You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1274 lines
48 KiB

(*
* Copyright (c) 2009-2013, Monoidics ltd.
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
open! IStd
(** Implementation of Abstraction Functions *)
module L = Logging
(** {2 Abstraction} *)
type rule =
{ r_vars: Ident.t list
; r_root: Match.hpred_pat
; r_sigma: Match.hpred_pat list
; (* sigma should be in a specific order *)
r_new_sigma: Sil.hpred list
; r_new_pi: Prop.normal Prop.t -> Prop.normal Prop.t -> Sil.subst -> Sil.atom list
; r_condition: Prop.normal Prop.t -> Sil.subst -> bool }
let sigma_rewrite tenv p r : Prop.normal Prop.t option =
match Match.prop_match_with_impl tenv p r.r_condition r.r_vars r.r_root r.r_sigma with
| None ->
None
| Some (sub, p_leftover) ->
if not (r.r_condition p_leftover sub) then None
else
let res_pi = r.r_new_pi p p_leftover sub in
let res_sigma = Prop.sigma_sub sub r.r_new_sigma in
let p_with_res_pi = List.fold ~f:(Prop.prop_atom_and tenv) ~init:p_leftover res_pi in
let p_new = Prop.prop_sigma_star p_with_res_pi res_sigma in
Some (Prop.normalize tenv p_new)
(******************** Start of SLL abstraction rules *****************)
let create_fresh_primeds_ls para =
let id_base = Ident.create_fresh Ident.kprimed in
let id_next = Ident.create_fresh Ident.kprimed in
let id_end = Ident.create_fresh Ident.kprimed in
let ids_shared =
let svars = para.Sil.svars in
let f _ = Ident.create_fresh Ident.kprimed in
List.map ~f svars
in
let ids_tuple = (id_base, id_next, id_end, ids_shared) in
let exp_base = Exp.Var id_base in
let exp_next = Exp.Var id_next in
let exp_end = Exp.Var id_end in
let exps_shared = List.map ~f:(fun id -> Exp.Var id) ids_shared in
let exps_tuple = (exp_base, exp_next, exp_end, exps_shared) in
(ids_tuple, exps_tuple)
let create_condition_ls ids_private id_base p_leftover (inst : Sil.subst) =
let insts_of_private_ids, insts_of_public_ids, inst_of_base =
let f id' = List.exists ~f:(fun id'' -> Ident.equal id' id'') ids_private in
let inst_private, inst_public = Sil.sub_domain_partition f inst in
let insts_of_public_ids = Sil.sub_range inst_public in
let inst_of_base =
try Sil.sub_find (Ident.equal id_base) inst_public with Caml.Not_found -> assert false
in
let insts_of_private_ids = Sil.sub_range inst_private in
(insts_of_private_ids, insts_of_public_ids, inst_of_base)
in
(*
let fav_inst_of_base = Sil.exp_fav_list inst_of_base in
L.out "@[.... application of condition ....@\n@.";
L.out "@[<4> private ids : %a@\n@." pp_exp_list insts_of_private_ids;
L.out "@[<4> public ids : %a@\n@." pp_exp_list insts_of_public_ids;
*)
Exp.program_vars inst_of_base |> Sequence.is_empty
&& List.for_all ~f:(fun e -> Exp.program_vars e |> Sequence.is_empty) insts_of_private_ids
&&
let fav_insts_of_private_ids =
Sequence.of_list insts_of_private_ids
|> Sequence.concat_map ~f:Exp.free_vars
|> Sequence.memoize
in
(not (Sequence.exists fav_insts_of_private_ids ~f:Ident.is_normal))
&&
let fav_insts_of_private_ids = Ident.set_of_sequence fav_insts_of_private_ids in
