let att' = attribute_map e att in
let e1, e2 = exp_reorder e (Sil.Const (Sil.Cattribute att')) in
Sil.Aneq (e1, e2)
| _ -> a in
let pi' = list_map atom_map pi in
replace_pi pi' prop
(** if [atom] represents an attribute [att], add the attribure to [prop] *)
let replace_atom_attribute check_attribute_change prop atom =
match atom_get_exp_attribute atom with
| None -> prop
| Some (exp, att) -> add_or_replace_exp_attribute check_attribute_change prop exp att
(** type for arithmetic problems *)
type arith_problem =
| Div0 of Sil.exp (* division by zero *)
| UminusUnsigned of Sil.exp * Sil.typ (* unary minus of unsigned type applied to the given expression *)
(** Look for an arithmetic problem in [exp] *)
let find_arithmetic_problem proc_node_session prop exp =
let exps_divided = ref [] in
let uminus_unsigned = ref [] in
let res = ref prop in
let check_zero e =
match exp_normalize_prop prop e with
| Sil.Const c when iszero_int_float c -> true
| _ ->
let check_attr_change att_old att_new = () in
res := add_or_replace_exp_attribute check_attr_change !res e (Sil.Adiv0 proc_node_session);
false in
let rec walk = function
| Sil.Var _ -> ()
| Sil.UnOp (Sil.Neg, e, Some ((Sil.Tint (Sil.IUChar | Sil.IUInt | Sil.IUShort | Sil.IULong | Sil.IULongLong) as typ))) ->
uminus_unsigned := (e, typ) :: !uminus_unsigned
| Sil.UnOp(_, e, _) -> walk e
| Sil.BinOp(op, e1, e2) ->
if op = Sil.Div || op = Sil.Mod then exps_divided := e2 :: !exps_divided;
walk e1; walk e2
| Sil.Const _ -> ()
| Sil.Cast (_, e) -> walk e
| Sil.Lvar _ -> ()
| Sil.Lfield (e, _, _) -> walk e
| Sil.Lindex (e1, e2) -> walk e1; walk e2
| Sil.Sizeof _ -> () in
walk exp;
try Some (Div0 (list_find check_zero !exps_divided)), !res
with Not_found ->
(match !uminus_unsigned with
| (e, t):: _ -> Some (UminusUnsigned (e, t)), !res
| _ -> None, !res)
(** Deallocate the stack variables in [pvars], and replace them by normal variables.
Return the list of stack variables whose address was still present after deallocation. *)
let deallocate_stack_vars p pvars =
let filter = function
| Sil.Hpointsto (Sil.Lvar v, _, _) ->
list_exists (Sil.pvar_equal v) pvars
| _ -> false in
let sigma_stack, sigma_other = list_partition filter p.sigma in
let fresh_address_vars = ref [] in (* fresh vars substituted for the address of stack vars *)
let stack_vars_address_in_post = ref [] in (* stack vars whose address is still present *)
let exp_replace = list_map (function
| Sil.Hpointsto (Sil.Lvar v, _, _) ->
let freshv = Ident.create_fresh Ident.kprimed in
fresh_address_vars := (v, freshv) :: !fresh_address_vars;
(Sil.Lvar v, Sil.Var freshv)
| _ -> assert false) sigma_stack in
let pi1 = list_map (fun (id, e) -> Sil.Aeq (Sil.Var id, e)) (Sil.sub_to_list p.sub) in
let pi = list_map (Sil.atom_replace_exp exp_replace) (p.pi @ pi1) in
let p' = { p with sub = Sil.sub_empty; pi = []; sigma = sigma_replace_exp exp_replace sigma_other } in
let p'' =
let res = ref p' in
let p'_fav = prop_fav p' in
let do_var (v, freshv) =
if Sil.fav_mem p'_fav freshv then (* the address of a de-allocated stack var in in the post *)
begin
stack_vars_address_in_post := v :: !stack_vars_address_in_post;
let check_attribute_change att_old att_new = () in
res := add_or_replace_exp_attribute check_attribute_change !res (Sil.Var freshv) (Sil.Adangling Sil.DAaddr_stack_var)
end in
list_iter do_var !fresh_address_vars;
!res in
!stack_vars_address_in_post, list_fold_left prop_atom_and p'' pi
(** {1 Functions for transforming footprints into propositions.} *)
(** The ones used for abstraction add/remove local stacks in order to
stop the firing of some abstraction rules. The other usual
transforation functions do not use this hack. *)
(** Extract the footprint and return it as a prop *)
let extract_footprint p =
{ prop_emp with pi = p.foot_pi; sigma = p.foot_sigma }
(** Extract the (footprint,current) pair *)
let extract_spec p =
let pre = extract_footprint p in
let post = { p with foot_pi = []; foot_sigma = [] } in
(pre, post)
(** [prop_set_fooprint p p_foot] sets proposition [p_foot] as footprint of [p]. *)
let prop_set_footprint p p_foot =
let pi = (list_map (fun (i, e) -> Sil.Aeq(Sil.Var i, e)) (Sil.sub_to_list p_foot.sub)) @ p_foot.pi in
{ p with foot_pi = pi; foot_sigma = p_foot.sigma }
(** {2 Functions for renaming primed variables by "canonical names"} *)
module ExpStack : sig
val init : Sil.exp list -> unit
val final : unit -> unit
val is_empty : unit -> bool
val push : Sil.exp -> unit
