|
|
|
(*
|
|
|
|
* Copyright (c) 2016-present
|
|
|
|
*
|
|
|
|
* Programming Research Laboratory (ROPAS)
|
|
|
|
* Seoul National University, Korea
|
|
|
|
*
|
|
|
|
* This source code is licensed under the MIT license found in the
|
|
|
|
* LICENSE file in the root directory of this source tree.
|
|
|
|
*)
|
|
|
|
|
|
|
|
open! IStd
|
|
|
|
open AbsLoc
|
|
|
|
open! AbstractDomain.Types
|
|
|
|
open BufferOverrunDomain
|
|
|
|
|
|
|
|
let eval_const : Const.t -> Val.t = function
|
|
|
|
| Const.Cint intlit ->
|
|
|
|
Option.value_map ~default:Val.Itv.top ~f:Val.of_int (IntLit.to_int intlit)
|
|
|
|
| Const.Cfloat f ->
|
|
|
|
f |> int_of_float |> Val.of_int
|
|
|
|
| _ ->
|
|
|
|
Val.Itv.top
|
|
|
|
|
|
|
|
|
|
|
|
(* TODO *)
|
|
|
|
|
|
|
|
let sizeof_ikind : Typ.ikind -> int = function
|
|
|
|
| Typ.IChar | Typ.ISChar | Typ.IUChar | Typ.IBool ->
|
|
|
|
1
|
|
|
|
| Typ.IInt | Typ.IUInt ->
|
|
|
|
4
|
|
|
|
| Typ.IShort | Typ.IUShort ->
|
|
|
|
2
|
|
|
|
| Typ.ILong | Typ.IULong ->
|
|
|
|
4
|
|
|
|
| Typ.ILongLong | Typ.IULongLong ->
|
|
|
|
8
|
|
|
|
| Typ.I128 | Typ.IU128 ->
|
|
|
|
16
|
|
|
|
|
|
|
|
|
|
|
|
let sizeof_fkind : Typ.fkind -> int = function
|
|
|
|
| Typ.FFloat ->
|
|
|
|
4
|
|
|
|
| Typ.FDouble | Typ.FLongDouble ->
|
|
|
|
8
|
|
|
|
|
|
|
|
|
|
|
|
(* NOTE: assume 32bit machine *)
|
|
|
|
let rec sizeof (typ: Typ.t) : int =
|
|
|
|
match typ.desc with
|
|
|
|
| Typ.Tint ikind ->
|
|
|
|
sizeof_ikind ikind
|
|
|
|
| Typ.Tfloat fkind ->
|
|
|
|
sizeof_fkind fkind
|
|
|
|
| Typ.Tvoid ->
|
|
|
|
1
|
|
|
|
| Typ.Tptr (_, _) ->
|
|
|
|
4
|
|
|
|
| Typ.Tstruct _ | Typ.TVar _ ->
|
|
|
|
4 (* TODO *)
|
|
|
|
| Typ.Tarray {length= Some length; stride= Some stride} ->
|
|
|
|
IntLit.to_int_exn stride * IntLit.to_int_exn length
|
|
|
|
| Typ.Tarray {elt; length= Some length; stride= None} ->
|
|
|
|
sizeof elt * IntLit.to_int_exn length
|
|
|
|
| _ ->
|
|
|
|
4
|
|
|
|
|
|
|
|
|
|
|
|
let rec must_alias : Exp.t -> Exp.t -> Mem.astate -> bool =
|
|
|
|
fun e1 e2 m ->
|
|
|
|
match (e1, e2) with
|
|
|
|
| Exp.Var x1, Exp.Var x2 -> (
|
|
|
|
match (Mem.find_alias x1 m, Mem.find_alias x2 m) with
|
|
|
|
| Some x1', Some x2' ->
|
|
|
|
AliasTarget.equal x1' x2'
|
|
|
|
| _, _ ->
|
|
|
|
false )
|
|
|
|
| Exp.UnOp (uop1, e1', _), Exp.UnOp (uop2, e2', _) ->
|
|
|
|
Unop.equal uop1 uop2 && must_alias e1' e2' m
|
|
|
|
| Exp.BinOp (bop1, e11, e12), Exp.BinOp (bop2, e21, e22) ->
|
|
|
|
Binop.equal bop1 bop2 && must_alias e11 e21 m && must_alias e12 e22 m
|
|
|
|
| Exp.Exn t1, Exp.Exn t2 ->
|
|
|
|
must_alias t1 t2 m
|
|
|
|
| Exp.Const c1, Exp.Const c2 ->
|
|
|
|
Const.equal c1 c2
|
|
|
|
| Exp.Cast (t1, e1'), Exp.Cast (t2, e2') ->
|
|
|
|
Typ.equal t1 t2 && must_alias e1' e2' m
|
|
|
|
| Exp.Lvar x1, Exp.Lvar x2 ->
|
|
|
|
Pvar.equal x1 x2
|
|
|
|
| Exp.Lfield (e1, fld1, _), Exp.Lfield (e2, fld2, _) ->
|
|
|
|
must_alias e1 e2 m && Typ.Fieldname.equal fld1 fld2
|
|
|
|
| Exp.Lindex (e11, e12), Exp.Lindex (e21, e22) ->
|
|
|
|
must_alias e11 e21 m && must_alias e12 e22 m
|
|
|
|
| Exp.Sizeof {nbytes= Some nbytes1}, Exp.Sizeof {nbytes= Some nbytes2} ->
