|
|
|
|
(*
|
|
|
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
|
|
|
*
|
|
|
|
|
* This source code is licensed under the MIT license found in the
|
|
|
|
|
* LICENSE file in the root directory of this source tree.
|
|
|
|
|
*)
|
|
|
|
|
|
|
|
|
|
(* Define SSA form and the concept of variable liveness, and then show how SSA
|
|
|
|
|
* simplifies it *)
|
|
|
|
|
|
|
|
|
|
open HolKernel boolLib bossLib Parse;
|
|
|
|
|
open pred_setTheory listTheory rich_listTheory pairTheory arithmeticTheory;
|
|
|
|
|
open settingsTheory miscTheory llvmTheory llvm_propTheory;
|
|
|
|
|
|
|
|
|
|
new_theory "llvm_ssa";
|
|
|
|
|
|
|
|
|
|
numLib.prefer_num ();
|
|
|
|
|
|
|
|
|
|
(* ----- Static paths through a program ----- *)
|
|
|
|
|
|
|
|
|
|
Definition inc_pc_def:
|
|
|
|
|
inc_pc ip = ip with i := inc_bip ip.i
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* The set of program counters the given instruction and starting point can
|
|
|
|
|
* immediately reach, within a function *)
|
|
|
|
|
Definition instr_next_ips_def:
|
|
|
|
|
(instr_next_ips (Ret _) ip = {}) ∧
|
|
|
|
|
(instr_next_ips (Br _ l1 l2) ip =
|
|
|
|
|
{ <| f := ip.f; b := Some l; i := Phi_ip ip.b |> | l | l ∈ {l1; l2} }) ∧
|
|
|
|
|
(instr_next_ips (Invoke _ _ _ _ l1 l2) ip =
|
|
|
|
|
{ <| f := ip.f; b := Some l; i := Phi_ip ip.b |> | l | l ∈ {l1; l2} }) ∧
|
|
|
|
|
(instr_next_ips Unreachable ip = {}) ∧
|
|
|
|
|
(instr_next_ips (Exit _) ip = {}) ∧
|
|
|
|
|
(instr_next_ips (Sub _ _ _ _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Extractvalue _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Insertvalue _ _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Alloca _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Load _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Store _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Gep _ _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Cast _ _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Icmp _ _ _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Call _ _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Cxa_allocate_exn _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(* TODO: revisit throw when dealing with exceptions *)
|
|
|
|
|
(instr_next_ips (Cxa_throw _ _ _) ip = { }) ∧
|
|
|
|
|
(instr_next_ips (Cxa_begin_catch _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Cxa_end_catch) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Cxa_get_exception_ptr _ _) ip = { inc_pc ip })
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Inductive next_ips:
|
|
|
|
|
(∀prog ip i l i2.
|
|
|
|
|
get_instr prog ip (Inl i) ∧
|
|
|
|
|
l ∈ instr_next_ips i ip ∧
|
|
|
|
|
get_instr prog l i2
|
|
|
|
|
⇒
|
|
|
|
|
next_ips prog ip l) ∧
|
|
|
|
|
(∀prog ip from_l phis i2.
|
|
|
|
|
get_instr prog ip (Inr (from_l, phis)) ∧
|
|
|
|
|
get_instr prog (inc_pc ip) i2
|
|
|
|
|
⇒
|
|
|
|
|
next_ips prog ip (inc_pc ip))
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* The path is a list of program counters that represent a statically feasible
|
|
|
|
|
* path through a function *)
|
|
|
|
|
Inductive good_path:
|
|
|
|
|
(∀prog. good_path prog []) ∧
|
|
|
|
|
|
|
|
|
|
(∀prog ip i.
|
|
|
|
|
get_instr prog ip i
|
|
|
|
|
⇒
|
|
|
|
|
good_path prog [ip]) ∧
|
|
|
|
|
|
|
|
|
|
(∀prog path ip1 ip2.
|
|
|
|
|
ip2 ∈ next_ips prog ip1 ∧
|
|
|
|
|
good_path prog (ip2::path)
|
|
|
|
|
⇒
|
|
|
|
|
good_path prog (ip1::ip2::path))
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Theorem next_ips_same_func:
|
|
|
|
|
∀prog ip1 ip2. ip2 ∈ next_ips prog ip1 ⇒ ip1.f = ip2.f
|
|
|
|
|
Proof
|
|
|
|
|
rw [next_ips_cases, IN_DEF, get_instr_cases, inc_pc_def, inc_bip_def] >> rw [] >>
|
|
|
|
|
Cases_on `el idx b.body` >> fs [instr_next_ips_def, inc_pc_def, inc_bip_def]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem good_path_same_func:
|
|
|
|
|
∀prog path. good_path prog path ⇒ ∀ip1 ip2. mem ip1 path ∧ mem ip2 path ⇒ ip1.f = ip2.f
|
|
|
|
|
Proof
|
|
|
|
|
ho_match_mp_tac good_path_ind >> rw [] >>
|
|
|
|
|
metis_tac [next_ips_same_func]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem good_path_prefix:
|
|
|
|
|
∀prog path path'. good_path prog path ∧ path' ≼ path ⇒ good_path prog path'
|
|
|
|
|
Proof
|
|
|
|
|
Induct_on `path'` >> rw []
|
|
|
|
|
>- simp [Once good_path_cases] >>
|
|
|
|
|
pop_assum mp_tac >> CASE_TAC >> rw [] >>
|
|
|
|
|
qpat_x_assum `good_path _ _` mp_tac >>
|
|
|
|
|
simp [Once good_path_cases] >> rw [] >> fs []
|
|
|
|
|
>- (simp [Once good_path_cases] >> metis_tac []) >>
|
|
|
|
|
first_x_assum drule >> rw [] >>
|
|
|
|
|
simp [Once good_path_cases] >>
|
|
|
|
|
Cases_on `path'` >> fs [next_ips_cases, IN_DEF] >>
|
|
|
|
|
metis_tac []
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem good_path_append:
|
|
|
|
|
!prog p1 p2.