val pop : unit -> Sil.exp
end = struct
let stack = Stack.create ()
let init es =
Stack.clear stack;
list_iter (fun e -> Stack.push e stack) (list_rev es)
let final () = Stack.clear stack
let is_empty () = Stack.is_empty stack
let push e = Stack.push e stack
let pop () = Stack.pop stack
end
let sigma_get_start_lexps_sort sigma =
let exp_compare_neg e1 e2 = - (Sil.exp_compare e1 e2) in
let filter e = Sil.fav_for_all (Sil.exp_fav e) Ident.is_normal in
let lexps = Sil.hpred_list_get_lexps filter sigma in
list_sort exp_compare_neg lexps
let sigma_dfs_sort sigma =
let init () =
let start_lexps = sigma_get_start_lexps_sort sigma in
ExpStack.init start_lexps in
let final () = ExpStack.final () in
let rec handle_strexp = function
| Sil.Eexp (e, inst) -> ExpStack.push e
| Sil.Estruct (fld_se_list, inst) ->
list_iter (fun (_, se) -> handle_strexp se) fld_se_list
| Sil.Earray (_, idx_se_list, inst) ->
list_iter (fun (_, se) -> handle_strexp se) idx_se_list in
let rec handle_e visited seen e = function
| [] -> (visited, list_rev seen)
| hpred :: cur ->
begin
match hpred with
| Sil.Hpointsto (e', se, _) when Sil.exp_equal e e' ->
handle_strexp se;
(hpred:: visited, list_rev_append cur seen)
| Sil.Hlseg (_, _, root, next, shared) when Sil.exp_equal e root ->
list_iter ExpStack.push (next:: shared);
(hpred:: visited, list_rev_append cur seen)
| Sil.Hdllseg (_, _, iF, oB, oF, iB, shared)
when Sil.exp_equal e iF || Sil.exp_equal e iB ->
list_iter ExpStack.push (oB:: oF:: shared);
(hpred:: visited, list_rev_append cur seen)
| _ ->
handle_e visited (hpred:: seen) e cur
end in
let rec handle_sigma visited = function
| [] -> list_rev visited
| cur ->
if ExpStack.is_empty () then
let cur' = sigma_normalize Sil.sub_empty cur in
list_rev_append cur' visited
else
let e = ExpStack.pop () in
let (visited', cur') = handle_e visited [] e cur in
handle_sigma visited' cur' in
init ();
let sigma' = handle_sigma [] sigma in
final ();
sigma'
let prop_dfs_sort p =
let sigma = get_sigma p in
let sigma' = sigma_dfs_sort sigma in
let sigma_fp = get_sigma_footprint p in
let sigma_fp' = sigma_dfs_sort sigma_fp in
let p' = { p with sigma = sigma'; foot_sigma = sigma_fp'} in
(* L.err "@[<2>P SORTED:@\n%a@\n@." pp_prop p'; *)
p'
let prop_fav_add_dfs fav prop =
prop_fav_add fav (prop_dfs_sort prop)
let rec strexp_get_array_indices acc = function
| Sil.Eexp _ -> acc
| Sil.Estruct (fsel, inst) ->
let se_list = list_map snd fsel in
list_fold_left strexp_get_array_indices acc se_list
| Sil.Earray (size, isel, _) ->
let acc_new = list_fold_left (fun acc' (idx, _) -> idx:: acc') acc isel in
let se_list = list_map snd isel in
list_fold_left strexp_get_array_indices acc_new se_list
let hpred_get_array_indices acc = function
| Sil.Hpointsto (_, se, _) -> strexp_get_array_indices acc se
| Sil.Hlseg _ | Sil.Hdllseg _ -> acc
let sigma_get_array_indices sigma =
let indices = list_fold_left hpred_get_array_indices [] sigma in
list_rev indices
let compute_reindexing fav_add get_id_offset list =
let rec select list_passed list_seen = function
| [] -> list_passed
| x :: list_rest ->
let id_offset_opt = get_id_offset x in
let list_passed_new = match id_offset_opt with
| None -> list_passed
| Some (id, _) ->
let fav = Sil.fav_new () in
list_iter (fav_add fav) list_seen;
list_iter (fav_add fav) list_passed;
if (Sil.fav_exists fav (Ident.equal id))
then list_passed
else (x:: list_passed) in
let list_seen_new = x:: list_seen in
select list_passed_new list_seen_new list_rest in
let list_passed = select [] [] list in
let transform x =
let id, offset = match get_id_offset x with None -> assert false | Some io -> io in
let base_new = Sil.Var (Ident.create_fresh Ident.kprimed) in
let offset_new = Sil.exp_int (Sil.Int.neg offset) in
let exp_new = Sil.BinOp(Sil.PlusA, base_new, offset_new) in
(id, exp_new) in
let reindexing = list_map transform list_passed in
Sil.sub_of_list reindexing
let compute_reindexing_from_indices indices =
let get_id_offset = function
| Sil.BinOp (Sil.PlusA, Sil.Var id, Sil.Const(Sil.Cint offset)) ->
if Ident.is_primed id then Some (id, offset) else None
| _ -> None in
let fav_add = Sil.exp_fav_add in
compute_reindexing fav_add get_id_offset indices
let apply_reindexing subst prop =
let nsigma = sigma_normalize subst prop.sigma in
let npi = pi_normalize subst nsigma prop.pi in
let nsub, atoms =
let dom_subst = list_map fst (Sil.sub_to_list subst) in
let in_dom_subst id = list_exists (Ident.equal id) dom_subst in