|
|
|
|
Int.equal nbytes1 nbytes2
|
|
|
|
| ( Exp.Sizeof {typ= t1; dynamic_length= dynlen1; subtype= subt1}
|
|
|
|
, Exp.Sizeof {typ= t2; dynamic_length= dynlen2; subtype= subt2} ) ->
|
|
|
|
Typ.equal t1 t2 && must_alias_opt dynlen1 dynlen2 m
|
|
|
|
&& Int.equal (Subtype.compare subt1 subt2) 0
|
|
|
|
| _, _ ->
|
|
|
|
false
|
|
|
|
|
|
|
|
|
|
|
|
and must_alias_opt : Exp.t option -> Exp.t option -> Mem.astate -> bool =
|
|
|
|
fun e1_opt e2_opt m ->
|
|
|
|
match (e1_opt, e2_opt) with
|
|
|
|
| Some e1, Some e2 ->
|
|
|
|
must_alias e1 e2 m
|
|
|
|
| None, None ->
|
|
|
|
true
|
|
|
|
| _, _ ->
|
|
|
|
false
|
|
|
|
|
|
|
|
|
|
|
|
let comp_rev : Binop.t -> Binop.t = function
|
|
|
|
| Binop.Lt ->
|
|
|
|
Binop.Gt
|
|
|
|
| Binop.Gt ->
|
|
|
|
Binop.Lt
|
|
|
|
| Binop.Le ->
|
|
|
|
Binop.Ge
|
|
|
|
| Binop.Ge ->
|
|
|
|
Binop.Le
|
|
|
|
| Binop.Eq ->
|
|
|
|
Binop.Eq
|
|
|
|
| Binop.Ne ->
|
|
|
|
Binop.Ne
|
|
|
|
| _ ->
|
|
|
|
assert false
|
|
|
|
|
|
|
|
|
|
|
|
let comp_not : Binop.t -> Binop.t = function
|
|
|
|
| Binop.Lt ->
|
|
|
|
Binop.Ge
|
|
|
|
| Binop.Gt ->
|
|
|
|
Binop.Le
|
|
|
|
| Binop.Le ->
|
|
|
|
Binop.Gt
|
|
|
|
| Binop.Ge ->
|
|
|
|
Binop.Lt
|
|
|
|
| Binop.Eq ->
|
|
|
|
Binop.Ne
|
|
|
|
| Binop.Ne ->
|
|
|
|
Binop.Eq
|
|
|
|
| _ ->
|
|
|
|
assert false
|
|
|
|
|
|
|
|
|
|
|
|
let rec must_alias_cmp : Exp.t -> Mem.astate -> bool =
|
|
|
|
fun e m ->
|
|
|
|
match e with
|
|
|
|
| Exp.BinOp (Binop.Lt, e1, e2) | Exp.BinOp (Binop.Gt, e1, e2) | Exp.BinOp (Binop.Ne, e1, e2) ->
|
|
|
|
must_alias e1 e2 m
|
|
|
|
| Exp.BinOp (Binop.LAnd, e1, e2) ->
|
|
|
|
must_alias_cmp e1 m || must_alias_cmp e2 m
|
|
|
|
| Exp.BinOp (Binop.LOr, e1, e2) ->
|
|
|
|
must_alias_cmp e1 m && must_alias_cmp e2 m
|
|
|
|
| Exp.UnOp (Unop.LNot, Exp.UnOp (Unop.LNot, e1, _), _) ->
|
|
|
|
must_alias_cmp e1 m
|
|
|
|
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Lt as c), e1, e2), _)
|
|
|
|
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Gt as c), e1, e2), _)
|
|
|
|
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Le as c), e1, e2), _)
|
|
|
|
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Ge as c), e1, e2), _)
|
|
|
|
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Eq as c), e1, e2), _)
|
|
|
|
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Ne as c), e1, e2), _) ->
|
|
|
|
must_alias_cmp (Exp.BinOp (comp_not c, e1, e2)) m
|
|
|
|
| Exp.UnOp (Unop.LNot, Exp.BinOp (Binop.LOr, e1, e2), t) ->
|
|
|
|
let e1' = Exp.UnOp (Unop.LNot, e1, t) in
|
|
|
|
let e2' = Exp.UnOp (Unop.LNot, e2, t) in
|
|
|
|
must_alias_cmp (Exp.BinOp (Binop.LAnd, e1', e2')) m
|
|
|
|
| Exp.UnOp (Unop.LNot, Exp.BinOp (Binop.LAnd, e1, e2), t) ->
|
|
|
|
let e1' = Exp.UnOp (Unop.LNot, e1, t) in
|
|
|
|
let e2' = Exp.UnOp (Unop.LNot, e2, t) in
|
|
|
|
must_alias_cmp (Exp.BinOp (Binop.LOr, e1', e2')) m
|
|
|
|
| _ ->
|
|
|
|
false
|
|
|
|
|
|
|
|
|
|
|
|
let rec eval : Exp.t -> Mem.astate -> Val.t =
|
|
|
|
fun exp mem ->
|
|
|
|
if must_alias_cmp exp mem then Val.of_int 0
|
|
|
|
else
|
|
|
|
match exp with
|
|
|
|
| Exp.Var id ->
|
|
|
|