|
|
|
|
|
good_path prog (p1++p2) ⇔
|
|
|
|
|
good_path prog p1 ∧ good_path prog p2 ∧
|
|
|
|
|
(p1 ≠ [] ∧ p2 ≠ [] ⇒ HD p2 ∈ next_ips prog (last p1))
|
|
|
|
|
Proof
|
|
|
|
|
Induct_on `p1` >> rw []
|
|
|
|
|
>- metis_tac [good_path_rules] >>
|
|
|
|
|
Cases_on `p1` >> Cases_on `p2` >> rw []
|
|
|
|
|
>- metis_tac [good_path_rules]
|
|
|
|
|
>- (
|
|
|
|
|
simp [Once good_path_cases] >>
|
|
|
|
|
metis_tac [good_path_rules, next_ips_cases, IN_DEF])
|
|
|
|
|
>- metis_tac [good_path_rules] >>
|
|
|
|
|
rename1 `ip1::ip2::(ips1++ip3::ips2)` >>
|
|
|
|
|
first_x_assum (qspecl_then [`prog`, `[ip3]++ips2`] mp_tac) >>
|
|
|
|
|
rw [] >> simp [Once good_path_cases, LAST_DEF] >> rw [] >>
|
|
|
|
|
eq_tac >> rw []
|
|
|
|
|
>- metis_tac [good_path_rules]
|
|
|
|
|
>- (qpat_x_assum `good_path _ [_;_]` mp_tac >> simp [Once good_path_cases])
|
|
|
|
|
>- metis_tac [good_path_rules, next_ips_cases, IN_DEF]
|
|
|
|
|
>- metis_tac [good_path_rules]
|
|
|
|
|
>- (qpat_x_assum `good_path _ (ip1::ip2::ips1)` mp_tac >> simp [Once good_path_cases])
|
|
|
|
|
>- (qpat_x_assum `good_path _ (ip1::ip2::ips1)` mp_tac >> simp [Once good_path_cases])
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
(* ----- Helper functions to get registers out of instructions ----- *)
|
|
|
|
|
|
|
|
|
|
Definition arg_to_regs_def:
|
|
|
|
|
(arg_to_regs (Constant _) = {}) ∧
|
|
|
|
|
(arg_to_regs (Variable r) = {r})
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* The registers that an instruction uses *)
|
|
|
|
|
Definition instr_uses_def:
|
|
|
|
|
(instr_uses (Ret (_, a)) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Br a _ _) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Invoke _ _ a targs _ _) =
|
|
|
|
|
arg_to_regs a ∪ BIGUNION (set (map (arg_to_regs o snd) targs))) ∧
|
|
|
|
|
(instr_uses Unreachable = {}) ∧
|
|
|
|
|
(instr_uses (Exit a) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Sub _ _ _ _ a1 a2) =
|
|
|
|
|
arg_to_regs a1 ∪ arg_to_regs a2) ∧
|
|
|
|
|
(instr_uses (Extractvalue _ (_, a) _) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Insertvalue _ (_, a1) (_, a2) _) =
|
|
|
|
|
arg_to_regs a1 ∪ arg_to_regs a2) ∧
|
|
|
|
|
(instr_uses (Alloca _ _ (_, a)) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Load _ _ (_, a)) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Store (_, a1) (_, a2)) =
|
|
|
|
|
arg_to_regs a1 ∪ arg_to_regs a2) ∧
|
|
|
|
|
(instr_uses (Gep _ _ (_, a) targs) =
|
|
|
|
|
arg_to_regs a ∪ BIGUNION (set (map (arg_to_regs o snd) targs))) ∧
|
|
|
|
|
(instr_uses (Cast _ _ (_, a) _) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Icmp _ _ _ a1 a2) =
|
|
|
|
|
arg_to_regs a1 ∪ arg_to_regs a2) ∧
|
|
|
|
|
(instr_uses (Call _ _ _ targs) =
|
|
|
|
|
BIGUNION (set (map (arg_to_regs o snd) targs))) ∧
|
|
|
|
|
(instr_uses (Cxa_allocate_exn _ a) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Cxa_throw a1 a2 a3) =
|
|
|
|
|
arg_to_regs a1 ∪ arg_to_regs a2 ∪ arg_to_regs a3) ∧
|
|
|
|
|
(instr_uses (Cxa_begin_catch _ a) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Cxa_end_catch) = { }) ∧
|
|
|
|
|
(instr_uses (Cxa_get_exception_ptr _ a) = arg_to_regs a)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition phi_uses_def:
|
|
|
|
|
phi_uses from_l (Phi _ _ entries) =
|
|
|
|
|
case alookup entries from_l of
|
|
|
|
|
| None => {}
|
|
|
|
|
| Some a => arg_to_regs a
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Inductive uses:
|
|
|
|
|
(∀prog ip i r.
|
|
|
|
|
get_instr prog ip (Inl i) ∧
|
|
|
|
|
r ∈ instr_uses i
|
|
|
|
|
⇒
|
|
|
|
|
uses prog ip r) ∧
|
|
|
|
|
(∀prog ip from_l phis r.
|
|
|
|
|
get_instr prog ip (Inr (from_l, phis)) ∧
|
|
|
|
|
r ∈ BIGUNION (set (map (phi_uses from_l) phis))
|
|
|
|
|
⇒
|
|
|
|
|
uses prog ip r)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition cidx_to_num_def:
|
|
|
|
|
(cidx_to_num (IntC _ n) = Num (ABS n)) ∧
|
|
|
|
|
(cidx_to_num _ = 0)
|
|
|
|
|
|
|
|
|
|
End
|
|
|
|
|
(* Convert index lists as for GEP into number lists, for the purpose of
|
|
|
|
|
* calculating types. Everything goes to 0 but for positive integer constants,
|
|
|
|
|
* because those things can't be used to index anything but arrays, and the type
|
|
|
|
|
* for the array contents doesn't depend on the index's value. *)
|
|
|
|
|
Definition idx_to_num_def:
|
|
|
|
|
(idx_to_num (_, (Constant (IntC _ n))) = Num (ABS n)) ∧
|
|
|
|
|
(idx_to_num (_, _) = 0)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* The registers that an instruction assigns *)
|
|
|
|
|
Definition instr_assigns_def:
|
|
|
|
|
(instr_assigns (Invoke r t _ _ _ _) = {(r,t)}) ∧
|
|
|
|
|
(instr_assigns (Sub r _ _ t _ _) = {(r,t)}) ∧
|
|
|
|
|
(instr_assigns (Extractvalue r (t,_) idx) = {(r,THE (extract_type t (map cidx_to_num idx)))}) ∧
|
|
|
|
|
(instr_assigns (Insertvalue r (t,_) _ _) = {(r, t)}) ∧
|
|
|
|
|
(instr_assigns (Alloca r t _) = {(r,PtrT t)}) ∧
|
|
|
|
|
(instr_assigns (Load r t _) = {(r,t)}) ∧
|
|
|
|
|
(instr_assigns (Gep r t _ idx) = {(r,PtrT (THE (extract_type t (map idx_to_num idx))))}) ∧
|
|
|
|
|
(instr_assigns (Cast r _ _ t) = {(r,t)}) ∧
|
|
|
|
|
(instr_assigns (Icmp r _ _ _ _) = {(r, IntT W1)}) ∧
|
|
|
|
|
(instr_assigns (Call r t _ _) = {(r,t)}) ∧
|
|
|
|
|
(instr_assigns (Cxa_allocate_exn r _) = {(r,ARB)}) ∧
|
|
|
|
|
(instr_assigns (Cxa_begin_catch r _) = {(r,ARB)}) ∧
|
|
|
|
|
(instr_assigns (Cxa_get_exception_ptr r _) = {(r,ARB)}) ∧
|
|
|
|
|
(instr_assigns _ = {})
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition phi_assigns_def:
|
|
|
|
|
phi_assigns (Phi r t _) = (r,t)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Inductive assigns:
|
|
|
|
|
(∀prog ip i r.