let sub' = Sil.sub_filter (fun id -> not (in_dom_subst id)) prop.sub in
let contains_substituted_id e = Sil.fav_exists (Sil.exp_fav e) in_dom_subst in
let sub_eqs, sub_keep = Sil.sub_range_partition contains_substituted_id sub' in
let eqs = Sil.sub_to_list sub_eqs in
let atoms = list_map (fun (id, e) -> Sil.Aeq (Sil.Var id, exp_normalize subst e)) eqs in
(sub_keep, atoms) in
let p' = { prop with sub = nsub; pi = npi; sigma = nsigma } in
list_fold_left prop_atom_and p' atoms
let prop_rename_array_indices prop =
if !Config.footprint then prop
else begin
let indices = sigma_get_array_indices prop.sigma in
let not_same_base_lt_offsets e1 e2 =
match e1, e2 with
| Sil.BinOp(Sil.PlusA, e1', Sil.Const (Sil.Cint n1')),
Sil.BinOp(Sil.PlusA, e2', Sil.Const (Sil.Cint n2')) ->
not (Sil.exp_equal e1' e2' && Sil.Int.lt n1' n2')
| _ -> true in
let rec select_minimal_indices indices_seen = function
| [] -> list_rev indices_seen
| index:: indices_rest ->
let indices_seen' = list_filter (not_same_base_lt_offsets index) indices_seen in
let indices_seen_new = index:: indices_seen' in
let indices_rest_new = list_filter (not_same_base_lt_offsets index) indices_rest in
select_minimal_indices indices_seen_new indices_rest_new in
let minimal_indices = select_minimal_indices [] indices in
let subst = compute_reindexing_from_indices minimal_indices in
apply_reindexing subst prop
end
let rec pp_ren pe f = function
| [] -> ()
| [(i, x)] -> F.fprintf f "%a->%a" (Ident.pp pe) i (Ident.pp pe) x
| (i, x):: ren -> F.fprintf f "%a->%a, %a" (Ident.pp pe) i (Ident.pp pe) x (pp_ren pe) ren
let compute_renaming fav =
let ids = Sil.fav_to_list fav in
let ids_primed, ids_nonprimed = list_partition Ident.is_primed ids in
let ids_footprint = list_filter Ident.is_footprint ids_nonprimed in
let id_base_primed = Ident.create Ident.kprimed 0 in
let id_base_footprint = Ident.create Ident.kfootprint 0 in
let rec f id_base index ren_subst = function
| [] -> ren_subst
| id:: ids ->
let new_id = Ident.set_stamp id_base index in
if Ident.equal id new_id then
f id_base (index + 1) ren_subst ids
else
f id_base (index + 1) ((id, new_id):: ren_subst) ids in
let ren_primed = f id_base_primed 0 [] ids_primed in
let ren_footprint = f id_base_footprint 0 [] ids_footprint in
ren_primed @ ren_footprint
let rec idlist_assoc id = function
| [] -> raise Not_found
| (i, x):: l -> if Ident.equal i id then x else idlist_assoc id l
let ident_captured_ren ren id =
try (idlist_assoc id ren)
with Not_found -> id
(* If not defined in ren, id should be mapped to itself *)
let rec exp_captured_ren ren = function
| Sil.Var id -> Sil.Var (ident_captured_ren ren id)
| Sil.Const (Sil.Cexn e) -> Sil.Const (Sil.Cexn (exp_captured_ren ren e))
| Sil.Const _ as e -> e
| Sil.Sizeof (t, st) -> Sil.Sizeof (typ_captured_ren ren t, st)
| Sil.Cast (t, e) -> Sil.Cast (t, exp_captured_ren ren e)
| Sil.UnOp (op, e, topt) ->
let topt' = match topt with
| Some t -> Some (typ_captured_ren ren t)
| None -> None in
Sil.UnOp (op, exp_captured_ren ren e, topt')
| Sil.BinOp (op, e1, e2) ->
let e1' = exp_captured_ren ren e1 in
let e2' = exp_captured_ren ren e2 in
Sil.BinOp (op, e1', e2')
| Sil.Lvar id -> Sil.Lvar id
| Sil.Lfield (e, fld, typ) -> Sil.Lfield (exp_captured_ren ren e, fld, typ_captured_ren ren typ)
| Sil.Lindex (e1, e2) ->
let e1' = exp_captured_ren ren e1 in
let e2' = exp_captured_ren ren e2 in
Sil.Lindex(e1', e2')
(* Apply a renaming function to a type *)
and typ_captured_ren ren typ = match typ with
| Sil.Tvar _
| Sil.Tint _
| Sil.Tfloat _
| Sil.Tvoid
| Sil.Tstruct _
| Sil.Tfun _ ->
typ
| Sil.Tptr (t', pk) ->
Sil.Tptr (typ_captured_ren ren t', pk)
| Sil.Tarray (t, e) ->
Sil.Tarray (typ_captured_ren ren t, exp_captured_ren ren e)
| Sil.Tenum econsts ->
typ
let atom_captured_ren ren = function
| Sil.Aeq (e1, e2) ->
Sil.Aeq (exp_captured_ren ren e1, exp_captured_ren ren e2)
| Sil.Aneq (e1, e2) ->
Sil.Aneq (exp_captured_ren ren e1, exp_captured_ren ren e2)
let rec strexp_captured_ren ren = function
| Sil.Eexp (e, inst) ->
Sil.Eexp (exp_captured_ren ren e, inst)
| Sil.Estruct (fld_se_list, inst) ->
let f (fld, se) = (fld, strexp_captured_ren ren se) in
Sil.Estruct (list_map f fld_se_list, inst)
| Sil.Earray (size, idx_se_list, inst) ->
let f (idx, se) =
let idx' = exp_captured_ren ren idx in
(idx', strexp_captured_ren ren se) in
let size' = exp_captured_ren ren size in
Sil.Earray (size', list_map f idx_se_list, inst)
and hpred_captured_ren ren = function
| Sil.Hpointsto (base, se, te) ->