Mem.find_stack (Var.of_id id |> Loc.of_var) mem
|
|
|
|
| Exp.Lvar pvar ->
|
|
|
|
let ploc = pvar |> Loc.of_pvar |> PowLoc.singleton in
|
|
|
|
let arr = Mem.find_stack_set ploc mem in
|
|
|
|
ploc |> Val.of_pow_loc |> Val.join arr
|
|
|
|
| Exp.UnOp (uop, e, _) ->
|
|
|
|
eval_unop uop e mem
|
|
|
|
| Exp.BinOp (bop, e1, e2) ->
|
|
|
|
eval_binop bop e1 e2 mem
|
|
|
|
| Exp.Const c ->
|
|
|
|
eval_const c
|
|
|
|
| Exp.Cast (_, e) ->
|
|
|
|
eval e mem
|
|
|
|
| Exp.Lfield (e, fn, _) ->
|
|
|
|
eval e mem |> Val.get_all_locs |> PowLoc.append_field ~fn |> Val.of_pow_loc
|
|
|
|
| Exp.Lindex (e1, e2) ->
|
|
|
|
eval_lindex e1 e2 mem
|
|
|
|
| Exp.Sizeof {nbytes= Some size} ->
|
|
|
|
Val.of_int size
|
|
|
|
| Exp.Sizeof {typ; nbytes= None} ->
|
|
|
|
Val.of_int (sizeof typ)
|
|
|
|
| Exp.Exn _ | Exp.Closure _ ->
|
|
|
|
Val.Itv.top
|
|
|
|
|
|
|
|
|
|
|
|
(* NOTE: multidimensional array is not supported yet *)
|
|
|
|
and eval_lindex array_exp index_exp mem =
|
|
|
|
let array_v, index_v = (eval array_exp mem, eval index_exp mem) in
|
|
|
|
let arr = Val.plus_pi array_v index_v in
|
|
|
|
if ArrayBlk.is_bot (Val.get_array_blk arr) then
|
|
|
|
match array_exp with
|
|
|
|
| Exp.Lfield _ when not (PowLoc.is_bot (Val.get_pow_loc array_v)) ->
|
|
|
|
(* It handles the case accessing an array field of struct,
|
|
|
|
e.g., x.f[n] . Since our abstract domain distinguishes
|
|
|
|
memory sections for each array fields in struct, it finds
|
|
|
|
the memory section using the abstract memory, though the
|
|
|
|
memory lookup is not required to evaluate the address of
|
|
|
|
x.f[n] in the concrete semantics. *)
|
|
|
|
Val.plus_pi (Mem.find_set (Val.get_pow_loc array_v) mem) index_v
|
|
|
|
| _ ->
|
|
|
|
Val.of_pow_loc PowLoc.unknown
|
|
|
|
else arr
|
|
|
|
|
|
|
|
|
|
|
|
and eval_unop : Unop.t -> Exp.t -> Mem.astate -> Val.t =
|
|
|
|
fun unop e mem ->
|
|
|
|
let v = eval e mem in
|
|
|
|
match unop with
|
|
|
|
| Unop.Neg ->
|
|
|
|
Val.neg v
|
|
|
|
| Unop.BNot ->
|
|
|
|
Val.unknown_bit v
|
|
|
|
| Unop.LNot ->
|
|
|
|
Val.lnot v
|
|
|
|
|
|
|
|
|
|
|
|
and eval_binop : Binop.t -> Exp.t -> Exp.t -> Mem.astate -> Val.t =
|
|
|
|
fun binop e1 e2 mem ->
|
|
|
|
let v1 = eval e1 mem in
|
|
|
|
let v2 = eval e2 mem in
|
|
|
|
match binop with
|
|
|
|
| Binop.PlusA ->
|
|
|
|
Val.plus_a v1 v2
|
|
|
|
| Binop.PlusPI ->
|
|
|
|
Val.plus_pi v1 v2
|
|
|
|
| Binop.MinusA ->
|
|
|
|
Val.minus_a v1 v2
|
|
|
|
| Binop.MinusPI ->
|
|
|
|
Val.minus_pi v1 v2
|
|
|
|
| Binop.MinusPP ->
|
|
|
|
Val.minus_pp v1 v2
|
|
|
|
| Binop.Mult ->
|
|
|
|
Val.mult v1 v2
|
|
|
|
| Binop.Div ->
|
|
|
|
Val.div v1 v2
|
|
|
|
| Binop.Mod ->
|
|
|
|
Val.mod_sem v1 v2
|
|
|
|
| Binop.Shiftlt ->
|
|
|
|
Val.shiftlt v1 v2
|
|
|
|
| Binop.Shiftrt ->
|
|
|
|
Val.shiftrt v1 v2
|
|
|
|
| Binop.Lt ->
|
|
|
|
Val.lt_sem v1 v2
|
|
|
|
| Binop.Gt ->
|
|
|
|
Val.gt_sem v1 v2
|
|
|
|
| Binop.Le ->
|
|
|
|
Val.le_sem v1 v2
|
|
|
|
| Binop.Ge ->
|
|
|
|
Val.ge_sem v1 v2
|
|
|
|
| Binop.Eq ->
|
|
|
|
Val.eq_sem v1 v2
|
|
|
|
| Binop.Ne ->
|
|
|
|
Val.ne_sem v1 v2
|
|
|
|
| Binop.BAnd | Binop.BXor | Binop.BOr ->
|
|
|
|