|
|
|
|
|
get_instr prog ip (Inl i) ∧
|
|
|
|
|
r ∈ instr_assigns i
|
|
|
|
|
⇒
|
|
|
|
|
assigns prog ip r) ∧
|
|
|
|
|
(∀prog ip from_l phis r.
|
|
|
|
|
get_instr prog ip (Inr (from_l, phis)) ∧
|
|
|
|
|
r ∈ set (map phi_assigns phis)
|
|
|
|
|
⇒
|
|
|
|
|
assigns prog ip r)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* ----- SSA form ----- *)
|
|
|
|
|
|
|
|
|
|
Definition entry_ip_def:
|
|
|
|
|
entry_ip fname = <| f := fname; b := None; i := Offset 0 |>
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition reachable_def:
|
|
|
|
|
reachable prog ip ⇔
|
|
|
|
|
∃path. good_path prog (entry_ip ip.f :: path) ∧ last (entry_ip ip.f :: path) = ip
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* To get to ip2 from the entry, you must go through ip1 *)
|
|
|
|
|
Definition dominates_def:
|
|
|
|
|
dominates prog ip1 ip2 ⇔
|
|
|
|
|
∀path.
|
|
|
|
|
good_path prog (entry_ip ip2.f :: path) ∧
|
|
|
|
|
last (entry_ip ip2.f :: path) = ip2 ⇒
|
|
|
|
|
mem ip1 (front (entry_ip ip2.f :: path))
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition is_ssa_def:
|
|
|
|
|
is_ssa prog ⇔
|
|
|
|
|
(* Operate function by function *)
|
|
|
|
|
(∀fname.
|
|
|
|
|
(* No register is assigned in two different instructions *)
|
|
|
|
|
(∀r ip1 ip2.
|
|
|
|
|
r ∈ image fst (assigns prog ip1) ∧ r ∈ image fst (assigns prog ip2) ∧
|
|
|
|
|
ip1.f = fname ∧ ip2.f = fname
|
|
|
|
|
⇒
|
|
|
|
|
ip1 = ip2)) ∧
|
|
|
|
|
(* Each use is dominated by its assignment *)
|
|
|
|
|
(∀ip1 r. r ∈ uses prog ip1 ⇒
|
|
|
|
|
∃ip2. ip2.f = ip1.f ∧ r ∈ image fst (assigns prog ip2) ∧ dominates prog ip2 ip1)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Theorem dominates_trans:
|
|
|
|
|
∀prog ip1 ip2 ip3.
|
|
|
|
|
dominates prog ip1 ip2 ∧ dominates prog ip2 ip3 ⇒ dominates prog ip1 ip3
|
|
|
|
|
Proof
|
|
|
|
|
rw [dominates_def] >> simp [FRONT_DEF] >> rw []
|
|
|
|
|
>- (first_x_assum (qspec_then `[]` mp_tac) >> rw []) >>
|
|
|
|
|
first_x_assum drule >> rw [] >>
|
|
|
|
|
qpat_x_assum `mem _ (front _)` mp_tac >>
|
|
|
|
|
simp [Once MEM_EL] >> rw [] >> fs [EL_FRONT] >>
|
|
|
|
|
first_x_assum (qspec_then `take n path` mp_tac) >> simp [LAST_DEF] >>
|
|
|
|
|
rw [] >> fs [entry_ip_def]
|
|
|
|
|
>- (fs [Once good_path_cases] >> rw [] >> fs [next_ips_cases, IN_DEF]) >>
|
|
|
|
|
rfs [EL_CONS] >>
|
|
|
|
|
`?m. n = Suc m` by (Cases_on `n` >> rw []) >>
|
|
|
|
|
rw [] >> rfs [] >>
|
|
|
|
|
`(el m path).f = ip3.f`
|
|
|
|
|
by (
|
|
|
|
|
irule good_path_same_func >>
|
|
|
|
|
qexists_tac `<| f:= ip3.f; b := NONE; i := Offset 0|> :: path` >>
|
|
|
|
|
qexists_tac `prog` >>
|
|
|
|
|
conj_tac >- rw [EL_MEM] >>
|
|
|
|
|
metis_tac [MEM_LAST]) >>
|
|
|
|
|
fs [] >> qpat_x_assum `_ ⇒ _` mp_tac >> impl_tac
|
|
|
|
|
>- (
|
|
|
|
|
irule good_path_prefix >> HINT_EXISTS_TAC >> rw [] >>
|
|
|
|
|
metis_tac [take_is_prefix]) >>
|
|
|
|
|
rw [] >> drule MEM_FRONT >> rw [] >>
|
|
|
|
|
fs [MEM_EL, LENGTH_FRONT] >> rfs [EL_TAKE] >> rw [] >>
|
|
|
|
|
disj2_tac >> qexists_tac `n'` >> rw [] >>
|
|
|
|
|
irule (GSYM EL_FRONT) >>
|
|
|
|
|
rw [NULL_EQ, LENGTH_FRONT]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem dominates_unreachable:
|
|
|
|
|
∀prog ip1 ip2. ¬reachable prog ip2 ⇒ dominates prog ip1 ip2
|
|
|
|
|
Proof
|
|
|
|
|
rw [dominates_def, reachable_def] >>
|
|
|
|
|
metis_tac []
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem dominates_antisym_lem:
|
|
|
|
|
∀prog ip1 ip2. dominates prog ip1 ip2 ∧ dominates prog ip2 ip1 ⇒ ¬reachable prog ip1
|
|
|
|
|
Proof
|
|
|
|
|