let intersects_fav_insts_of_private_ids s =
Sequence.exists s ~f:(fun id -> Ident.Set.mem id fav_insts_of_private_ids)
in
(* [fav_insts_of_private_ids] does not intersect the free vars in [p_leftover.sigma] *)
Prop.sigma_free_vars p_leftover.Prop.sigma |> Fn.non intersects_fav_insts_of_private_ids
&& (* [fav_insts_of_private_ids] does not intersect the free vars in [insts_of_public_ids] *)
List.for_all insts_of_public_ids ~f:(fun e ->
Exp.free_vars e |> Fn.non intersects_fav_insts_of_private_ids )
let mk_rule_ptspts_ls tenv impl_ok1 impl_ok2 (para : Sil.hpara) =
let ids_tuple, exps_tuple = create_fresh_primeds_ls para in
let id_base, id_next, id_end, ids_shared = ids_tuple in
let exp_base, exp_next, exp_end, exps_shared = exps_tuple in
let ids_exist_fst, para_fst = Sil.hpara_instantiate para exp_base exp_next exps_shared in
let para_fst_start, para_fst_rest =
let mark_impl_flag hpred = {Match.hpred; Match.flag= impl_ok1} in
match para_fst with
| [] ->
L.internal_error "@\n@\nERROR (Empty Para): %a@\n@." (Sil.pp_hpara Pp.text) para ;
assert false
| hpred :: hpreds ->
let hpat = mark_impl_flag hpred in
let hpats = List.map ~f:mark_impl_flag hpreds in
(hpat, hpats)
in
let ids_exist_snd, para_snd =
let mark_impl_flag hpred = {Match.hpred; Match.flag= impl_ok2} in
let ids, para_body = Sil.hpara_instantiate para exp_next exp_end exps_shared in
let para_body_hpats = List.map ~f:mark_impl_flag para_body in
(ids, para_body_hpats)
in
let lseg_res = Prop.mk_lseg tenv Sil.Lseg_NE para exp_base exp_end exps_shared in
let gen_pi_res _ _ (_ : Sil.subst) = [] in
let condition =
let ids_private = id_next :: (ids_exist_fst @ ids_exist_snd) in
create_condition_ls ids_private id_base
in
{ r_vars= (id_base :: id_next :: id_end :: ids_shared) @ ids_exist_fst @ ids_exist_snd
; r_root= para_fst_start
; r_sigma= para_fst_rest @ para_snd
; r_new_sigma= [lseg_res]
; r_new_pi= gen_pi_res
; r_condition= condition }
let mk_rule_ptsls_ls tenv k2 impl_ok1 impl_ok2 para =
let ids_tuple, exps_tuple = create_fresh_primeds_ls para in
let id_base, id_next, id_end, ids_shared = ids_tuple in
let exp_base, exp_next, exp_end, exps_shared = exps_tuple in
let ids_exist, para_inst = Sil.hpara_instantiate para exp_base exp_next exps_shared in
let para_inst_start, para_inst_rest =
match para_inst with
| [] ->
L.internal_error "@\n@\nERROR (Empty Para): %a@\n@." (Sil.pp_hpara Pp.text) para ;
assert false
| hpred :: hpreds ->
let allow_impl hpred = {Match.hpred; Match.flag= impl_ok1} in
(allow_impl hpred, List.map ~f:allow_impl hpreds)
in
let lseg_pat =
{Match.hpred= Prop.mk_lseg tenv k2 para exp_next exp_end exps_shared; Match.flag= impl_ok2}
in
let lseg_res = Prop.mk_lseg tenv Sil.Lseg_NE para exp_base exp_end exps_shared in
let gen_pi_res _ _ (_ : Sil.subst) = [] in
let condition =
let ids_private = id_next :: ids_exist in
create_condition_ls ids_private id_base
in
{ r_vars= (id_base :: id_next :: id_end :: ids_shared) @ ids_exist
; r_root= para_inst_start
; r_sigma= para_inst_rest @ [lseg_pat]
; r_new_pi= gen_pi_res