let base' = exp_captured_ren ren base in
let se' = strexp_captured_ren ren se in
let te' = exp_captured_ren ren te in
Sil.Hpointsto (base', se', te')
| Sil.Hlseg (k, para, e1, e2, elist) ->
let para' = hpara_ren para in
let e1' = exp_captured_ren ren e1 in
let e2' = exp_captured_ren ren e2 in
let elist' = list_map (exp_captured_ren ren) elist in
Sil.Hlseg (k, para', e1', e2', elist')
| Sil.Hdllseg (k, para, e1, e2, e3, e4, elist) ->
let para' = hpara_dll_ren para in
let e1' = exp_captured_ren ren e1 in
let e2' = exp_captured_ren ren e2 in
let e3' = exp_captured_ren ren e3 in
let e4' = exp_captured_ren ren e4 in
let elist' = list_map (exp_captured_ren ren) elist in
Sil.Hdllseg (k, para', e1', e2', e3', e4', elist')
and hpara_ren para =
let av = Sil.hpara_shallow_av para in
let ren = compute_renaming av in
let root' = ident_captured_ren ren para.Sil.root in
let next' = ident_captured_ren ren para.Sil.next in
let svars' = list_map (ident_captured_ren ren) para.Sil.svars in
let evars' = list_map (ident_captured_ren ren) para.Sil.evars in
let body' = list_map (hpred_captured_ren ren) para.Sil.body in
{ Sil.root = root'; Sil.next = next'; Sil.svars = svars'; Sil.evars = evars'; Sil.body = body'}
and hpara_dll_ren para =
let av = Sil.hpara_dll_shallow_av para in
let ren = compute_renaming av in
let iF = ident_captured_ren ren para.Sil.cell in
let oF = ident_captured_ren ren para.Sil.flink in
let oB = ident_captured_ren ren para.Sil.blink in
let svars' = list_map (ident_captured_ren ren) para.Sil.svars_dll in
let evars' = list_map (ident_captured_ren ren) para.Sil.evars_dll in
let body' = list_map (hpred_captured_ren ren) para.Sil.body_dll in
{ Sil.cell = iF; Sil.flink = oF; Sil.blink = oB; Sil.svars_dll = svars'; Sil.evars_dll = evars'; Sil.body_dll = body'}
let pi_captured_ren ren pi =
list_map (atom_captured_ren ren) pi
let sigma_captured_ren ren sigma =
list_map (hpred_captured_ren ren) sigma
let sub_captured_ren ren sub =
Sil.sub_map (ident_captured_ren ren) (exp_captured_ren ren) sub
(** Canonicalize the names of primed variables and footprint vars. *)
let prop_rename_primed_footprint_vars p =
let p = prop_rename_array_indices p in
let bound_vars =
let filter id = Ident.is_footprint id || Ident.is_primed id in
let p_dfs = prop_dfs_sort p in
let fvars_in_p = prop_fav p_dfs in
Sil.fav_filter_ident fvars_in_p filter;
fvars_in_p in
let ren = compute_renaming bound_vars in
let sub' = sub_captured_ren ren p.sub in
let pi' = pi_captured_ren ren p.pi in
let sigma' = sigma_captured_ren ren p.sigma in
let foot_pi' = pi_captured_ren ren p.foot_pi in
let foot_sigma' = sigma_captured_ren ren p.foot_sigma in
let sub_for_normalize = Sil.sub_empty in
(* It is fine to use the empty substituion during normalization
because the renaming maintains that a substitution is normalized *)
let nsub' = sub_normalize sub' in
let nsigma' = sigma_normalize sub_for_normalize sigma' in
let npi' = pi_normalize sub_for_normalize nsigma' pi' in
let p' = footprint_normalize { sub = nsub'; pi = npi'; sigma = nsigma'; foot_pi = foot_pi'; foot_sigma = foot_sigma'} in
(*
L.out "@[<2>BEFORE RENAMING:@\n";
L.out "%a@\n@." pp_prop p;
L.out "@[<2>AFTER RENAMING:@\n";
L.out "%a@\n@." pp_prop p';
L.out "@[<2>RENAMING:@\n";
L.out "%a@\n@." pp_ren ren;
*)
p'
(** {2 Functionss for changing and generating propositions} *)
let mem_idlist i l =
list_exists (fun id -> Ident.equal i id) l
let id_exp_compare (id1, e1) (id2, e2) =
let n = Sil.exp_compare e1 e2 in
if n <> 0 then n
else Ident.compare id1 id2
let expose (p : normal t) : exposed t = Obj.magic p
(** normalize a prop *)
let normalize (eprop : 'a t) : normal t =
let p0 = { prop_emp with sigma = sigma_normalize Sil.sub_empty eprop.sigma } in
let nprop = list_fold_left prop_atom_and p0 (get_pure eprop) in
footprint_normalize { nprop with foot_pi = eprop.foot_pi; foot_sigma = eprop.foot_sigma }
(** Apply subsitution to prop. *)
let prop_sub subst (prop: 'a t) : exposed t =
let pi = pi_sub subst (prop.pi @ list_map (fun (x, e) -> Sil.Aeq (Sil.Var x, e)) (Sil.sub_to_list prop.sub)) in
let sigma = sigma_sub subst prop.sigma in
let fp_pi = pi_sub subst prop.foot_pi in
let fp_sigma = sigma_sub subst prop.foot_sigma in
{ prop_emp with pi = pi; sigma = sigma; foot_pi = fp_pi; foot_sigma = fp_sigma }
(** Apply renaming substitution to a proposition. *)
let prop_ren_sub (ren_sub: Sil.subst) (prop: normal t) : normal t =
normalize (prop_sub ren_sub prop)
(** Existentially quantify the [ids] in [prop].