rw [dominates_def, reachable_def] >> CCONTR_TAC >> fs [] >>
|
|
|
|
|
Cases_on `ip1 = entry_ip ip1.f` >> fs []
|
|
|
|
|
>- (
|
|
|
|
|
first_x_assum (qspec_then `[]` mp_tac) >> rw [] >>
|
|
|
|
|
fs [Once good_path_cases, IN_DEF, next_ips_cases] >>
|
|
|
|
|
metis_tac []) >>
|
|
|
|
|
`path ≠ []` by (Cases_on `path` >> fs []) >>
|
|
|
|
|
`(OLEAST n. n < length path ∧ el n path = ip1) ≠ None`
|
|
|
|
|
by (
|
|
|
|
|
rw [whileTheory.OLEAST_EQ_NONE] >>
|
|
|
|
|
qexists_tac `PRE (length path)` >> rw [] >>
|
|
|
|
|
fs [LAST_DEF, LAST_EL] >>
|
|
|
|
|
Cases_on `path` >> fs []) >>
|
|
|
|
|
qabbrev_tac `path1 = splitAtPki (\n ip. ip = ip1) (\x y. x) path` >>
|
|
|
|
|
first_x_assum (qspec_then `path1 ++ [ip1]` mp_tac) >>
|
|
|
|
|
simp [] >>
|
|
|
|
|
conj_asm1_tac >> rw []
|
|
|
|
|
>- (
|
|
|
|
|
irule good_path_prefix >>
|
|
|
|
|
HINT_EXISTS_TAC >> rw [] >>
|
|
|
|
|
unabbrev_all_tac >> rw [splitAtPki_EQN] >>
|
|
|
|
|
CASE_TAC >> rw [] >>
|
|
|
|
|
fs [whileTheory.OLEAST_EQ_SOME] >>
|
|
|
|
|
rw [GSYM SNOC_APPEND, SNOC_EL_TAKE] >>
|
|
|
|
|
metis_tac [take_is_prefix])
|
|
|
|
|
>- rw [LAST_DEF] >>
|
|
|
|
|
simp [GSYM SNOC_APPEND, FRONT_SNOC, FRONT_DEF] >>
|
|
|
|
|
CCONTR_TAC >> fs [MEM_EL]
|
|
|
|
|
>- (
|
|
|
|
|
first_x_assum (qspec_then `[]` mp_tac) >>
|
|
|
|
|
fs [entry_ip_def, Once good_path_cases, IN_DEF, next_ips_cases] >>
|
|
|
|
|
metis_tac []) >>
|
|
|
|
|
rw [] >>
|
|
|
|
|
rename [`n1 < length _`, `last _ = el n path`] >>
|
|
|
|
|
first_x_assum (qspec_then `take (Suc n1) path1` mp_tac) >> rw []
|
|
|
|
|
>- (
|
|
|
|
|
irule good_path_prefix >> HINT_EXISTS_TAC >> rw [entry_ip_def]
|
|
|
|
|
>- (
|
|
|
|
|
irule good_path_same_func >>
|
|
|
|
|
qexists_tac `entry_ip (el n path).f::(path1 ++ [el n path])` >>
|
|
|
|
|
qexists_tac `prog` >> rw [EL_MEM]) >>
|
|
|
|
|
metis_tac [IS_PREFIX_APPEND3, take_is_prefix, IS_PREFIX_TRANS])
|
|
|
|
|
>- (rw [LAST_DEF] >> fs []) >>
|
|
|
|
|
rw [METIS_PROVE [] ``~x ∨ y ⇔ (x ⇒ y)``] >>
|
|
|
|
|
simp [EL_FRONT] >>
|
|
|
|
|
rename [`n2 < Suc _`] >>
|
|
|
|
|
Cases_on `¬(0 < n2)` >> rw [EL_CONS]
|
|
|
|
|
>- (
|
|
|
|
|
fs [entry_ip_def] >>
|
|
|
|
|
`(el n path).f = (el n1 path1).f` suffices_by metis_tac [] >>
|
|
|
|
|
irule good_path_same_func >>
|
|
|
|
|
qexists_tac `<|f := (el n path).f; b := None; i := Offset 0|> ::(path1 ++ [el n path])` >>
|
|
|
|
|
qexists_tac `prog` >>
|
|
|
|
|
rw [EL_MEM]) >>
|
|
|
|
|
fs [EL_TAKE, Abbr `path1`, splitAtPki_EQN] >>
|
|
|
|
|
CASE_TAC >> rw [] >> fs []
|
|
|
|
|
>- metis_tac [] >>
|
|
|
|
|
fs [whileTheory.OLEAST_EQ_SOME] >>
|
|
|
|
|
rfs [LENGTH_TAKE] >>
|
|
|
|
|
`PRE n2 < x` by decide_tac >>
|
|
|
|
|
first_x_assum drule >>
|
|
|
|
|
rw [EL_TAKE]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem dominates_antisym:
|
|
|
|
|
∀prog ip1 ip2. reachable prog ip1 ∧ dominates prog ip1 ip2 ⇒ ¬dominates prog ip2 ip1
|
|
|
|
|
Proof
|
|
|
|
|
metis_tac [dominates_antisym_lem]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem dominates_irrefl:
|
|
|
|
|
∀prog ip. reachable prog ip ⇒ ¬dominates prog ip ip
|
|
|
|
|
Proof
|
|
|
|
|
metis_tac [dominates_antisym]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
(* ----- Liveness ----- *)
|
|
|
|
|
|
|
|
|
|
Definition live_def:
|
|
|
|
|
live prog ip =
|
|
|
|
|
{ r | ∃path.
|
|
|
|
|
good_path prog (ip::path) ∧
|
|
|
|
|
r ∈ uses prog (last (ip::path)) ∧
|
|
|
|
|
∀ip2. ip2 ∈ set (front (ip::path)) ⇒ r ∉ image fst (assigns prog ip2) }
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Theorem get_instr_live:
|
|
|
|
|
∀prog ip instr.
