You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

570 lines
21 KiB

(*
* Copyright (c) 2017 - present Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*)
open! IStd
module F = Format
module L = Logging
module Summary = Summary.Make (struct
type payload = CostDomain.summary
let update_payload sum (summary: Specs.summary) =
{summary with payload= {summary.payload with cost= Some sum}}
let read_payload (summary: Specs.summary) = summary.payload.cost
end)
(* We use this treshold to give error if the cost is above it.
Currently it's set randomly to 200. *)
let expensive_threshold = Itv.Bound.of_int 200
(* CFG module used in several other modules *)
module CFG = ProcCfg.Normal
module NodesBasicCostDomain = struct
include AbstractDomain.Pair (BufferOverrunDomain.Mem) (CostDomain.NodeInstructionToCostMap)
let init = (BufferOverrunDomain.Mem.init, CostDomain.NodeInstructionToCostMap.empty)
end
(* Compute a map (node,instruction) -> basic_cost, where basic_cost is the
cost known for a certain operation. For example for basic operation we
set it to 1 and for function call we take it from the spec of the function.
The nodes in the domain of the map are those in the path reaching the current node.
*)
module TransferFunctionsNodesBasicCost (CFG : ProcCfg.S) = struct
module CFG = CFG
module InferboTransferFunctions = BufferOverrunChecker.TransferFunctions (CFG)
module Domain = NodesBasicCostDomain
type extras = InferboTransferFunctions.extras
let cost_atomic_instruction = Itv.Bound.one
let instr_idx (node: CFG.node) instr =
match CFG.instrs node with
| [] ->
0
| instrs ->
List.find_mapi_exn
~f:(fun idx i -> if Sil.equal_instr i instr then Some idx else None)
instrs
let exec_instr_cost _inferbo_mem (astate: CostDomain.NodeInstructionToCostMap.astate)
{ProcData.pdesc} (node: CFG.node) instr : CostDomain.NodeInstructionToCostMap.astate =
let nid_int = (Procdesc.Node.get_id (CFG.underlying_node node) :> int) in
let instr_idx = instr_idx node instr in
let key = (nid_int, instr_idx) in
let astate' =
match instr with
| Sil.Call (_, Exp.Const Const.Cfun callee_pname, _, _, _) -> (
match Summary.read_summary pdesc callee_pname with
| Some {post= cost_callee} ->
CostDomain.NodeInstructionToCostMap.add key cost_callee astate
| None ->
CostDomain.NodeInstructionToCostMap.add key cost_atomic_instruction astate )
| Sil.Load _ | Sil.Store _ | Sil.Call _ | Sil.Prune _ ->
CostDomain.NodeInstructionToCostMap.add key cost_atomic_instruction astate
| _ ->
astate
in
L.(debug Analysis Medium)
"@\n>>>Instr: %a Cost: %a@\n" (Sil.pp_instr Pp.text) instr
CostDomain.NodeInstructionToCostMap.pp astate' ;
astate'
let exec_instr (inferbo_mem, costmap) pdata node instr =
let inferbo_mem = InferboTransferFunctions.exec_instr inferbo_mem pdata node instr in
let costmap = exec_instr_cost inferbo_mem costmap pdata node instr in
(inferbo_mem, costmap)
end
module AnalyzerNodesBasicCost = AbstractInterpreter.Make (CFG) (TransferFunctionsNodesBasicCost)
(* Map associating to each node a bound on the number of times it can be executed.
This bound is computed using environments (map: val -> values), using the following
observation: the number of environments associated with a program point is an upperbound
of the number of times the program point can be executed in any execution.
The size of an environment env is computed as:
|env| = |env(v1)| * ... * |env(n_k)|
where |env(v)| is the size of the interval associated to v by env.