[ids] should not contain any primed variables. *)
let exist_quantify fav prop =
let ids = Sil.fav_to_list fav in
if list_exists Ident.is_primed ids then assert false; (* sanity check *)
if ids == [] then prop else
let gen_fresh_id_sub id = (id, Sil.Var (Ident.create_fresh Ident.kprimed)) in
let ren_sub = Sil.sub_of_list (list_map gen_fresh_id_sub ids) in
let prop' =
let sub = Sil.sub_filter (fun i -> not (mem_idlist i ids)) prop.sub in (** throw away x=E if x becomes _x *)
if Sil.sub_equal sub prop.sub then prop
else { prop with sub = sub } in
(*
L.out "@[<2>.... Existential Quantification ....\n";
L.out "SUB:%a\n" pp_sub prop'.sub;
L.out "PI:%a\n" pp_pi prop'.pi;
L.out "PROP:%a\n@." pp_prop prop';
*)
prop_ren_sub ren_sub prop'
(** Apply the substitution [fe] to all the expressions in the prop. *)
let prop_expmap (fe: Sil.exp -> Sil.exp) prop =
let f (e, sil_opt) = (fe e, sil_opt) in
let pi = list_map (Sil.atom_expmap fe) prop.pi in
let sigma = list_map (Sil.hpred_expmap f) prop.sigma in
let foot_pi = list_map (Sil.atom_expmap fe) prop.foot_pi in
let foot_sigma = list_map (Sil.hpred_expmap f) prop.foot_sigma in
{ prop with pi = pi; sigma = sigma; foot_pi = foot_pi; foot_sigma = foot_sigma }
(** convert identifiers in fav to kind [k] *)
let vars_make_unprimed fav prop =
let ids = Sil.fav_to_list fav in
let ren_sub = Sil.sub_of_list (list_map (fun i -> (i, Sil.Var (Ident.create_fresh Ident.knormal))) ids) in
prop_ren_sub ren_sub prop
(** convert the normal vars to primed vars. *)
let prop_normal_vars_to_primed_vars p =
let fav = prop_fav p in
Sil.fav_filter_ident fav Ident.is_normal;
exist_quantify fav p
(** Rename all primed variables fresh *)
let prop_rename_primed_fresh (p : normal t) : normal t =
let ids_primed =
let fav = prop_fav p in
let ids = Sil.fav_to_list fav in
list_filter Ident.is_primed ids in
let ren_sub =
let f i = (i, Sil.Var (Ident.create_fresh Ident.kprimed)) in
Sil.sub_of_list (list_map f ids_primed) in
prop_ren_sub ren_sub p
(** convert the primed vars to normal vars. *)
let prop_primed_vars_to_normal_vars (p : normal t) : normal t =
let fav = prop_fav p in
Sil.fav_filter_ident fav Ident.is_primed;
vars_make_unprimed fav p
let from_pi pi = { prop_emp with pi = pi }
let from_sigma sigma = { prop_emp with sigma = sigma }
let replace_sub sub eprop =
{ eprop with sub = sub }
(** Rename free variables in a prop replacing them with existentially quantified vars *)
let prop_rename_fav_with_existentials (p : normal t) : normal t =
let fav = Sil.fav_new () in
prop_fav_add fav p;
let ids = Sil.fav_to_list fav in
let ids' = list_map (fun i -> (i, Ident.create_fresh Ident.kprimed)) ids in
let ren_sub = Sil.sub_of_list (list_map (fun (i, i') -> (i, Sil.Var i')) ids') in
let p' = prop_sub ren_sub p in
(*L.d_strln "Prop after renaming:"; d_prop p'; L.d_strln "";*)
normalize p'
(** {2 Prop iterators} *)
(** Iterator state over sigma. *)
type 'a prop_iter =
{ pit_sub : Sil.subst; (** substitution for equalities *)
pit_pi : Sil.atom list; (** pure part *)
pit_newpi : (bool * Sil.atom) list; (** newly added atoms. *)
(** The first records !Config.footprint. *)
pit_old : Sil.hpred list; (** sigma already visited *)
pit_curr : Sil.hpred; (** current element *)
pit_state : 'a; (** state of current element *)
pit_new : Sil.hpred list; (** sigma not yet visited *)
pit_foot_pi : Sil.atom list; (** pure part of the footprint *)
pit_foot_sigma : Sil.hpred list; (** sigma part of the footprint *)
}
let prop_iter_create prop =
match prop.sigma with
| hpred:: sigma' -> Some
{ pit_sub = prop.sub;
pit_pi = prop.pi;
pit_newpi = [];
pit_old = [];
pit_curr = hpred;
pit_state = ();
pit_new = sigma';
pit_foot_pi = prop.foot_pi;
pit_foot_sigma = prop.foot_sigma }
| _ -> None
(** Return the prop associated to the iterator. *)
let prop_iter_to_prop iter =
let sigma = list_rev_append iter.pit_old (iter.pit_curr:: iter.pit_new) in
let prop =
normalize
{ sub = iter.pit_sub; pi = iter.pit_pi; sigma = sigma; foot_pi = iter.pit_foot_pi; foot_sigma = iter.pit_foot_sigma } in
list_fold_left
(fun p (footprint, atom) -> prop_atom_and ~footprint: footprint p atom)
prop iter.pit_newpi
(** Add an atom to the pi part of prop iter. The
first parameter records whether it is done
during footprint or during re - execution. *)
let prop_iter_add_atom footprint iter atom =
{ iter with pit_newpi = (footprint, atom):: iter.pit_newpi }
(** Remove the current element of the iterator, and return the prop
associated to the resulting iterator *)
let prop_iter_remove_curr_then_to_prop iter =
let sigma = list_rev_append iter.pit_old iter.pit_new in