|
|
|
|
|
get_instr prog ip instr
|
|
|
|
|
⇒
|
|
|
|
|
uses prog ip ⊆ live prog ip
|
|
|
|
|
Proof
|
|
|
|
|
rw [live_def, SUBSET_DEF] >>
|
|
|
|
|
qexists_tac `[]` >> rw [Once good_path_cases] >>
|
|
|
|
|
qexists_tac `instr` >> simp [] >> metis_tac [IN_DEF]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Triviality set_rw:
|
|
|
|
|
∀s P. (∀x. x ∈ s ⇔ P x) ⇔ s = P
|
|
|
|
|
Proof
|
|
|
|
|
rw [] >> eq_tac >> rw [IN_DEF] >> metis_tac []
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem live_gen_kill:
|
|
|
|
|
∀prog ip ip'.
|
|
|
|
|
live prog ip =
|
|
|
|
|
BIGUNION {live prog ip' | ip' | ip' ∈ next_ips prog ip} DIFF image fst (assigns prog ip) ∪ uses prog ip
|
|
|
|
|
Proof
|
|
|
|
|
rw [live_def, EXTENSION] >> eq_tac >> rw []
|
|
|
|
|
>- (
|
|
|
|
|
Cases_on `path` >> fs [] >>
|
|
|
|
|
rename1 `ip::ip2::path` >>
|
|
|
|
|
qpat_x_assum `good_path _ _` mp_tac >> simp [Once good_path_cases] >> rw [] >>
|
|
|
|
|
Cases_on `x ∈ uses prog ip` >> fs [] >> simp [set_rw, PULL_EXISTS] >>
|
|
|
|
|
qexists_tac `ip2` >> qexists_tac `path` >> rw [])
|
|
|
|
|
>- (
|
|
|
|
|
fs [] >>
|
|
|
|
|
qexists_tac `ip'::path` >> rw [] >>
|
|
|
|
|
simp [Once good_path_cases])
|
|
|
|
|
>- (
|
|
|
|
|
qexists_tac `[]` >> rw [] >>
|
|
|
|
|
fs [Once good_path_cases, uses_cases, IN_DEF] >>
|
|
|
|
|
metis_tac [])
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem ssa_dominates_live_range_lem:
|
|
|
|
|
∀prog r ip1 ip2.
|
|
|
|
|
is_ssa prog ∧ ip1.f = ip2.f ∧ r ∈ image fst (assigns prog ip1) ∧ r ∈ live prog ip2 ⇒
|
|
|
|
|
dominates prog ip1 ip2
|
|
|
|
|
Proof
|
|
|
|
|
rw [dominates_def, is_ssa_def, live_def] >>
|
|
|
|
|
`path ≠ [] ⇒ (last path).f = ip2.f`
|
|
|
|
|
by (
|
|
|
|
|
rw [] >>
|
|
|
|
|
irule good_path_same_func >>
|
|
|
|
|
qexists_tac `ip2::path` >> rw [] >>
|
|
|
|
|
Cases_on `path` >> fs [MEM_LAST] >> metis_tac []) >>
|
|
|
|
|
first_x_assum drule >> rw [] >>
|
|
|
|
|
first_x_assum (qspec_then `path'++path` mp_tac) >>
|
|
|
|
|
impl_tac
|
|
|
|
|
>- (
|
|
|
|
|
fs [LAST_DEF] >> rw [] >> fs []
|
|
|
|
|
>- (
|
|
|
|
|
simp_tac std_ss [GSYM APPEND, good_path_append] >> rw []
|
|
|
|
|
>- (
|
|
|
|
|
qpat_x_assum `good_path _ (_::_)` mp_tac >>
|
|
|
|
|
qpat_x_assum `good_path _ (_::_)` mp_tac >>
|
|
|
|
|
simp [Once good_path_cases] >>
|
|
|
|
|
metis_tac [])
|
|
|
|
|
>- (
|
|
|
|
|
simp [LAST_DEF] >>
|
|
|
|
|
qpat_x_assum `good_path _ (_::_)` mp_tac >>
|
|
|
|
|
qpat_x_assum `good_path _ (_::_)` mp_tac >>
|
|
|
|
|
simp [Once good_path_cases] >>
|
|
|
|
|
rw [] >> rw []))
|
|
|
|
|
>- (Cases_on `path` >> fs [])) >>
|
|
|
|
|
rw [] >>
|
|
|
|
|
`ip2'.f = ip2.f`
|
|
|
|
|
by (
|
|
|
|
|
irule good_path_same_func >>
|
|
|
|
|
qexists_tac `entry_ip ip2.f::path'` >>
|
|
|
|
|
qexists_tac `prog` >>
|
|
|
|
|
conj_tac
|
|
|
|
|
>- (
|
|
|
|
|
Cases_on `path` >>
|
|
|
|
|
full_simp_tac std_ss [GSYM APPEND, FRONT_APPEND, APPEND_NIL, LAST_CONS]
|
|
|
|
|
>- metis_tac [MEM_FRONT] >>
|
|
|
|
|
fs [] >> metis_tac [])
|
|
|
|
|
>- metis_tac [MEM_LAST]) >>
|
|
|
|
|
`ip2' = ip1` by metis_tac [] >>
|
|
|
|
|
rw [] >>
|
|
|
|
|
Cases_on `path` >> fs [] >>
|
|
|
|
|
full_simp_tac std_ss [GSYM APPEND, FRONT_APPEND] >> fs [] >> rw [FRONT_DEF] >> fs []
|
|
|
|
|
>- metis_tac []
|
|
|
|
|
>- (
|
|
|
|
|
`mem ip1 path' = mem ip1 (front path' ++ [last path'])` by metis_tac [APPEND_FRONT_LAST] >>
|
|
|
|
|
fs [LAST_DEF] >>
|
|
|
|
|
metis_tac [])
|
|
|
|
|
>- metis_tac []
|
|
|
|
|
>- metis_tac []
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem ssa_dominates_live_range:
|
|
|
|
|
∀prog r ip.