Reference: see Stefan Bygde PhD thesis, 2010
*)
module BoundMap = struct
type t = Itv.Bound.t Int.Map.t
let print_upper_bound_map bound_map =
L.(debug Analysis Medium) "@\n\n******* Bound Map ITV **** @\n" ;
Int.Map.iteri bound_map ~f:(fun ~key:nid ~data:b ->
L.(debug Analysis Medium) "@\n node: %i --> bound = %a @\n" nid Itv.Bound.pp b ) ;
L.(debug Analysis Medium) "@\n******* END Bound Map ITV **** @\n\n"
let convert (mem: BufferOverrunDomain.Mem.astate) : CostDomain.EnvDomainBO.astate =
let open AbstractDomain.Types in
match mem with
| Bottom ->
assert false
| NonBottom {BufferOverrunDomain.MemReach.heap} ->
let env =
BufferOverrunDomain.Heap.fold
(fun loc data acc ->
match loc with
| AbsLoc.Loc.Var Var.LogicalVar id ->
let key = Exp.Var id in
CostDomain.EnvDomain.add key (BufferOverrunDomain.Val.get_itv data) acc
| AbsLoc.Loc.Var Var.ProgramVar v ->
let key = Exp.Lvar v in
CostDomain.EnvDomain.add key (BufferOverrunDomain.Val.get_itv data) acc
| _ ->
acc )
heap CostDomain.EnvDomainBO.empty
in
env
let compute_upperbound_map pdesc invariant_map_NodesBasicCost =
let fparam = Procdesc.get_formals pdesc in
let pname = Procdesc.get_proc_name pdesc in
let fparam' = List.map ~f:(fun (m, _) -> Exp.Lvar (Pvar.mk m pname)) fparam in
let compute_node_upper_bound bound_map node =
let node_id = Procdesc.Node.get_id node in
match Procdesc.Node.get_kind node with
| Procdesc.Node.Exit_node _ ->
Int.Map.set bound_map ~key:(node_id :> int) ~data:Itv.Bound.one
| _ ->
let entry_state_opt =
AnalyzerNodesBasicCost.extract_post node_id invariant_map_NodesBasicCost
in
match entry_state_opt with
| Some (entry_mem, _) ->
let env = convert entry_mem in
(* bound = env(v1) *... * env(vn) *)
let bound =
CostDomain.EnvDomainBO.fold
(fun exp itv acc ->
let itv' =
match exp with
| Exp.Var _ ->
Itv.one
(* For temp var we give [1,1] so it doesn't count*)
| Exp.Lvar _
when List.mem fparam' exp ~equal:Exp.equal ->
Itv.one
| Exp.Lvar _ ->
itv
| _ ->
assert false
in
let range = Itv.range itv' in
L.(debug Analysis Medium)
"@\n>>>For node = %i : exp=%a itv=%a range =%a @\n\n"
(node_id :> int)
Exp.pp exp Itv.pp itv' Itv.Bound.pp range ;
Itv.Bound.mult acc range )
env Itv.Bound.one
in
L.(debug Analysis Medium)
"@\n>>>Setting bound for node = %i to %a@\n\n"
(node_id :> int)
Itv.Bound.pp bound ;
Int.Map.set bound_map ~key:(node_id :> int) ~data:bound
| _ ->
Int.Map.set bound_map ~key:(node_id :> int) ~data:Itv.Bound.zero
in
let bound_map = List.fold (CFG.nodes pdesc) ~f:compute_node_upper_bound ~init:Int.Map.empty in
print_upper_bound_map bound_map ; bound_map
let upperbound bound_map nid =
match Int.Map.find bound_map nid with
| Some bound ->
bound
| None ->
L.(debug Analysis Medium)
"@\n\n[WARNING] Bound not found for node %i, returning Top @\n" nid ;
Itv.Bound.pinf
end
(* Structural Constraints are expressions of the kind:
n <= n1 +...+ nk
The informal meaning is: the number of times node n can be executed is less or
equal to the sum of the number of times nodes n1,..., nk can be executed.
*)
module StructuralConstraints = struct
let print_constraint_list constraints =
L.(debug Analysis Medium) "@\n\n******* Structural Constraints **** @\n" ;
List.iter ~f:(fun c -> L.(debug Analysis Medium) "@\n %a @\n" Exp.pp c) constraints ;
L.(debug Analysis Medium) "@\n******* END Structural Constraints **** @\n\n"
(* for each program point return a set of contraints of the kind
i<=Sum_{j \in Predecessors(i) } j
i<=Sum_{j \in Successors(i)} j
*)
let compute_structural_constraints cfg =
let exp_nid n =
let nid = (Procdesc.Node.get_id n :> int) in
Exp.Const (Cint (IntLit.of_int nid))
in
let rec exp_sum nodes =
match nodes with
| [] ->
assert false (* this cannot happen here *)
| [n] ->
exp_nid n
| n :: nodes' ->
let sum_nodes' = exp_sum nodes' in
Exp.BinOp (Binop.PlusA, exp_nid n, sum_nodes')
in
let compute_node_constraints acc node =
let constrants_preds_succs gets_preds_succs =
match gets_preds_succs node with
| [] ->
[]
| res_nodes ->
[Exp.BinOp (Binop.Le, exp_nid node, exp_sum res_nodes)]
in
let preds_con = constrants_preds_succs Procdesc.Node.get_preds in
let succs_con = constrants_preds_succs Procdesc.Node.get_succs in
preds_con @ succs_con @ acc
in
let constraints = List.fold (CFG.nodes cfg) ~f:compute_node_constraints ~init:[] in
print_constraint_list constraints ; constraints
end
(* MinTree is used to compute:
\max (\Sum_{n \in Nodes} c_n * x_n )
given a set of contraints on x_n. The constraints involve the contro flow
of the program.