; r_new_sigma= [lseg_res]
; r_condition= condition }
let mk_rule_lspts_ls tenv k1 impl_ok1 impl_ok2 para =
let ids_tuple, exps_tuple = create_fresh_primeds_ls para in
let id_base, id_next, id_end, ids_shared = ids_tuple in
let exp_base, exp_next, exp_end, exps_shared = exps_tuple in
let lseg_pat =
{Match.hpred= Prop.mk_lseg tenv k1 para exp_base exp_next exps_shared; Match.flag= impl_ok1}
in
let ids_exist, para_inst_pat =
let ids, para_body = Sil.hpara_instantiate para exp_next exp_end exps_shared in
let allow_impl hpred = {Match.hpred; Match.flag= impl_ok2} in
let para_body_pat = List.map ~f:allow_impl para_body in
(ids, para_body_pat)
in
let lseg_res = Prop.mk_lseg tenv Sil.Lseg_NE para exp_base exp_end exps_shared in
let gen_pi_res _ _ (_ : Sil.subst) = [] in
let condition =
let ids_private = id_next :: ids_exist in
create_condition_ls ids_private id_base
in
{ r_vars= (id_base :: id_next :: id_end :: ids_shared) @ ids_exist
; r_root= lseg_pat
; r_sigma= para_inst_pat
; r_new_sigma= [lseg_res]
; r_new_pi= gen_pi_res
; r_condition= condition }
let lseg_kind_add k1 k2 =
match (k1, k2) with
| Sil.Lseg_NE, Sil.Lseg_NE | Sil.Lseg_NE, Sil.Lseg_PE | Sil.Lseg_PE, Sil.Lseg_NE ->
Sil.Lseg_NE
| Sil.Lseg_PE, Sil.Lseg_PE ->
Sil.Lseg_PE
let mk_rule_lsls_ls tenv k1 k2 impl_ok1 impl_ok2 para =
let ids_tuple, exps_tuple = create_fresh_primeds_ls para in
let id_base, id_next, id_end, ids_shared = ids_tuple in
let exp_base, exp_next, exp_end, exps_shared = exps_tuple in
let lseg_fst_pat =
{Match.hpred= Prop.mk_lseg tenv k1 para exp_base exp_next exps_shared; Match.flag= impl_ok1}
in
let lseg_snd_pat =
{Match.hpred= Prop.mk_lseg tenv k2 para exp_next exp_end exps_shared; Match.flag= impl_ok2}
in
let k_res = lseg_kind_add k1 k2 in
let lseg_res = Prop.mk_lseg tenv k_res para exp_base exp_end exps_shared in
let gen_pi_res _ _ (_ : Sil.subst) =
[]
(*
let inst_base, inst_next, inst_end =
let find x = sub_find (equal x) inst in
try
(find id_base, find id_next, find id_end)
with Not_found -> assert false in
let spooky_case _ =
(equal_lseg_kind Sil.Lseg_PE k_res)
&& (check_allocatedness p_leftover inst_end)
&& ((check_disequal p_start inst_base inst_next)
|| (check_disequal p_start inst_next inst_end)) in
let obvious_case _ =
check_disequal p_start inst_base inst_end &&
not (check_disequal p_leftover inst_base inst_end) in
if not (spooky_case () || obvious_case ()) then []
else [Aneq(inst_base, inst_end)]
*)
in
let condition =
let ids_private = [id_next] in
create_condition_ls ids_private id_base
in
{ r_vars= id_base :: id_next :: id_end :: ids_shared
; r_root= lseg_fst_pat
; r_sigma= [lseg_snd_pat]
; r_new_sigma= [lseg_res]
; r_new_pi= gen_pi_res
; r_condition= condition }
let mk_rules_for_sll tenv (para : Sil.hpara) : rule list =
if not Config.nelseg then
let pts_pts = mk_rule_ptspts_ls tenv true true para in
let pts_pels = mk_rule_ptsls_ls tenv Sil.Lseg_PE true false para in
let pels_pts = mk_rule_lspts_ls tenv Sil.Lseg_PE false true para in
let pels_nels = mk_rule_lsls_ls tenv Sil.Lseg_PE Sil.Lseg_NE false false para in