|
|
|
|
|
is_ssa prog ∧ r ∈ uses prog ip
|
|
|
|
|
⇒
|
|
|
|
|
∃ip1. ip1.f = ip.f ∧ r ∈ image fst (assigns prog ip1) ∧
|
|
|
|
|
∀ip2. ip2.f = ip.f ∧ r ∈ live prog ip2 ⇒
|
|
|
|
|
dominates prog ip1 ip2
|
|
|
|
|
Proof
|
|
|
|
|
rw [] >> drule ssa_dominates_live_range_lem >> rw [] >>
|
|
|
|
|
fs [is_ssa_def] >>
|
|
|
|
|
first_assum drule >> rw [] >> metis_tac []
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem reachable_dominates_same_func:
|
|
|
|
|
∀prog ip1 ip2. reachable prog ip2 ∧ dominates prog ip1 ip2 ⇒ ip1.f = ip2.f
|
|
|
|
|
Proof
|
|
|
|
|
rw [reachable_def, dominates_def] >> res_tac >>
|
|
|
|
|
irule good_path_same_func >>
|
|
|
|
|
metis_tac [MEM_LAST, MEM_FRONT]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem next_ips_reachable:
|
|
|
|
|
∀prog ip1 ip2. reachable prog ip1 ∧ ip2 ∈ next_ips prog ip1 ⇒ reachable prog ip2
|
|
|
|
|
Proof
|
|
|
|
|
rw [] >> imp_res_tac next_ips_same_func >>
|
|
|
|
|
fs [reachable_def] >>
|
|
|
|
|
qexists_tac `path ++ [ip2]` >>
|
|
|
|
|
simp_tac std_ss [GSYM APPEND, LAST_APPEND_CONS, LAST_CONS] >>
|
|
|
|
|
simp [good_path_append] >>
|
|
|
|
|
simp [Once good_path_cases] >>
|
|
|
|
|
fs [next_ips_cases, IN_DEF] >>
|
|
|
|
|
metis_tac []
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
(* ----- A theory of *dominator ordered* programs ------ *)
|
|
|
|
|
(* A list of basic blocks is dominator ordered if each variable use occurs after
|
|
|
|
|
* the assignment to that variable. We can also define a notion of variable
|
|
|
|
|
* liveness that follows the list structure, rather than the CFG structure, and
|
|
|
|
|
* show that for dominator ordered lists, the live set is empty at the entry
|
|
|
|
|
* point *)
|
|
|
|
|
|
|
|
|
|
Definition instrs_live_def:
|
|
|
|
|
(instrs_live [] = ({}, {})) ∧
|
|
|
|
|
(instrs_live (i::is) =
|
|
|
|
|
let (gen, kill) = instrs_live is in
|
|
|
|
|
(instr_uses i ∪ (gen DIFF image fst (instr_assigns i)),
|
|
|
|
|
(image fst (instr_assigns i) ∪ (kill DIFF instr_uses i))))
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition header_uses_def:
|
|
|
|
|
(header_uses (Head phis land) =
|
|
|
|
|
bigunion { phi_uses from_l p | from_l,p | mem p phis }) ∧
|
|
|
|
|
(header_uses Entry = {})
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition header_assigns_def:
|
|
|
|
|
(header_assigns (Head phis land) = set (map (fst o phi_assigns) phis)) ∧
|
|
|
|
|
(header_assigns Entry = {})
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition linear_live_def:
|
|
|
|
|
(linear_live [] = {}) ∧
|
|
|
|
|
(linear_live (b::bs) =
|
|
|
|
|
let (gen,kill) = instrs_live b.body in
|
|
|
|
|
header_uses b.h ∪ (gen ∪ (linear_live bs DIFF kill) DIFF header_assigns b.h))
|
|
|
|
|
End
|
|
|
|
|
Definition bip_less_def:
|
|
|
|
|
(bip_less (Phi_ip _) (Offset _) ⇔ T) ∧
|
|
|
|
|
(bip_less (Offset m) (Offset n) ⇔ m < n) ∧
|
|
|
|
|
(bip_less _ _ ⇔ F)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition linear_pc_less_def:
|
|
|
|
|
linear_pc_less = $< LEX bip_less
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Inductive lpc_get_instr:
|
|
|
|
|
(∀i idx bs.
|
|
|
|
|
i < length bs ∧
|
|
|
|
|
idx < length (el i bs).body
|
|
|
|
|
⇒
|
|
|
|
|
lpc_get_instr bs (i, Offset idx) (Inl (el idx (el i bs).body))) ∧
|
|
|
|
|
(∀i from_l phis bs landing.
|
|
|
|
|
i < length bs ∧
|
|
|
|
|
(el i bs).h = Head phis landing
|
|
|
|
|
⇒
|
|
|
|
|
lpc_get_instr bs (i, Phi_ip from_l) (Inr (from_l, phis)))
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Inductive lpc_assigns:
|
|
|
|
|
(∀bs ip i r.
|
|
|
|
|
lpc_get_instr bs ip (Inl i) ∧
|
|
|
|
|
r ∈ instr_assigns i
|
|
|
|
|
⇒
|
|
|
|
|
lpc_assigns bs ip r) ∧
|
|
|
|
|
(∀bs ip from_l phis r.
|
|
|
|
|
lpc_get_instr bs ip (Inr (from_l, phis)) ∧
|
|
|
|
|
r ∈ set (map phi_assigns phis)
|
|
|
|
|
⇒
|
|
|
|
|
lpc_assigns bs ip r)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Inductive lpc_uses:
|
|
|
|
|
(∀bs ip i r.
|
|
|
|
|
lpc_get_instr bs ip (Inl i) ∧
|
|
|
|
|
r ∈ instr_uses i
|
|
|
|
|
⇒
|
|
|
|
|
lpc_uses bs ip r) ∧
|
|
|
|
|
(∀bs ip from_l phis r.
|
|
|
|
|
lpc_get_instr bs ip (Inr (from_l, phis)) ∧
|
|
|
|
|
r ∈ BIGUNION (set (map (phi_uses from_l) phis))
|
|
|
|
|
⇒
|
|
|
|
|
lpc_uses bs ip r)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition dominator_ordered_def:
|
|
|
|
|
dominator_ordered p ⇔
|
|
|
|
|
∀f d lip1 r.