*)
module MinTree = struct
type mt_node = Leaf of (int * Itv.Bound.t) | Min of mt_node list | Plus of mt_node list
let add_leaf node nid leaf =
let leaf' = Leaf (nid, leaf) in
match node with Min l -> Min (leaf' :: l) | Plus l -> Plus (leaf' :: l) | _ -> assert false
let plus_seq pp f l = Pp.seq ~sep:" + " pp f l
let rec pp fmt node =
match node with
| Leaf (nid, c) ->
F.fprintf fmt "%i:%a" nid Itv.Bound.pp c
| Min l ->
F.fprintf fmt "Min(%a)" (Pp.comma_seq pp) l
| Plus l ->
F.fprintf fmt "(%a)" (plus_seq pp) l
let add_child node child =
match child with
| Plus [] | Min [] ->
node (* if it's a dummy child, don't add it *)
| _ ->
match node with Plus l -> Plus (child :: l) | Min l -> Min (child :: l) | _ -> assert false
(* finds the subset of constraints of the form x_k <= x_j *)
let get_k_single_constraints constraints k =
List.filter_map
~f:(fun c ->
match c with
(* constraint x_k <= x_j is represented by k<=j *)
| Exp.BinOp (Binop.Le, Exp.Const Cint k', Exp.Const Cint nid)
when Int.equal k (IntLit.to_int k') ->
Some (IntLit.to_int nid)
| _ ->
None )
constraints
(* finds the subset of constraints of the form x_k <= x_j1 +...+ x_jn and
return the addends of the sum x_j1+x_j2+..+x_j_n*)
let get_k_sum_constraints constraints k =
let rec addends e =
match e with
| Exp.Const Cint nid ->
Int.Set.singleton (IntLit.to_int nid)
| Exp.BinOp (Binop.PlusA, e1, e2) ->
Int.Set.union (addends e1) (addends e2)
| _ ->
assert false
in
List.filter_map
~f:(fun c ->
match c with
| Exp.BinOp (Binop.Le, Exp.Const Cint k', (Exp.BinOp (Binop.PlusA, _, _) as sum_exp))
when Int.equal k (IntLit.to_int k') ->
Some (addends sum_exp)
| _ ->
None )
constraints
let rec evaluate_tree t =
match t with
| Leaf (_, c) ->
c
| Min l ->
evaluate_operator Itv.Bound.min l
| Plus l ->
evaluate_operator Itv.Bound.plus_u l
and evaluate_operator op l =
match l with
| [] ->
assert false
| [c] ->
evaluate_tree c
| c :: l' ->
let res_c = evaluate_tree c in
let res_l' = evaluate_operator op l' in
op res_c res_l'
(* TO DO: replace equality on sets with something more efficient*)
let rec add_without_rep s list_of_sets =
match list_of_sets with
| [] ->
[s]
| s' :: tail ->
if Int.Set.equal s s' then list_of_sets else s' :: add_without_rep s tail
(* a plus node is well formed if has at least two addends *)
let is_well_formed_plus_node plus_node =
match plus_node with Plus (_ :: _ :: _) -> true | _ -> false
let rec minimum_propagation (bound_map: BoundMap.t) (q: int) (visited: Int.Set.t)
(constraints: Exp.t list) =
let rec build_min node branch visited_acc worklist =
match worklist with
| [] ->
(node, branch, visited_acc)
| k :: rest ->
if Int.Set.mem visited_acc k then build_min node branch visited_acc rest
else
let visited_acc = Int.Set.add visited_acc k in
let node = add_leaf node k (BoundMap.upperbound bound_map k) in
let k_constraints_upperbound = get_k_single_constraints constraints k in
let worklist =
List.filter
~f:(fun ub_id -> not (Int.Set.mem visited_acc ub_id))
k_constraints_upperbound
|> List.rev_append worklist
in
let k_sum_constraints = get_k_sum_constraints constraints k in
let branch =
List.fold_left
~f:(fun branch set_addend ->
if Int.Set.is_empty (Int.Set.inter set_addend visited_acc) then
add_without_rep set_addend branch
else branch )
~init:branch k_sum_constraints
in
build_min node branch visited_acc worklist