let nels_pels = mk_rule_lsls_ls tenv Sil.Lseg_NE Sil.Lseg_PE false false para in
let pels_pels = mk_rule_lsls_ls tenv Sil.Lseg_PE Sil.Lseg_PE false false para in
[pts_pts; pts_pels; pels_pts; pels_nels; nels_pels; pels_pels]
else
let pts_pts = mk_rule_ptspts_ls tenv true true para in
let pts_nels = mk_rule_ptsls_ls tenv Sil.Lseg_NE true false para in
let nels_pts = mk_rule_lspts_ls tenv Sil.Lseg_NE false true para in
let nels_nels = mk_rule_lsls_ls tenv Sil.Lseg_NE Sil.Lseg_NE false false para in
[pts_pts; pts_nels; nels_pts; nels_nels]
(****************** End of SLL abstraction rules ******************)
(****************** Start of DLL abstraction rules ******************)
let create_condition_dll = create_condition_ls
let mk_rule_ptspts_dll tenv impl_ok1 impl_ok2 para =
let id_iF = Ident.create_fresh Ident.kprimed in
let id_iF' = Ident.create_fresh Ident.kprimed in
let id_oB = Ident.create_fresh Ident.kprimed in
let id_oF = Ident.create_fresh Ident.kprimed in
let ids_shared =
let svars = para.Sil.svars_dll in
let f _ = Ident.create_fresh Ident.kprimed in
List.map ~f svars
in
let exp_iF = Exp.Var id_iF in
let exp_iF' = Exp.Var id_iF' in
let exp_oB = Exp.Var id_oB in
let exp_oF = Exp.Var id_oF in
let exps_shared = List.map ~f:(fun id -> Exp.Var id) ids_shared in
let ids_exist_fst, para_fst = Sil.hpara_dll_instantiate para exp_iF exp_oB exp_iF' exps_shared in
let para_fst_start, para_fst_rest =
let mark_impl_flag hpred = {Match.hpred; Match.flag= impl_ok1} in
match para_fst with
| [] ->
L.internal_error "@\n@\nERROR (Empty DLL Para): %a@\n@." (Sil.pp_hpara_dll Pp.text) para ;
assert false
| hpred :: hpreds ->
let hpat = mark_impl_flag hpred in
let hpats = List.map ~f:mark_impl_flag hpreds in
(hpat, hpats)
in
let ids_exist_snd, para_snd =
let mark_impl_flag hpred = {Match.hpred; Match.flag= impl_ok2} in
let ids, para_body = Sil.hpara_dll_instantiate para exp_iF' exp_iF exp_oF exps_shared in
let para_body_hpats = List.map ~f:mark_impl_flag para_body in
(ids, para_body_hpats)
in
let dllseg_res = Prop.mk_dllseg tenv Sil.Lseg_NE para exp_iF exp_oB exp_oF exp_iF' exps_shared in
let gen_pi_res _ _ (_ : Sil.subst) = [] in
let condition =
(* for the case of ptspts since iF'=iB therefore iF' cannot be private*)
let ids_private = ids_exist_fst @ ids_exist_snd in
create_condition_dll ids_private id_iF
in
(*
L.out "r_root/para_fst_start=%a @.@." pp_hpat para_fst_start;
L.out "para_fst_rest=%a @.@." pp_hpat_list para_fst_rest;
L.out "para_snd=%a @.@." pp_hpat_list para_snd;
L.out "dllseg_res=%a @.@." pp_hpred dllseg_res;
*)
{ r_vars= (id_iF :: id_oB :: id_iF' :: id_oF :: ids_shared) @ ids_exist_fst @ ids_exist_snd
; r_root= para_fst_start
; r_sigma= para_fst_rest @ para_snd
; r_new_sigma= [dllseg_res]
; r_new_pi= gen_pi_res
; r_condition= condition }
let mk_rule_ptsdll_dll tenv k2 impl_ok1 impl_ok2 para =
let id_iF = Ident.create_fresh Ident.kprimed in
let id_iF' = Ident.create_fresh Ident.kprimed in
let id_oB = Ident.create_fresh Ident.kprimed in