Val.unknown_bit v1
|
|
|
|
| Binop.LAnd ->
|
|
|
|
Val.land_sem v1 v2
|
|
|
|
| Binop.LOr ->
|
|
|
|
Val.lor_sem v1 v2
|
|
|
|
|
|
|
|
|
|
|
|
(* It returns the array value of the input expression. For example,
|
|
|
|
when "x" is a program variable, (eval_arr "x") returns array blocks
|
|
|
|
the "x" is pointing to, on the other hand, (eval "x") returns the
|
|
|
|
abstract location of "x". *)
|
|
|
|
let rec eval_arr : Exp.t -> Mem.astate -> Val.t =
|
|
|
|
fun exp mem ->
|
|
|
|
match exp with
|
|
|
|
| Exp.Var id -> (
|
|
|
|
match Mem.find_alias id mem with
|
|
|
|
| Some (AliasTarget.Simple loc) ->
|
|
|
|
Mem.find_heap loc mem
|
|
|
|
| Some (AliasTarget.Empty _) | None ->
|
|
|
|
Val.bot )
|
|
|
|
| Exp.Lvar pvar ->
|
|
|
|
Mem.find_set (PowLoc.singleton (Loc.of_pvar pvar)) mem
|
|
|
|
| Exp.BinOp (bop, e1, e2) ->
|
|
|
|
eval_binop bop e1 e2 mem
|
|
|
|
| Exp.Cast (_, e) ->
|
|
|
|
eval_arr e mem
|
|
|
|
| Exp.Lfield (e, fn, _) ->
|
|
|
|
let locs = eval e mem |> Val.get_all_locs |> PowLoc.append_field ~fn in
|
|
|
|
Mem.find_heap_set locs mem
|
|
|
|
| Exp.Lindex (e1, e2) ->
|
|
|
|
let arr = eval e1 mem in
|
|
|
|
let idx = eval e2 mem in
|
|
|
|
Val.plus_pi arr idx
|
|
|
|
| Exp.Const _ | Exp.UnOp _ | Exp.Sizeof _ | Exp.Exn _ | Exp.Closure _ ->
|
|
|
|
Val.bot
|
|
|
|
|
|
|
|
|
|
|
|
let get_allocsite : Typ.Procname.t -> node_hash:int -> inst_num:int -> dimension:int -> Allocsite.t =
|
|
|
|
fun proc_name ~node_hash ~inst_num ~dimension ->
|
|
|
|
let proc_name = Typ.Procname.to_string proc_name in
|
|
|
|
let node_num = string_of_int node_hash in
|
|
|
|
let inst_num = string_of_int inst_num in
|
|
|
|
let dimension = string_of_int dimension in
|
|
|
|
proc_name ^ "-" ^ node_num ^ "-" ^ inst_num ^ "-" ^ dimension |> Allocsite.make
|
|
|
|
|
|
|
|
|
|
|
|
let eval_array_alloc
|
|
|
|
: Allocsite.t -> Typ.t -> stride:int option -> offset:Itv.t -> size:Itv.t -> Val.t =
|
|
|
|
fun allocsite typ ~stride ~offset ~size ->
|
|
|
|
let int_stride = match stride with None -> sizeof typ | Some stride -> stride in
|
|
|
|
let stride = Itv.of_int int_stride in
|
|
|
|
ArrayBlk.make allocsite ~offset ~size ~stride |> Val.of_array_blk ~allocsite
|
|
|
|
|
|
|
|
|
|
|
|
let get_sym_f mem e = Val.get_sym (eval e mem)
|
|
|
|
|
|
|
|
let get_offset_sym_f mem e = Val.get_offset_sym (eval e mem)
|
|
|
|
|
|
|
|
let get_size_sym_f mem e = Val.get_size_sym (eval e mem)
|
|
|
|
|
|
|
|
module Prune = struct
|
|
|
|
type astate = {prune_pairs: PrunePairs.t; mem: Mem.astate}
|
|
|
|
|
|
|
|
let update_mem_in_prune lv v {prune_pairs; mem} =
|
|
|
|
let prune_pairs = (lv, v) :: prune_pairs in
|
|
|
|
let mem = Mem.update_mem (PowLoc.singleton lv) v mem in
|
|
|
|
{prune_pairs; mem}
|
|
|
|
|
|
|
|
|
|
|
|
let prune_unop : Exp.t -> astate -> astate =
|
|
|
|
fun e ({mem} as astate) ->
|
|
|
|
match e with
|
|
|
|
| Exp.Var x -> (
|
|
|
|
match Mem.find_alias x mem with
|
|
|
|
| Some (AliasTarget.Simple lv) ->
|
|
|
|
let v = Mem.find_heap lv mem in
|
|
|
|
let v' = Val.prune_ne_zero v in
|
|
|
|
update_mem_in_prune lv v' astate
|
|
|
|
| Some (AliasTarget.Empty lv) ->