in
let node, branch, visited_res = build_min (Min []) [] visited [q] in
List.fold_left
~f:(fun i_node addend ->
if Int.Set.length addend < 2 then assert false
else (
L.(debug Analysis Medium) "@\n\n|Set addends| = %i {" (Int.Set.length addend) ;
Int.Set.iter ~f:(fun e -> L.(debug Analysis Medium) " %i, " e) addend ;
L.(debug Analysis Medium) " }@\n " ) ;
let plus_node =
Set.fold
~f:(fun acc n ->
let child = minimum_propagation bound_map n visited_res constraints in
add_child acc child )
~init:(Plus []) addend
in
(* without this check it would add plus node with just one child, and give wrong results *)
if is_well_formed_plus_node plus_node then add_child i_node plus_node else i_node )
~init:node branch
let compute_trees_from_contraints bound_map cfg constraints =
let min_trees =
List.fold
~f:(fun acc n ->
let nid = (Procdesc.Node.get_id n :> int) in
(nid, minimum_propagation bound_map nid Int.Set.empty constraints) :: acc )
~init:[] (CFG.nodes cfg)
in
List.iter ~f:(fun (n, t) -> L.(debug Analysis Medium) "@\n node %i = %a @\n" n pp t) min_trees ;
min_trees
end
module ReportedOnNodes = AbstractDomain.FiniteSet (Int)
type extras_TransferFunctionsWCET =
{ basic_cost_map: AnalyzerNodesBasicCost.invariant_map
; min_trees_map: Itv.Bound.t Int.Map.t
; summary: Specs.summary }
(* Calculate the final Worst Case Execution Time predicted for each node.
It uses the basic cost of the nodes (computed previously by AnalyzerNodesBasicCost)
and MinTrees which give an upperbound on the number of times a node can be executed
*)
module TransferFunctionsWCET (CFG : ProcCfg.S) = struct
module CFG = CFG
module Domain = AbstractDomain.Pair (Itv.Bound) (ReportedOnNodes)
type extras = extras_TransferFunctionsWCET
let report_cost summary instr (cost: Itv.Bound.t) nid reported_so_far =
let mk_message () =
F.asprintf
"The execution time from the beginning of the function up to this program point is likely \
above the acceptable threshold of %a (estimated cost %a)" Itv.Bound.pp expensive_threshold
Itv.Bound.pp cost
in
match cost with
| b when Itv.Bound.is_not_infty b
-> (
let above_expensive_threshold = not (Itv.Bound.le cost expensive_threshold) in
let cost_desc = F.asprintf "with estimated cost %a" Itv.Bound.pp cost in
match instr with
| Sil.Call (_, _, _, loc, _) when above_expensive_threshold ->
let ltr = [Errlog.make_trace_element 0 loc cost_desc []] in
let exn =
Exceptions.Checkers
(IssueType.expensive_execution_time_call, Localise.verbatim_desc (mk_message ()))
in
Reporting.log_error summary ~loc ~ltr exn ;
(cost, ReportedOnNodes.add nid reported_so_far)
| Sil.Load (_, _, _, loc)
| Sil.Store (_, _, _, loc)
| Sil.Call (_, _, _, loc, _)
| Sil.Prune (_, loc, _, _)
when above_expensive_threshold ->
let ltr = [Errlog.make_trace_element 0 loc cost_desc []] in
let exn =
Exceptions.Checkers
(IssueType.expensive_execution_time_call, Localise.verbatim_desc (mk_message ()))
in
Reporting.log_error summary ~loc ~ltr exn ;
(cost, ReportedOnNodes.add nid reported_so_far)
| _ ->
(cost, reported_so_far) )
| _ ->
(cost, reported_so_far)
(* We don't report when the cost is Top as it corresponds to 'don't know'*)
(* get a list of nodes and check if we have already reported for at
least one of them. In that case no need to report again. *)
let should_report preds reported_so_far =
List.for_all