let id_oF = Ident.create_fresh Ident.kprimed in
let id_iB = Ident.create_fresh Ident.kprimed in
let ids_shared =
let svars = para.Sil.svars_dll in
let f _ = Ident.create_fresh Ident.kprimed in
List.map ~f svars
in
let exp_iF = Exp.Var id_iF in
let exp_iF' = Exp.Var id_iF' in
let exp_oB = Exp.Var id_oB in
let exp_oF = Exp.Var id_oF in
let exp_iB = Exp.Var id_iB in
let exps_shared = List.map ~f:(fun id -> Exp.Var id) ids_shared in
let ids_exist, para_inst = Sil.hpara_dll_instantiate para exp_iF exp_oB exp_iF' exps_shared in
let para_inst_start, para_inst_rest =
match para_inst with
| [] ->
assert false
| hpred :: hpreds ->
let allow_impl hpred = {Match.hpred; Match.flag= impl_ok1} in
(allow_impl hpred, List.map ~f:allow_impl hpreds)
in
let dllseg_pat =
{ Match.hpred= Prop.mk_dllseg tenv k2 para exp_iF' exp_iF exp_oF exp_iB exps_shared
; Match.flag= impl_ok2 }
in
let dllseg_res = Prop.mk_dllseg tenv Sil.Lseg_NE para exp_iF exp_oB exp_oF exp_iB exps_shared in
let gen_pi_res _ _ (_ : Sil.subst) = [] in
let condition =
let ids_private = id_iF' :: ids_exist in
create_condition_dll ids_private id_iF
in
{ r_vars= (id_iF :: id_oB :: id_iF' :: id_oF :: id_iB :: ids_shared) @ ids_exist
; r_root= para_inst_start
; r_sigma= para_inst_rest @ [dllseg_pat]
; r_new_pi= gen_pi_res
; r_new_sigma= [dllseg_res]
; r_condition= condition }
let mk_rule_dllpts_dll tenv k1 impl_ok1 impl_ok2 para =
let id_iF = Ident.create_fresh Ident.kprimed in
let id_iF' = Ident.create_fresh Ident.kprimed in
let id_oB = Ident.create_fresh Ident.kprimed in
let id_oB' = Ident.create_fresh Ident.kprimed in
let id_oF = Ident.create_fresh Ident.kprimed in
let ids_shared =
let svars = para.Sil.svars_dll in
let f _ = Ident.create_fresh Ident.kprimed in
List.map ~f svars
in
let exp_iF = Exp.Var id_iF in
let exp_iF' = Exp.Var id_iF' in
let exp_oB = Exp.Var id_oB in
let exp_oB' = Exp.Var id_oB' in
let exp_oF = Exp.Var id_oF in
let exps_shared = List.map ~f:(fun id -> Exp.Var id) ids_shared in
let ids_exist, para_inst = Sil.hpara_dll_instantiate para exp_iF' exp_oB' exp_oF exps_shared in
let para_inst_pat =
let allow_impl hpred = {Match.hpred; Match.flag= impl_ok2} in
List.map ~f:allow_impl para_inst
in
let dllseg_pat =
{ Match.hpred= Prop.mk_dllseg tenv k1 para exp_iF exp_oB exp_iF' exp_oB' exps_shared
; Match.flag= impl_ok1 }
in
let dllseg_res = Prop.mk_dllseg tenv Sil.Lseg_NE para exp_iF exp_oB exp_oF exp_iF' exps_shared in
let gen_pi_res _ _ (_ : Sil.subst) = [] in
let condition =
let ids_private = id_oB' :: ids_exist in
create_condition_dll ids_private id_iF
in
{ r_vars= (id_iF :: id_oB :: id_iF' :: id_oB' :: id_oF :: ids_shared) @ ids_exist
; r_root= dllseg_pat
; r_sigma= para_inst_pat
; r_new_pi= gen_pi_res
; r_new_sigma= [dllseg_res]
; r_condition= condition }
let mk_rule_dlldll_dll tenv k1 k2 impl_ok1 impl_ok2 para =
let id_iF = Ident.create_fresh Ident.kprimed in
let id_iF' = Ident.create_fresh Ident.kprimed in
let id_oB = Ident.create_fresh Ident.kprimed in
let id_oB' = Ident.create_fresh Ident.kprimed in