|
|
|
|
let v = Mem.find_heap lv mem in
|
|
|
|
let v' = Val.prune_eq_zero v in
|
|
|
|
update_mem_in_prune lv v' astate
|
|
|
|
| None ->
|
|
|
|
astate )
|
|
|
|
| Exp.UnOp (Unop.LNot, Exp.Var x, _) -> (
|
|
|
|
match Mem.find_alias x mem with
|
|
|
|
| Some (AliasTarget.Simple lv) ->
|
|
|
|
let v = Mem.find_heap lv mem in
|
|
|
|
let v' = Val.prune_eq_zero v in
|
|
|
|
update_mem_in_prune lv v' astate
|
|
|
|
| Some (AliasTarget.Empty lv) ->
|
|
|
|
let v = Mem.find_heap lv mem in
|
|
|
|
let itv_v = Itv.prune_comp Binop.Ge (Val.get_itv v) Itv.one in
|
|
|
|
let v' = Val.modify_itv itv_v v in
|
|
|
|
update_mem_in_prune lv v' astate
|
|
|
|
| None ->
|
|
|
|
astate )
|
|
|
|
| _ ->
|
|
|
|
astate
|
|
|
|
|
|
|
|
|
|
|
|
let prune_binop_left : Exp.t -> astate -> astate =
|
|
|
|
fun e ({mem} as astate) ->
|
|
|
|
match e with
|
|
|
|
| Exp.BinOp ((Binop.Lt as comp), Exp.Var x, e')
|
|
|
|
| Exp.BinOp ((Binop.Gt as comp), Exp.Var x, e')
|
|
|
|
| Exp.BinOp ((Binop.Le as comp), Exp.Var x, e')
|
|
|
|
| Exp.BinOp ((Binop.Ge as comp), Exp.Var x, e') -> (
|
|
|
|
match Mem.find_simple_alias x mem with
|
|
|
|
| Some lv ->
|
|
|
|
let v = Mem.find_heap lv mem in
|
|
|
|
let v' = Val.prune_comp comp v (eval e' mem) in
|
|
|
|
update_mem_in_prune lv v' astate
|
|
|
|
| None ->
|
|
|
|
astate )
|
|
|
|
| Exp.BinOp (Binop.Eq, Exp.Var x, e') -> (
|
|
|
|
match Mem.find_simple_alias x mem with
|
|
|
|
| Some lv ->
|
|
|
|
let v = Mem.find_heap lv mem in
|
|
|
|
let v' = Val.prune_eq v (eval e' mem) in
|
|
|
|
update_mem_in_prune lv v' astate
|
|
|
|
| None ->
|
|
|
|
astate )
|
|
|
|
| Exp.BinOp (Binop.Ne, Exp.Var x, e') -> (
|
|
|
|
match Mem.find_simple_alias x mem with
|
|
|
|
| Some lv ->
|
|
|
|
let v = Mem.find_heap lv mem in
|
|
|
|
let v' = Val.prune_ne v (eval e' mem) in
|
|
|
|
update_mem_in_prune lv v' astate
|
|
|
|
| None ->
|
|
|
|
astate )
|
|
|
|
| _ ->
|
|
|
|
astate
|
|
|
|
|
|
|
|
|
|
|
|
let prune_binop_right : Exp.t -> astate -> astate =
|
|
|
|
fun e astate ->
|
|
|
|
match e with
|
|
|
|
| Exp.BinOp ((Binop.Lt as c), e', Exp.Var x)
|
|
|
|
| Exp.BinOp ((Binop.Gt as c), e', Exp.Var x)
|
|
|
|
| Exp.BinOp ((Binop.Le as c), e', Exp.Var x)
|
|
|
|
| Exp.BinOp ((Binop.Ge as c), e', Exp.Var x)
|
|
|
|
| Exp.BinOp ((Binop.Eq as c), e', Exp.Var x)
|
|
|
|
| Exp.BinOp ((Binop.Ne as c), e', Exp.Var x) ->
|
|
|
|
prune_binop_left (Exp.BinOp (comp_rev c, Exp.Var x, e')) astate
|
|
|
|
| _ ->
|
|
|
|
astate
|
|
|
|
|
|
|
|
|
|
|
|
let is_unreachable_constant : Exp.t -> Mem.astate -> bool =
|
|
|
|
fun e m ->
|
|
|
|
let v = eval e m in
|
|
|
|
Itv.( <= ) ~lhs:(Val.get_itv v) ~rhs:(Itv.of_int 0) && PowLoc.is_bot (Val.get_pow_loc v)
|
|
|
|
&& ArrayBlk.is_bot (Val.get_array_blk v)
|
|
|
|
|
|
|
|
|
|
|
|
let prune_unreachable : Exp.t -> astate -> astate =
|
|
|
|
fun e ({mem} as astate) ->
|
|
|
|
if is_unreachable_constant e mem || Mem.is_relation_unsat mem then {astate with mem= Mem.bot}
|
|
|
|
else astate
|
|
|
|
|
|
|
|
|
|
|
|
let rec prune_helper e astate =
|
|
|
|
let astate =
|
|
|
|
astate |> prune_unreachable e |> prune_unop e |> prune_binop_left e |> prune_binop_right e