let normalized_sigma = sigma_normalize iter.pit_sub sigma in
{ sub = iter.pit_sub;
pi = iter.pit_pi;
sigma = normalized_sigma;
foot_pi = iter.pit_foot_pi;
foot_sigma = iter.pit_foot_sigma }
(** Return the current hpred and state. *)
let prop_iter_current iter =
let curr = hpred_normalize iter.pit_sub iter.pit_curr in
let prop = { prop_emp with sigma = [curr] } in
let prop' =
list_fold_left
(fun p (footprint, atom) -> prop_atom_and ~footprint: footprint p atom)
prop iter.pit_newpi in
match prop'.sigma with
| [curr'] -> (curr', iter.pit_state)
| _ -> assert false
(** Update the current element of the iterator. *)
let prop_iter_update_current iter hpred =
{ iter with pit_curr = hpred }
(** Update the current element of the iterator by a nonempty list of elements. *)
let prop_iter_update_current_by_list iter = function
| [] -> assert false (* the list should be nonempty *)
| hpred:: hpred_list ->
let pit_new' = hpred_list@iter.pit_new in
{ iter with pit_curr = hpred; pit_state = (); pit_new = pit_new'}
let prop_iter_next iter =
match iter.pit_new with
| [] -> None
| hpred':: new' -> Some
{ iter with
pit_old = iter.pit_curr:: iter.pit_old;
pit_curr = hpred';
pit_state = ();
pit_new = new'}
let prop_iter_remove_curr_then_next iter =
match iter.pit_new with
| [] -> None
| hpred':: new' -> Some
{ iter with
pit_old = iter.pit_old;
pit_curr = hpred';
pit_state = ();
pit_new = new'}
(** Insert before the current element of the iterator. *)
let prop_iter_prev_then_insert iter hpred =
{ iter with
pit_new = iter.pit_curr:: iter.pit_new;
pit_curr = hpred }
(** Scan sigma to find an [hpred] satisfying the filter function. *)
let rec prop_iter_find iter filter =
match filter iter.pit_curr with
| Some st -> Some { iter with pit_state = st }
| None ->
(match prop_iter_next iter with
| None -> None
| Some iter' -> prop_iter_find iter' filter)
(** Set the state of the iterator *)
let prop_iter_set_state iter state =
{ iter with pit_state = state }
let prop_iter_make_id_primed id iter =
let pid = Ident.create_fresh Ident.kprimed in
let sub_id = Sil.sub_of_list [(id, Sil.Var pid)] in
let normalize (id, e) =
let eq' = Sil.Aeq(Sil.exp_sub sub_id (Sil.Var id), Sil.exp_sub sub_id e) in
atom_normalize Sil.sub_empty eq' in
let rec split pairs_unpid pairs_pid = function
| [] -> (list_rev pairs_unpid, list_rev pairs_pid)
| eq:: eqs_cur ->
begin
match eq with
| Sil.Aeq (Sil.Var id1, e1) when Sil.ident_in_exp id1 e1 ->
L.out "@[<2>#### ERROR: an assumption of the analyzer broken ####@\n";
L.out "Broken Assumption: id notin e for all (id,e) in sub@\n";
L.out "(id,e) : (%a,%a)@\n" (Ident.pp pe_text) id1 (Sil.pp_exp pe_text) e1;
L.out "PROP : %a@\n@." (pp_prop pe_text) (prop_iter_to_prop iter);
assert false
| Sil.Aeq (Sil.Var id1, e1) when Ident.equal pid id1 ->
split pairs_unpid ((id1, e1):: pairs_pid) eqs_cur
| Sil.Aeq (Sil.Var id1, e1) ->
split ((id1, e1):: pairs_unpid) pairs_pid eqs_cur
| _ ->
assert false
end in
let rec get_eqs acc = function
| [] | [_] ->
list_rev acc
| (_, e1) :: (((_, e2) :: pairs') as pairs) ->
get_eqs (Sil.Aeq(e1, e2):: acc) pairs in
let sub_new, sub_use, eqs_add =
let eqs = list_map normalize (Sil.sub_to_list iter.pit_sub) in
let pairs_unpid, pairs_pid = split [] [] eqs in
match pairs_pid with
| [] ->
let sub_unpid = Sil.sub_of_list pairs_unpid in
let pairs = (id, Sil.Var pid) :: pairs_unpid in
sub_unpid, Sil.sub_of_list pairs, []
| (id1, e1):: _ ->
let sub_id1 = Sil.sub_of_list [(id1, e1)] in
let pairs_unpid' =
list_map (fun (id', e') -> (id', Sil.exp_sub sub_id1 e')) pairs_unpid in
let sub_unpid = Sil.sub_of_list pairs_unpid' in
let pairs = (id, e1) :: pairs_unpid' in
sub_unpid, Sil.sub_of_list pairs, get_eqs [] pairs_pid in
let nsub_new = sub_normalize sub_new in
{ iter with
pit_sub = nsub_new;
pit_pi = pi_sub sub_use (iter.pit_pi @ eqs_add);
pit_old = sigma_sub sub_use iter.pit_old;
pit_curr = Sil.hpred_sub sub_use iter.pit_curr;
pit_new = sigma_sub sub_use iter.pit_new }
let prop_iter_footprint_fav_add fav iter =
sigma_fav_add fav iter.pit_foot_sigma;
pi_fav_add fav iter.pit_foot_pi
(** Find fav of the footprint part of the iterator *)
let prop_iter_footprint_fav iter =
Sil.fav_imperative_to_functional prop_iter_footprint_fav_add iter
let prop_iter_fav_add fav iter =
Sil.sub_fav_add fav iter.pit_sub;
pi_fav_add fav iter.pit_pi;
pi_fav_add fav (list_map snd iter.pit_newpi);
sigma_fav_add fav iter.pit_old;
sigma_fav_add fav iter.pit_new;
Sil.hpred_fav_add fav iter.pit_curr;
prop_iter_footprint_fav_add fav iter
(** Find fav of the iterator *)
let prop_iter_fav iter =
Sil.fav_imperative_to_functional prop_iter_fav_add iter