~f:(fun n ->
let n_id = (Procdesc.Node.get_id n :> int) in
not (ReportedOnNodes.mem n_id reported_so_far) )
preds
let exec_instr (astate: Domain.astate) {ProcData.extras} (node: CFG.node) instr : Domain.astate =
let {basic_cost_map= invariant_map_cost; min_trees_map= trees; summary} = extras in
let und_node = CFG.underlying_node node in
let node_id = Procdesc.Node.get_id und_node in
let preds = Procdesc.Node.get_preds und_node in
let map_cost m : Itv.Bound.t =
CostDomain.NodeInstructionToCostMap.fold
(fun (nid, idx) c acc ->
match Int.Map.find trees nid with
| Some t ->
let c_node = Itv.Bound.mult c t in
L.(debug Analysis Medium)
"@\n [AnalizerWCTE] Adding cost: (%i,%i) --> c =%a t = %a @\n" nid idx
Itv.Bound.pp c Itv.Bound.pp t ;
let c_node' = Itv.Bound.plus_u acc c_node in
L.(debug Analysis Medium)
"@\n [AnalizerWCTE] Adding cost: (%i,%i) --> c_node=%a cost = %a @\n" nid idx
Itv.Bound.pp c_node Itv.Bound.pp c_node' ;
c_node'
| _ ->
assert false )
m Itv.Bound.zero
in
let cost_node =
match AnalyzerNodesBasicCost.extract_post node_id invariant_map_cost with
| Some (_, node_map) ->
L.(debug Analysis Medium)
"@\n AnalizerWCTE] Final map for node: %a @\n" Procdesc.Node.pp_id node_id ;
map_cost node_map
| _ ->
assert false
in
L.(debug Analysis Medium)
"@\n>>>AnalizerWCTE] Instr: %a Cost: %a@\n" (Sil.pp_instr Pp.text) instr Itv.Bound.pp
cost_node ;
let reported_so_far = snd astate in
let astate' =
if should_report (und_node :: preds) reported_so_far then
report_cost summary instr cost_node (node_id :> int) reported_so_far
else (cost_node, reported_so_far)
in
astate'
end
module AnalyzerWCET = AbstractInterpreter.Make (CFG) (TransferFunctionsWCET)
let checker {Callbacks.tenv; summary; proc_desc} : Specs.summary =
Preanal.do_preanalysis proc_desc tenv ;
let proc_data = ProcData.make_default proc_desc tenv in
let cfg = CFG.from_pdesc proc_desc in
let invariant_map_NodesBasicCost =
(*compute_WCET cfg invariant_map min_trees in *)
AnalyzerNodesBasicCost.exec_cfg cfg proc_data ~initial:NodesBasicCostDomain.init ~debug:true
in
(* given the semantics computes the upper bound on the number of times a node could be executed *)
let bound_map = BoundMap.compute_upperbound_map cfg invariant_map_NodesBasicCost in
let constraints = StructuralConstraints.compute_structural_constraints cfg in
let min_trees = MinTree.compute_trees_from_contraints bound_map cfg constraints in
let trees_valuation =
List.fold
~f:(fun acc (n, t) ->
let res = MinTree.evaluate_tree t in
L.(debug Analysis Medium) "@\n Tree %i eval to %a @\n" n Itv.Bound.pp res ;
Int.Map.set acc ~key:n ~data:res )
~init:Int.Map.empty min_trees
in
let initWCET = (Itv.Bound.zero, ReportedOnNodes.empty) in
let invariant_map_WCETFinal =
(* Final map with nodes cost *)
AnalyzerWCET.exec_cfg cfg
(ProcData.make proc_desc tenv
{basic_cost_map= invariant_map_NodesBasicCost; min_trees_map= trees_valuation; summary})
~initial:initWCET ~debug:true
in
match AnalyzerWCET.extract_post (CFG.id (CFG.exit_node cfg)) invariant_map_WCETFinal with
| Some (exit_cost, _) ->
Summary.update_summary {post= exit_cost} summary
| None ->
if Procdesc.Node.get_succs (Procdesc.get_start_node proc_desc) <> [] then (
L.internal_error "Failed to compute final cost for function %a" Typ.Procname.pp
(Procdesc.get_proc_name proc_desc) ;
summary )
else summary