|
|
|
|
in
|
|
|
|
match e with
|
|
|
|
| Exp.BinOp (Binop.Ne, e, Exp.Const (Const.Cint i)) when IntLit.iszero i ->
|
|
|
|
prune_helper e astate
|
|
|
|
| Exp.BinOp (Binop.Eq, e, Exp.Const (Const.Cint i)) when IntLit.iszero i ->
|
|
|
|
prune_helper (Exp.UnOp (Unop.LNot, e, None)) astate
|
|
|
|
| Exp.UnOp (Unop.Neg, Exp.Var x, _) ->
|
|
|
|
prune_helper (Exp.Var x) astate
|
|
|
|
| Exp.BinOp (Binop.LAnd, e1, e2) ->
|
|
|
|
astate |> prune_helper e1 |> prune_helper e2
|
|
|
|
| Exp.UnOp (Unop.LNot, Exp.BinOp (Binop.LOr, e1, e2), t) ->
|
|
|
|
astate |> prune_helper (Exp.UnOp (Unop.LNot, e1, t))
|
|
|
|
|> prune_helper (Exp.UnOp (Unop.LNot, e2, t))
|
|
|
|
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Lt as c), e1, e2), _)
|
|
|
|
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Gt as c), e1, e2), _)
|
|
|
|
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Le as c), e1, e2), _)
|
|
|
|
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Ge as c), e1, e2), _)
|
|
|
|
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Eq as c), e1, e2), _)
|
|
|
|
| Exp.UnOp (Unop.LNot, Exp.BinOp ((Binop.Ne as c), e1, e2), _) ->
|
|
|
|
prune_helper (Exp.BinOp (comp_not c, e1, e2)) astate
|
|
|
|
| _ ->
|
|
|
|
astate
|
|
|
|
|
|
|
|
|
|
|
|
let prune : Exp.t -> Mem.astate -> Mem.astate =
|
|
|
|
fun e mem ->
|
|
|
|
let mem = Mem.apply_latest_prune e mem in
|
|
|
|
let mem =
|
|
|
|
let constrs = Relation.Constraints.of_exp e ~get_sym_f:(get_sym_f mem) in
|
|
|
|
Mem.meet_constraints constrs mem
|
|
|
|
in
|
|
|
|
let {mem; prune_pairs} = prune_helper e {mem; prune_pairs= PrunePairs.empty} in
|
|
|
|
Mem.set_prune_pairs prune_pairs mem
|
|
|
|
end
|
|
|
|
|
|
|
|
let get_formals : Procdesc.t -> (Pvar.t * Typ.t) list =
|
|
|
|
fun pdesc ->
|
|
|
|
let proc_name = Procdesc.get_proc_name pdesc in
|
|
|
|
Procdesc.get_formals pdesc |> List.map ~f:(fun (name, typ) -> (Pvar.mk name proc_name, typ))
|
|
|
|
|
|
|
|
|
|
|
|
let get_matching_pairs
|
|
|
|
: Tenv.t -> Itv.SymbolPath.partial -> Val.t -> Val.t -> Exp.t option -> Typ.t -> Mem.astate
|
|
|
|
-> Itv.SymbolTable.summary_t -> Mem.astate
|
|
|
|
-> (Itv.Symbol.t * Itv.Bound.t bottom_lifted * TraceSet.t) list
|
|
|
|
* AliasTarget.t option
|
|
|
|
* (Relation.Var.t * Relation.SymExp.t option) list =
|
|
|
|
fun tenv formal callee_v actual actual_exp_opt typ caller_mem callee_symbol_table callee_exit_mem ->
|
|
|
|
let open Itv in
|
|
|
|
let callee_ret_alias = Mem.find_ret_alias callee_exit_mem in
|
|
|
|
let get_itv v = Val.get_itv v in
|
|
|
|
let get_offset v = v |> Val.get_array_blk |> ArrayBlk.offsetof in
|
|
|
|
let get_size v = v |> Val.get_array_blk |> ArrayBlk.sizeof in
|
|
|
|
let get_offset_sym v = Val.get_offset_sym v in
|
|
|
|
let get_size_sym v = Val.get_size_sym v in
|
|
|
|
let get_field_name (fn, _, _) = fn in
|
|
|
|
let append_field v fn = PowLoc.append_field (Val.get_all_locs v) ~fn in
|
|
|
|
let deref_field v fn mem = Mem.find_heap_set (append_field v fn) mem in
|
|
|
|
let deref_ptr v mem =
|
|
|
|
let array_locs = Val.get_array_locs v in
|
|
|
|