|
|
|
|
|
alookup p (Fn f) = Some d ∧
|
|
|
|
|
r ∈ lpc_uses (map snd d.blocks) lip1
|
|
|
|
|
⇒
|
|
|
|
|
∃lip2. linear_pc_less lip2 lip1 ∧ r ∈ image fst (lpc_assigns (map snd d.blocks) lip2)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Theorem instrs_kill_subset_assigns:
|
|
|
|
|
snd (instrs_live is) ⊆ bigunion (image (λi. image fst (instr_assigns i)) (set is))
|
|
|
|
|
Proof
|
|
|
|
|
Induct_on `is` >> rw [instrs_live_def] >>
|
|
|
|
|
pairarg_tac >> rw [] >>
|
|
|
|
|
fs [SUBSET_DEF]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem instrs_gen_subset_uses:
|
|
|
|
|
fst (instrs_live is) ⊆ bigunion (image instr_uses (set is))
|
|
|
|
|
Proof
|
|
|
|
|
Induct_on `is` >> rw [instrs_live_def] >>
|
|
|
|
|
pairarg_tac >> rw [] >>
|
|
|
|
|
fs [SUBSET_DEF]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem instrs_subset_assigns_subset_kill_gen:
|
|
|
|
|
bigunion (image (λi. image fst (instr_assigns i)) (set is)) ⊆
|
|
|
|
|
snd (instrs_live is) ∪ fst (instrs_live is)
|
|
|
|
|
Proof
|
|
|
|
|
Induct_on `is` >> rw [instrs_live_def] >>
|
|
|
|
|
pairarg_tac >> rw [] >> fs [SUBSET_DEF] >> rw [] >>
|
|
|
|
|
metis_tac []
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem use_assign_in_gen_kill:
|
|
|
|
|
∀n is r.
|
|
|
|
|
n < length is ∧ (r ∈ image fst (instr_assigns (el n is)) ∨ r ∈ instr_uses (el n is))
|
|
|
|
|
⇒
|
|
|
|
|
r ∈ fst (instrs_live is) ∨ r ∈ snd (instrs_live is)
|
|
|
|
|
Proof
|
|
|
|
|
Induct_on `n` >> rw [] >> Cases_on `is` >> rw [] >> fs [] >>
|
|
|
|
|
rw [instrs_live_def] >>
|
|
|
|
|
pairarg_tac >> rw [] >>
|
|
|
|
|
metis_tac [FST, SND, pair_CASES]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem instrs_live_uses:
|
|
|
|
|
∀is r.
|
|
|
|
|
r ∈ fst (instrs_live is)
|
|
|
|
|
⇒
|
|
|
|
|
∃i. i < length is ∧ r ∈ instr_uses (el i is) ∧
|
|
|
|
|
∀j. j < i ⇒ r ∉ instr_uses (el j is) ∧ r ∉ image fst (instr_assigns (el j is))
|
|
|
|
|
Proof
|
|
|
|
|
Induct >> rw [instrs_live_def] >> pairarg_tac >> fs []
|
|
|
|
|
>- (qexists_tac `0` >> rw []) >>
|
|
|
|
|
rename1 `(i1::is)` >>
|
|
|
|
|
Cases_on `r ∈ instr_uses i1`
|
|
|
|
|
>- (qexists_tac `0` >> rw []) >>
|
|
|
|
|
first_x_assum drule >> rw [] >>
|
|
|
|
|
qexists_tac `Suc i` >> rw [] >>
|
|
|
|
|
Cases_on `j` >> fs []
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem lpc_get_instr_cons:
|
|
|
|
|
∀b bs i bip.
|
|
|
|
|
lpc_get_instr (b::bs) (i + 1, bip) = lpc_get_instr bs (i, bip)
|
|
|
|
|
Proof
|
|
|
|
|
rw [lpc_get_instr_cases, EXTENSION, IN_DEF, EL_CONS] >>
|
|
|
|
|
`PRE (i + 1) = i` by decide_tac >>
|
|
|
|
|
rw [ADD1]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem lpc_uses_cons:
|
|
|
|
|
∀b bs i bip.
|
|
|
|
|
lpc_uses (b::bs) (i + 1, bip) = lpc_uses bs (i, bip)
|
|
|
|
|
Proof
|
|
|
|
|
rw [lpc_uses_cases, EXTENSION, IN_DEF, lpc_get_instr_cons]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem lpc_uses_0_head:
|
|
|
|
|
∀b bs. header_uses b.h = bigunion { lpc_uses (b::bs) (0, Phi_ip from_l) | from_l | T}
|
|
|
|
|
Proof
|
|
|
|
|
rw [EXTENSION, IN_DEF] >>
|
|
|
|
|
rw [lpc_uses_cases, lpc_get_instr_cases, PULL_EXISTS] >>
|
|
|
|
|
Cases_on `b.h` >> rw [header_uses_def, MEM_MAP, PULL_EXISTS]
|
|
|
|
|
>- metis_tac [] >>
|
|
|
|
|
eq_tac >> rw []
|
|
|
|
|
>- (
|
|
|
|
|
qexists_tac `(\x'. ∃y. x' ∈ phi_uses from_l y ∧ mem y l)` >>
|
|
|
|
|
qexists_tac `from_l` >>
|
|
|
|
|
rw [] >>
|
|
|
|
|
metis_tac []) >>
|
|
|
|
|
metis_tac []
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem lpc_uses_0_body:
|
|
|
|
|
∀b bs. lpc_uses (b::bs) (0, Offset n) ⊆ fst (instrs_live b.body) ∪ snd (instrs_live b.body)
|
|
|
|
|
Proof
|
|
|
|
|
rw [SUBSET_DEF, IN_DEF] >>
|
|
|
|
|
fs [lpc_uses_cases, lpc_get_instr_cases, PULL_EXISTS] >>
|
|
|
|
|
metis_tac [use_assign_in_gen_kill, IN_DEF]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem lpc_assigns_cons:
|
|
|
|
|
∀b bs i bip.
|
|
|
|
|
lpc_assigns (b::bs) (i + 1, bip) = lpc_assigns bs (i, bip)
|
|
|
|
|
Proof
|
|
|
|
|
rw [lpc_assigns_cases, EXTENSION, IN_DEF, lpc_get_instr_cons]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem lpc_assigns_0_head:
|
|
|
|
|
∀b bs from_l.