(** Free vars of the iterator except the current hpred (and footprint). *)
let prop_iter_noncurr_fav_add fav iter =
sigma_fav_add fav iter.pit_old;
sigma_fav_add fav iter.pit_new;
Sil.sub_fav_add fav iter.pit_sub;
pi_fav_add fav iter.pit_pi
(** Extract the sigma part of the footprint *)
let prop_iter_get_footprint_sigma iter =
iter.pit_foot_sigma
(** Replace the sigma part of the footprint *)
let prop_iter_replace_footprint_sigma iter sigma =
{ iter with pit_foot_sigma = sigma }
let prop_iter_noncurr_fav iter =
Sil.fav_imperative_to_functional prop_iter_noncurr_fav_add iter
let rec strexp_gc_fields (fav: Sil.fav) se =
match se with
| Sil.Eexp _ ->
Some se
| Sil.Estruct (fsel, inst) ->
let fselo = list_map (fun (f, se) -> (f, strexp_gc_fields fav se)) fsel in
let fsel' =
let fselo' = list_filter (function | (_, Some _) -> true | _ -> false) fselo in
list_map (function (f, seo) -> (f, unSome seo)) fselo' in
if Sil.fld_strexp_list_compare fsel fsel' = 0 then Some se
else Some (Sil.Estruct (fsel', inst))
| Sil.Earray _ ->
Some se
let hpred_gc_fields (fav: Sil.fav) hpred = match hpred with
| Sil.Hpointsto (e, se, te) ->
Sil.exp_fav_add fav e;
Sil.exp_fav_add fav te;
(match strexp_gc_fields fav se with
| None -> hpred
| Some se' ->
if Sil.strexp_compare se se' = 0 then hpred
else Sil.Hpointsto (e, se', te))
| Sil.Hlseg _ | Sil.Hdllseg _ ->
hpred
let rec prop_iter_map f iter =
let hpred_curr = f iter in
let iter' = { iter with pit_curr = hpred_curr } in
match prop_iter_next iter' with
| None -> iter'
| Some iter'' -> prop_iter_map f iter''
(** Collect garbage fields. *)
let prop_iter_gc_fields iter =
let f iter' =
let fav = prop_iter_noncurr_fav iter' in
hpred_gc_fields fav iter'.pit_curr in
prop_iter_map f iter
let prop_case_split prop =
let pi_sigma_list = Sil.sigma_to_sigma_ne prop.sigma in
let f props_acc (pi, sigma) =
let sigma' = sigma_normalize_prop prop sigma in
let prop' = { prop with sigma = sigma' } in
(list_fold_left prop_atom_and prop' pi):: props_acc in
list_fold_left f [] pi_sigma_list
(** Raise an exception if the prop is not normalized *)
let check_prop_normalized prop =
let sigma' = sigma_normalize_prop prop prop.sigma in
if sigma_equal prop.sigma sigma' == false then assert false
let prop_expand prop =
(*
let _ = check_prop_normalized prop in
*)
prop_case_split prop
let mk_nondet il1 il2 loc =
Sil.Stackop (Sil.Push, loc) :: (* save initial state *)
il1 @ (* compute result1 *)
[Sil.Stackop (Sil.Swap, loc)] @ (* save result1 and restore initial state *)
il2 @ (* compute result2 *)
[Sil.Stackop (Sil.Pop, loc)] (* combine result1 and result2 *)
(** translate a logical and/or operation taking care of the non-strict semantics for side effects *)
let trans_land_lor op ((idl1, stml1), e1) ((idl2, stml2), e2) loc =
let no_side_effects stml =
stml = [] in
if no_side_effects stml2 then
((idl1@idl2, stml1@stml2), Sil.BinOp(op, e1, e2))
else
begin
let id = Ident.create_fresh Ident.knormal in
let prune_instr1, prune_res1, prune_instr2, prune_res2 =
let cond1, cond2, res = match op with
| Sil.LAnd -> e1, Sil.UnOp(Sil.LNot, e1, None), Sil.Int.zero
| Sil.LOr -> Sil.UnOp(Sil.LNot, e1, None), e1, Sil.Int.one
| _ -> assert false in
let cond_res1 = Sil.BinOp(Sil.Eq, Sil.Var id, e2) in
let cond_res2 = Sil.BinOp(Sil.Eq, Sil.Var id, Sil.exp_int res) in
let mk_prune cond = Sil.Prune (cond, loc, true, Sil.Ik_land_lor) (* don't report always true/false *) in
mk_prune cond1, mk_prune cond_res1, mk_prune cond2, mk_prune cond_res2 in
let instrs2 = mk_nondet (prune_instr1 :: stml2 @ [prune_res1]) ([prune_instr2; prune_res2]) loc in
((id:: idl1@idl2, stml1@instrs2), Sil.Var id)
end
(** Input of this mehtod is an exp in a prop. Output is a formal variable or path from a
formal variable that is equal to the expression, or the OBJC_NULL attribute of the expression. *)
let find_equal_formal_path e prop =
let rec find_in_sigma e seen_hpreds =
list_fold_right (
fun hpred res ->
if list_mem Sil.hpred_equal hpred seen_hpreds then None
else
let seen_hpreds = hpred :: seen_hpreds in
match res with
| Some _ -> res
| None ->
match hpred with
| Sil.Hpointsto (Sil.Lvar pvar1, Sil.Eexp (exp2, Sil.Iformal(_, _) ), _)
when Sil.exp_equal exp2 e && (Sil.pvar_is_local pvar1 || Sil.pvar_is_seed pvar1) ->
Some (Sil.Lvar pvar1)
| Sil.Hpointsto (exp1, Sil.Estruct (fields, _), _) ->
list_fold_right (fun (field, strexp) res ->
match res with
| Some _ -> res
| None ->
match strexp with
| Sil.Eexp (exp2, _) when Sil.exp_equal exp2 e ->
(match find_in_sigma exp1 seen_hpreds with
| Some exp' -> Some (Sil.Lfield (exp', field, Sil.Tvoid))
| None -> None)
| _ -> None) fields None