let locs = if PowLoc.is_empty array_locs then Val.get_pow_loc v else array_locs in
|
|
|
|
Mem.find_heap_set locs mem
|
|
|
|
in
|
|
|
|
let ret_alias = ref None in
|
|
|
|
let add_ret_alias v1 v2 =
|
|
|
|
match callee_ret_alias with
|
|
|
|
| Some ret_loc ->
|
|
|
|
if
|
|
|
|
PowLoc.is_singleton v1 && PowLoc.is_singleton v2
|
|
|
|
&& AliasTarget.use (PowLoc.min_elt v1) ret_loc
|
|
|
|
then ret_alias := Some (AliasTarget.replace (PowLoc.min_elt v2) ret_loc)
|
|
|
|
| None ->
|
|
|
|
()
|
|
|
|
in
|
|
|
|
let add_pair_itv path1 itv2 traces l =
|
|
|
|
match SymbolTable.find_opt path1 callee_symbol_table with
|
|
|
|
| Some (lb1, ub1) ->
|
|
|
|
if Itv.eq itv2 bot then (lb1, Bottom, TraceSet.empty) :: (ub1, Bottom, TraceSet.empty) :: l
|
|
|
|
else (lb1, NonBottom (lb itv2), traces) :: (ub1, NonBottom (ub itv2), traces) :: l
|
|
|
|
| _ ->
|
|
|
|
l
|
|
|
|
in
|
|
|
|
let add_pair_sym_main_value v1 v2 ~e2_opt l =
|
|
|
|
Option.value_map (Val.get_sym_var v1) ~default:l ~f:(fun var ->
|
|
|
|
let sym_exp_opt =
|
|
|
|
Option.first_some
|
|
|
|
(Relation.SymExp.of_exp_opt ~get_sym_f:(get_sym_f caller_mem) e2_opt)
|
|
|
|
(Relation.SymExp.of_sym (Val.get_sym v2))
|
|
|
|
in
|
|
|
|
(var, sym_exp_opt) :: l )
|
|
|
|
in
|
|
|
|
let add_pair_sym s1 s2 l =
|
|
|
|
Option.value_map (Relation.Sym.get_var s1) ~default:l ~f:(fun var ->
|
|
|
|
(var, Relation.SymExp.of_sym s2) :: l )
|
|
|
|
in
|
|
|
|
let add_pair_val path1 v1 v2 ~e2_opt (bound_pairs, rel_pairs) =
|
|
|
|
add_ret_alias (Val.get_all_locs v1) (Val.get_all_locs v2) ;
|
|
|
|
let bound_pairs =
|
|
|
|
bound_pairs |> add_pair_itv (SymbolPath.normal path1) (get_itv v2) (Val.get_traces v2)
|
|
|
|
|> add_pair_itv (SymbolPath.offset path1) (get_offset v2) (Val.get_traces v2)
|
|
|
|
|> add_pair_itv (SymbolPath.length path1) (get_size v2) (Val.get_traces v2)
|
|
|
|
in
|
|
|
|
let rel_pairs =
|
|
|
|
rel_pairs |> add_pair_sym_main_value v1 v2 ~e2_opt
|
|
|
|
|> add_pair_sym (get_offset_sym v1) (get_offset_sym v2)
|
|
|
|
|> add_pair_sym (get_size_sym v1) (get_size_sym v2)
|
|
|
|
in
|
|
|
|
(bound_pairs, rel_pairs)
|
|
|
|
in
|
|
|
|
let add_pair_field path1 v1 v2 pairs fn =
|
|
|
|
add_ret_alias (append_field v1 fn) (append_field v2 fn) ;
|
|
|
|
let path1' = SymbolPath.field (SymbolPath.index path1) fn in
|
|
|
|
let v1' = deref_field v1 fn callee_exit_mem in
|
|
|
|
let v2' = deref_field v2 fn caller_mem in
|
|
|
|
add_pair_val path1' v1' v2' ~e2_opt:None pairs
|
|
|
|
in
|
|
|
|
let add_pair_ptr typ path1 v1 v2 pairs =
|
|
|
|
add_ret_alias (Val.get_all_locs v1) (Val.get_all_locs v2) ;
|
|
|
|
match typ.Typ.desc with
|
|
|
|
| Typ.Tptr ({desc= Tstruct typename}, _) -> (
|
|
|
|
match Tenv.lookup tenv typename with
|
|
|
|
| Some str ->
|
|
|
|
let fns = List.map ~f:get_field_name str.Typ.Struct.fields in
|
|
|
|
List.fold ~f:(add_pair_field path1 v1 v2) ~init:pairs fns
|
|
|
|
| _ ->
|
|
|
|
pairs )
|
|
|
|
| Typ.Tptr (_, _) ->
|
|
|
|
let path1' = SymbolPath.index path1 in
|
|
|
|
let v1' = deref_ptr v1 callee_exit_mem in
|
|
|
|
let v2' = deref_ptr v2 caller_mem in
|
|
|
|
add_pair_val path1' v1' v2' ~e2_opt:None pairs
