You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

200 lines
6.0 KiB

(*
* Copyright (c) 2016 - present
*
* Programming Research Laboratory (ROPAS)
* Seoul National University, Korea
* All rights reserved.
*
* This source code is licensed under the BSD style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*)
(* Abstract Array Block *)
open! IStd
open AbsLoc
module ArrInfo =
struct
type t =
{ offset : Itv.t;
size : Itv.t;
stride : Itv.t; }
[@@deriving compare]
type astate = t
let bot : t
= { offset = Itv.bot; size = Itv.bot; stride = Itv.bot; }
let initial : t
= bot
let top : t
= { offset = Itv.top; size = Itv.top; stride = Itv.top; }
let input : t
= { offset = Itv.zero; size = Itv.pos; stride = Itv.one; }
let make : Itv.t * Itv.t * Itv.t -> t
= fun (o, s, stride) -> { offset = o; size = s; stride = stride; }
let join : t -> t -> t
= fun a1 a2 ->
if phys_equal a1 a2 then a2 else
{ offset = Itv.join a1.offset a2.offset;
size = Itv.join a1.size a2.size;
stride = Itv.join a1.stride a2.stride; }
let widen : prev:t -> next:t -> num_iters:int -> t
= fun ~prev ~next ~num_iters ->
if phys_equal prev next then next else
{ offset = Itv.widen ~prev:prev.offset ~next:next.offset ~num_iters;
size = Itv.widen ~prev:prev.size ~next:next.size ~num_iters;
stride = Itv.widen ~prev:prev.stride ~next:next.stride ~num_iters; }
let eq : t -> t -> bool
= fun a1 a2 ->
if phys_equal a1 a2 then true else
Itv.eq a1.offset a2.offset
&& Itv.eq a1.size a2.size
&& Itv.eq a1.stride a2.stride
let (<=) : lhs:t -> rhs:t -> bool
= fun ~lhs ~rhs ->
if phys_equal lhs rhs then true else
Itv.le ~lhs:lhs.offset ~rhs:rhs.offset
&& Itv.le ~lhs:lhs.size ~rhs:rhs.size
&& Itv.le ~lhs:lhs.stride ~rhs:rhs.stride
let weak_plus_size : t -> Itv.t -> t
= fun arr i -> { arr with size = Itv.join arr.size (Itv.plus i arr.size) }
let plus_offset : t -> Itv.t -> t
= fun arr i -> { arr with offset = Itv.plus arr.offset i }
let minus_offset : t -> Itv.astate -> t
= fun arr i -> { arr with offset = Itv.minus arr.offset i }
let diff : t -> t -> Itv.astate
= fun arr1 arr2 ->
let i1 = Itv.mult arr1.offset arr1.stride in
let i2 = Itv.mult arr2.offset arr2.stride in
Itv.minus i1 i2
let subst : t -> Itv.Bound.t Itv.SubstMap.t -> t
= fun arr subst_map ->
{ arr with offset = Itv.subst arr.offset subst_map;
size = Itv.subst arr.size subst_map; }
let pp : Format.formatter -> t -> unit
= fun fmt arr ->
Format.fprintf fmt "offset : %a, size : %a"
Itv.pp arr.offset Itv.pp arr.size
let get_symbols : t -> Itv.Symbol.t list
= fun arr ->
let s1 = Itv.get_symbols arr.offset in
let s2 = Itv.get_symbols arr.size in
let s3 = Itv.get_symbols arr.stride in
List.concat [s1; s2; s3]
let normalize : t -> t
= fun arr ->
{ offset = Itv.normalize arr.offset;
size = Itv.normalize arr.size;
stride = Itv.normalize arr.stride }
let prune_comp : Binop.t -> t -> t -> t
= fun c arr1 arr2 ->
{ arr1 with offset = Itv.prune_comp c arr1.offset arr2.offset }
let prune_eq : t -> t -> t
= fun arr1 arr2 -> { arr1 with offset = Itv.prune_eq arr1.offset arr2.offset }
let prune_ne : t -> t -> t
= fun arr1 arr2 -> { arr1 with offset = Itv.prune_ne arr1.offset arr2.offset }
end
module PPMap =
struct
include PrettyPrintable.MakePPMap (struct
include Allocsite
let pp_key f k = pp f k
end)
let pp ~pp_value fmt m =
let pp_item fmt (k, v) = F.fprintf fmt "(%a, %a)" pp_key k pp_value v in
PrettyPrintable.pp_collection ~pp_item fmt (bindings m)
end
include AbstractDomain.Map (PPMap) (ArrInfo)
let bot : astate
= empty
let make : Allocsite.t -> Itv.t -> Itv.t -> Itv.t -> astate
= fun a o sz st -> add a (ArrInfo.make (o, sz, st)) bot
let offsetof : astate -> Itv.t
= fun a -> fold (fun _ arr -> Itv.join arr.ArrInfo.offset) a Itv.bot
let sizeof : astate -> Itv.t
= fun a -> fold (fun _ arr -> Itv.join arr.ArrInfo.size) a Itv.bot
let extern : string -> astate
= fun allocsite -> add allocsite ArrInfo.top empty
let input : string -> astate
= fun allocsite -> add allocsite ArrInfo.input empty
let weak_plus_size : astate -> Itv.t -> astate
= fun arr i -> map (fun a -> ArrInfo.weak_plus_size a i) arr
let plus_offset : astate -> Itv.t -> astate
= fun arr i -> map (fun a -> ArrInfo.plus_offset a i) arr
let minus_offset : astate -> Itv.t -> astate
= fun arr i -> map (fun a -> ArrInfo.minus_offset a i) arr
let diff : astate -> astate -> Itv.t
= fun arr1 arr2 ->
let diff_join k a2 acc =
match find k arr1 with
| a1 -> Itv.join acc (ArrInfo.diff a1 a2)
| exception Not_found -> acc
in
fold diff_join arr2 Itv.bot
let get_pow_loc : astate -> PowLoc.t
= fun array ->
let pow_loc_of_allocsite k _ acc = PowLoc.add (Loc.of_allocsite k) acc in
fold pow_loc_of_allocsite array PowLoc.bot
let subst : astate -> Itv.Bound.t Itv.SubstMap.t -> astate
= fun a subst_map -> map (fun info -> ArrInfo.subst info subst_map) a
let get_symbols : astate -> Itv.Symbol.t list
= fun a ->
List.concat (IList.map (fun (_, ai) -> ArrInfo.get_symbols ai) (bindings a))
let normalize : astate -> astate
= fun a -> map ArrInfo.normalize a
let do_prune
: (ArrInfo.t -> ArrInfo.t -> ArrInfo.t) -> astate -> astate -> astate
= fun arr_info_prune a1 a2 ->
if Int.equal (cardinal a2) 1 then
let (k, v2) = choose a2 in
if mem k a1 then add k (arr_info_prune (find k a1) v2) a1 else a1
else a1
let prune_comp : Binop.t -> astate -> astate -> astate
= fun c a1 a2 -> do_prune (ArrInfo.prune_comp c) a1 a2
let prune_eq : astate -> astate -> astate
= fun a1 a2 -> do_prune ArrInfo.prune_eq a1 a2
let prune_ne : astate -> astate -> astate
= fun a1 a2 -> do_prune ArrInfo.prune_ne a1 a2