|
|
|
|
|
image fst (lpc_assigns (b::bs) (0, Phi_ip from_l)) = header_assigns b.h
|
|
|
|
|
Proof
|
|
|
|
|
rw [EXTENSION, Once IN_DEF] >>
|
|
|
|
|
rw [lpc_assigns_cases, lpc_get_instr_cases, PULL_EXISTS] >>
|
|
|
|
|
Cases_on `b.h` >> rw [header_assigns_def, MEM_MAP] >>
|
|
|
|
|
metis_tac []
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem lpc_assigns_0_body:
|
|
|
|
|
∀b bs. image fst (lpc_assigns (b::bs) (0, Offset n)) ⊆ fst (instrs_live b.body) ∪ snd (instrs_live b.body)
|
|
|
|
|
Proof
|
|
|
|
|
rw [SUBSET_DEF, IN_DEF] >>
|
|
|
|
|
fs [lpc_assigns_cases, lpc_get_instr_cases, PULL_EXISTS] >>
|
|
|
|
|
drule use_assign_in_gen_kill >>
|
|
|
|
|
rw [] >>
|
|
|
|
|
metis_tac [IN_DEF]
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem linear_live_uses:
|
|
|
|
|
∀bs r. r ∈ linear_live bs ⇒
|
|
|
|
|
∃lip. r ∈ lpc_uses bs lip ∧
|
|
|
|
|
∀lip2. linear_pc_less lip2 lip ⇒ r ∉ lpc_uses bs lip2 ∧ r ∉ image fst (lpc_assigns bs lip2)
|
|
|
|
|
Proof
|
|
|
|
|
Induct >> rw [linear_live_def] >>
|
|
|
|
|
rename1 `header_uses b.h` >>
|
|
|
|
|
Cases_on `r ∈ header_uses b.h`
|
|
|
|
|
>- (
|
|
|
|
|
fs [header_uses_def] >> pairarg_tac >> fs [] >>
|
|
|
|
|
Cases_on `b.h` >> fs [header_uses_def] >>
|
|
|
|
|
qexists_tac `(0, Phi_ip from_l)` >> fs [header_uses_def] >>
|
|
|
|
|
conj_tac
|
|
|
|
|
>- (
|
|
|
|
|
simp [IN_DEF] >>
|
|
|
|
|
rw [lpc_uses_cases, lpc_get_instr_cases, PULL_EXISTS] >>
|
|
|
|
|
rw [MEM_MAP] >> metis_tac [])
|
|
|
|
|
>- (
|
|
|
|
|
gen_tac >> simp [linear_pc_less_def, LEX_DEF] >>
|
|
|
|
|
pairarg_tac >> simp [bip_less_def])) >>
|
|
|
|
|
pairarg_tac >> Cases_on `r ∈ gen` >> fs []
|
|
|
|
|
>- (
|
|
|
|
|
`r ∈ fst (instrs_live b.body)` by metis_tac [FST] >>
|
|
|
|
|
drule instrs_live_uses >> rw [] >>
|
|
|
|
|
qexists_tac `(0, Offset i)` >>
|
|
|
|
|
conj_tac
|
|
|
|
|
>- (
|
|
|
|
|
simp [IN_DEF] >>
|
|
|
|
|
rw [lpc_uses_cases, lpc_get_instr_cases, PULL_EXISTS] >>
|
|
|
|
|
rw [MEM_MAP] >> metis_tac [])
|
|
|
|
|
>- (
|
|
|
|
|
gen_tac >> strip_tac >>
|
|
|
|
|
PairCases_on `lip2` >> fs [linear_pc_less_def, LEX_DEF_THM] >>
|
|
|
|
|
Cases_on `lip21` >> fs [bip_less_def]
|
|
|
|
|
>- (
|
|
|
|
|
Cases_on `b.h` >> fs [header_assigns_def, header_uses_def] >>
|
|
|
|
|
simp [IN_DEF] >>
|
|
|
|
|
rw [lpc_uses_cases, lpc_assigns_cases, lpc_get_instr_cases, PULL_EXISTS] >>
|
|
|
|
|
fs [MEM_MAP] >>
|
|
|
|
|
metis_tac [FST])
|
|
|
|
|
>- (
|
|
|
|
|
first_x_assum drule >>
|
|
|
|
|
simp [IN_DEF] >>
|
|
|
|
|
rw [lpc_uses_cases, lpc_assigns_cases, lpc_get_instr_cases, PULL_EXISTS] >>
|
|
|
|
|
rw [IN_DEF])))
|
|
|
|
|
>- (
|
|
|
|
|
first_x_assum drule >> rw [] >>
|
|
|
|
|
PairCases_on `lip` >>
|
|
|
|
|
qexists_tac `lip0+1,lip1` >> simp [IN_DEF] >>
|
|
|
|
|
conj_tac
|
|
|
|
|
>- fs [lpc_uses_cons, IN_DEF] >>
|
|
|
|
|
gen_tac >> disch_tac >>
|
|
|
|
|
PairCases_on `lip2` >>
|
|
|
|
|
Cases_on `lip20` >> fs [ADD1]
|
|
|
|
|
>- (
|
|
|
|
|
Cases_on `lip21`
|
|
|
|
|
>- (
|
|
|
|
|
rename1 `Phi_ip from_l` >>
|
|
|
|
|
`r ∉ bigunion {lpc_uses (b::bs) (0,Phi_ip from_l) | from_l | T} ∧
|
|
|
|
|
r ∉ image fst (lpc_assigns (b::bs) (0,Phi_ip from_l))`
|
|
|
|
|
by metis_tac [lpc_assigns_0_head, lpc_uses_0_head] >>
|
|
|
|
|
fs [IN_DEF] >> metis_tac [])
|
|
|
|
|
>- (
|
|
|
|
|
`r ∉ image fst (lpc_assigns (b::bs) (0,Offset n)) ∧
|
|
|
|
|
r ∉ lpc_uses (b::bs) (0,Offset n)`
|
|
|
|
|
by metis_tac [IN_UNION, lpc_assigns_0_body, lpc_uses_0_body, FST, SND, SUBSET_DEF] >>
|
|
|
|
|
fs [IN_DEF]))
|
|
|
|
|
>- (
|
|
|
|
|
`linear_pc_less (n, lip21) (lip0, lip1)` by fs [linear_pc_less_def, LEX_DEF] >>
|
|
|
|
|
first_x_assum drule >>
|
|
|
|
|
rw [lpc_uses_cons, lpc_assigns_cons] >> fs [IN_DEF]))
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem dominator_ordered_linear_live:
|
|
|
|
|
∀p f d.
|
|
|
|
|
dominator_ordered p ∧
|
|
|
|
|
alookup p (Fn f) = Some d
|
|
|
|
|
⇒
|
|
|
|
|
linear_live (map snd d.blocks) = {}
|
|
|
|
|
Proof
|
|
|
|
|
rw [dominator_ordered_def] >> first_x_assum drule >> rw [EXTENSION] >>
|
|
|
|
|
CCONTR_TAC >> fs [] >> drule linear_live_uses >> rw [] >>
|
|
|
|
|
metis_tac []
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
export_theory ();
|