|
|
|
|
| _ ->
|
|
|
|
pairs
|
|
|
|
in
|
|
|
|
let bound_pairs, rel_pairs =
|
|
|
|
([], []) |> add_pair_val formal callee_v actual ~e2_opt:actual_exp_opt
|
|
|
|
|> add_pair_ptr typ formal callee_v actual
|
|
|
|
in
|
|
|
|
(bound_pairs, !ret_alias, rel_pairs)
|
|
|
|
|
|
|
|
|
|
|
|
let subst_map_of_bound_pairs
|
|
|
|
: (Itv.Symbol.t * Itv.Bound.t bottom_lifted * TraceSet.t) list
|
|
|
|
-> Itv.Bound.t bottom_lifted Itv.SymbolMap.t * TraceSet.t Itv.SymbolMap.t =
|
|
|
|
fun pairs ->
|
|
|
|
let add_pair (bound_map, trace_map) (formal, actual, traces) =
|
|
|
|
(Itv.SymbolMap.add formal actual bound_map, Itv.SymbolMap.add formal traces trace_map)
|
|
|
|
in
|
|
|
|
List.fold ~f:add_pair ~init:(Itv.SymbolMap.empty, Itv.SymbolMap.empty) pairs
|
|
|
|
|
|
|
|
|
|
|
|
let subst_map_of_rel_pairs
|
|
|
|
: (Relation.Var.t * Relation.SymExp.t option) list -> Relation.SubstMap.t =
|
|
|
|
fun pairs ->
|
|
|
|
let add_pair rel_map (x, e) = Relation.SubstMap.add x e rel_map in
|
|
|
|
List.fold pairs ~init:Relation.SubstMap.empty ~f:add_pair
|
|
|
|
|
|
|
|
|
|
|
|
let rec list_fold2_def
|
|
|
|
: default:Val.t * Exp.t option -> f:('a -> Val.t * Exp.t option -> 'b -> 'b) -> 'a list
|
|
|
|
-> (Val.t * Exp.t option) list -> init:'b -> 'b =
|
|
|
|
fun ~default ~f xs ys ~init:acc ->
|
|
|
|
match (xs, ys) with
|
|
|
|
| [], _ ->
|
|
|
|
acc
|
|
|
|
| x :: xs', [] ->
|
|
|
|
list_fold2_def ~default ~f xs' ys ~init:(f x default acc)
|
|
|
|
| [x], _ :: _ ->
|
|
|
|
let v = List.fold ys ~init:Val.bot ~f:(fun acc (y, _) -> Val.join y acc) in
|
|
|
|
let exp_opt = match ys with [(_, exp_opt)] -> exp_opt | _ -> None in
|
|
|
|
f x (v, exp_opt) acc
|
|
|
|
| x :: xs', y :: ys' ->
|
|
|
|
list_fold2_def ~default ~f xs' ys' ~init:(f x y acc)
|
|
|
|
|
|
|
|
|
|
|
|
let get_subst_map
|
|
|
|
: Tenv.t -> Procdesc.t -> (Exp.t * 'a) list -> Mem.astate -> Itv.SymbolTable.summary_t
|
|
|
|
-> Mem.astate
|
|
|
|
-> (Itv.Bound.t bottom_lifted Itv.SymbolMap.t * TraceSet.t Itv.SymbolMap.t)
|
|
|
|
* AliasTarget.t option
|
|
|
|
* Relation.SubstMap.t =
|
|
|
|
fun tenv callee_pdesc params caller_mem callee_symbol_table callee_exit_mem ->
|
|
|
|
let add_pair (formal, typ) (actual, actual_exp) (bound_l, ret_alias, rel_l) =
|
|
|
|
let callee_v = Mem.find_heap (Loc.of_pvar formal) callee_exit_mem in
|
|
|
|
let new_bound_matching, ret_alias', new_rel_matching =
|
|
|
|
get_matching_pairs tenv (Itv.SymbolPath.of_pvar formal) callee_v actual actual_exp typ
|
|
|
|
caller_mem callee_symbol_table callee_exit_mem
|
|
|
|
in
|
|
|
|
( List.rev_append new_bound_matching bound_l
|
|
|
|
, Option.first_some ret_alias ret_alias'
|
|
|
|
, List.rev_append new_rel_matching rel_l )
|
|
|
|
in
|
|
|
|
let formals = get_formals callee_pdesc in
|
|
|
|
let actuals = List.map ~f:(fun (a, _) -> (eval a caller_mem, Some a)) params in
|
|
|
|
let bound_pairs, ret_alias, rel_pairs =
|
|
|
|
list_fold2_def ~default:(Val.Itv.top, None) ~f:add_pair formals actuals ~init:([], None, [])
|
|
|
|
in
|
|
|
|
(subst_map_of_bound_pairs bound_pairs, ret_alias, subst_map_of_rel_pairs rel_pairs)
|