| _ -> None) (get_sigma prop) None in
match find_in_sigma e [] with
| Some res -> Some res
| None -> match get_objc_null_attribute prop e with
| Some (Sil.Aobjc_null exp) -> Some exp
| _ -> None
(** translate an if-then-else expression *)
let trans_if_then_else ((idl1, stml1), e1) ((idl2, stml2), e2) ((idl3, stml3), e3) loc =
match sym_eval false e1 with
| Sil.Const (Sil.Cint i) when Sil.Int.iszero i -> (idl1@idl3, stml1@stml3), e3
| Sil.Const (Sil.Cint _) -> (idl1@idl2, stml1@stml2), e2
| _ ->
let e1not = Sil.UnOp(Sil.LNot, e1, None) in
let id = Ident.create_fresh Ident.knormal in
let mk_prune_res e =
let mk_prune cond = Sil.Prune (cond, loc, true, Sil.Ik_land_lor) (* don't report always true/false *) in
mk_prune (Sil.BinOp(Sil.Eq, Sil.Var id, e)) in
let prune1 = Sil.Prune (e1, loc, true, Sil.Ik_bexp) in
let prune1not = Sil.Prune (e1not, loc, false, Sil.Ik_bexp) in
let stml' = mk_nondet (prune1 :: stml2 @ [mk_prune_res e2]) (prune1not :: stml3 @ [mk_prune_res e3]) loc in
(id:: idl1@idl2@idl3, stml1@stml'), Sil.Var id
(*** START of module Metrics ***)
module Metrics : sig
val prop_size : 'a t -> int
val prop_chain_size : 'a t -> int
end = struct
let ptsto_weight = 1
and lseg_weight = 3
and pi_weight = 1
let rec hpara_size hpara = sigma_size hpara.Sil.body
and hpara_dll_size hpara_dll = sigma_size hpara_dll.Sil.body_dll
and hpred_size = function
| Sil.Hpointsto _ -> ptsto_weight
| Sil.Hlseg (_, hpara, _, _, _) -> lseg_weight * hpara_size hpara
| Sil.Hdllseg (_, hpara_dll, _, _, _, _, _) -> lseg_weight * hpara_dll_size hpara_dll
and sigma_size sigma =
let size = ref 0 in
list_iter (fun hpred -> size := hpred_size hpred + !size) sigma; !size
let pi_size pi = pi_weight * list_length pi
module ExpMap =
Map.Make (struct
type t = Sil.exp
let compare = Sil.exp_compare end)
(** Approximate the size of the longest chain by counting the max
number of |-> with the same type and whose lhs is primed or
footprint *)
let sigma_chain_size sigma =
let tbl = ref ExpMap.empty in
let add t =
try
let count = ExpMap.find t !tbl in
tbl := ExpMap.add t (count + 1) !tbl
with
| Not_found ->
tbl := ExpMap.add t 1 !tbl in
let process_hpred = function
| Sil.Hpointsto (e, _, te) ->
(match e with
| Sil.Var id when Ident.is_primed id || Ident.is_footprint id -> add te
| _ -> ())
| Sil.Hlseg _ | Sil.Hdllseg _ -> () in
list_iter process_hpred sigma;
let size = ref 0 in
ExpMap.iter (fun t n -> size := max n !size) !tbl;
!size
(** Compute a size value for the prop, which indicates its
complexity *)
let prop_size p =
let size_current = sigma_size p.sigma in
let size_footprint = sigma_size p.foot_sigma in
max size_current size_footprint
(** Approximate the size of the longest chain by counting the max
number of |-> with the same type and whose lhs is primed or
footprint *)
let prop_chain_size p =
let fp_size = pi_size p.foot_pi + sigma_size p.foot_sigma in
pi_size p.pi + sigma_size p.sigma + fp_size
end
(*** END of module Metrics ***)
module CategorizePreconditions = struct
type pre_category =
| NoPres (* no preconditions *)
| Empty (* the preconditions impose no restrictions *)
| OnlyAllocation (* the preconditions only demand that some pointers are allocated *)
| DataConstraints (* the preconditions impose constraints on the values of variables and/or memory *)
(** categorize a list of preconditions *)
let categorize preconditions =
let lhs_is_lvar = function
| Sil.Lvar _ -> true
| _ -> false in
let lhs_is_var_lvar = function
| Sil.Var _ -> true
| Sil.Lvar _ -> true
| _ -> false in
let rhs_is_var = function
| Sil.Eexp (Sil.Var _, _) -> true
| _ -> false in
let rec rhs_only_vars = function
| Sil.Eexp (Sil.Var _, _) -> true
| Sil.Estruct (fsel, _) ->
list_for_all (fun (_, se) -> rhs_only_vars se) fsel
| Sil.Earray _ -> true
| _ -> false in
let hpred_is_var = function (* stack variable with no constraints *)
| Sil.Hpointsto (e, se, _) ->
lhs_is_lvar e && rhs_is_var se
| _ -> false in
let hpred_only_allocation = function (* only constraint is allocation *)
| Sil.Hpointsto (e, se, _) ->
lhs_is_var_lvar e && rhs_only_vars se
| _ -> false in
let check_pre hpred_filter pre =
let check_pi pi =
pi = [] in
let check_sigma sigma =
list_for_all hpred_filter sigma in
check_pi (get_pi pre) && check_sigma (get_sigma pre) in
let pres_no_constraints = list_filter (check_pre hpred_is_var) preconditions in
let pres_only_allocation = list_filter (check_pre hpred_only_allocation) preconditions in
match preconditions, pres_no_constraints, pres_only_allocation with
| [], _, _ ->
NoPres
| _:: _, _:: _, _ ->
Empty
| _:: _, [], _:: _ ->
OnlyAllocation
| _:: _, [], [] ->
DataConstraints
end