let id_oF = Ident.create_fresh Ident.kprimed in
let id_iB = Ident.create_fresh Ident.kprimed in
let ids_shared =
let svars = para.Sil.svars_dll in
let f _ = Ident.create_fresh Ident.kprimed in
List.map ~f svars
in
let exp_iF = Exp.Var id_iF in
let exp_iF' = Exp.Var id_iF' in
let exp_oB = Exp.Var id_oB in
let exp_oB' = Exp.Var id_oB' in
let exp_oF = Exp.Var id_oF in
let exp_iB = Exp.Var id_iB in
let exps_shared = List.map ~f:(fun id -> Exp.Var id) ids_shared in
let lseg_fst_pat =
{ Match.hpred= Prop.mk_dllseg tenv k1 para exp_iF exp_oB exp_iF' exp_oB' exps_shared
; Match.flag= impl_ok1 }
in
let lseg_snd_pat =
{ Match.hpred= Prop.mk_dllseg tenv k2 para exp_iF' exp_oB' exp_oF exp_iB exps_shared
; Match.flag= impl_ok2 }
in
let k_res = lseg_kind_add k1 k2 in
let lseg_res = Prop.mk_dllseg tenv k_res para exp_iF exp_oB exp_oF exp_iB exps_shared in
let gen_pi_res _ _ (_ : Sil.subst) = [] in
let condition =
let ids_private = [id_iF'; id_oB'] in
create_condition_dll ids_private id_iF
in
{ r_vars= id_iF :: id_iF' :: id_oB :: id_oB' :: id_oF :: id_iB :: ids_shared
; r_root= lseg_fst_pat
; r_sigma= [lseg_snd_pat]
; r_new_sigma= [lseg_res]
; r_new_pi= gen_pi_res
; r_condition= condition }
let mk_rules_for_dll tenv (para : Sil.hpara_dll) : rule list =
if not Config.nelseg then
let pts_pts = mk_rule_ptspts_dll tenv true true para in
let pts_pedll = mk_rule_ptsdll_dll tenv Sil.Lseg_PE true false para in
let pedll_pts = mk_rule_dllpts_dll tenv Sil.Lseg_PE false true para in
let pedll_nedll = mk_rule_dlldll_dll tenv Sil.Lseg_PE Sil.Lseg_NE false false para in
let nedll_pedll = mk_rule_dlldll_dll tenv Sil.Lseg_NE Sil.Lseg_PE false false para in
let pedll_pedll = mk_rule_dlldll_dll tenv Sil.Lseg_PE Sil.Lseg_PE false false para in
[pts_pts; pts_pedll; pedll_pts; pedll_nedll; nedll_pedll; pedll_pedll]
else
let ptspts_dll = mk_rule_ptspts_dll tenv true true para in
let ptsdll_dll = mk_rule_ptsdll_dll tenv Sil.Lseg_NE true false para in
let dllpts_dll = mk_rule_dllpts_dll tenv Sil.Lseg_NE false true para in
let dlldll_dll = mk_rule_dlldll_dll tenv Sil.Lseg_NE Sil.Lseg_NE false false para in
[ptspts_dll; ptsdll_dll; dllpts_dll; dlldll_dll]
(****************** End of DLL abstraction rules ******************)
(****************** Start of Predicate Discovery ******************)
let typ_get_recursive_flds tenv typ_exp =
let filter typ (_, (t : Typ.t), _) =
match t.desc with
| Tstruct _ | Tint _ | Tfloat _ | Tvoid | Tfun | TVar _ ->
false
| Tptr (({desc= Tstruct _} as typ'), _) ->
Typ.equal typ' typ
| Tptr _ | Tarray _ ->
false
in
match typ_exp with
| Exp.Sizeof {typ} -> (
match typ.desc with
| Tstruct name -> (
match Tenv.lookup tenv name with
| Some {fields} ->
List.map ~f:fst3 (List.filter ~f:(filter typ) fields)
| None ->
L.(debug Analysis Quiet)
"@\ntyp_get_recursive_flds: unexpected %a unknown struct type: %a@." Exp.pp typ_exp
Typ.Name.pp name ;
[] (* ToDo: assert false *) )
| Tint _ | Tvoid | Tfun | Tptr _ | Tfloat _ | Tarray _ | TVar _ ->
[] )
| Exp.Var _ ->
[] (* type of |-> not known yet *)
| Exp.Const _ ->
[]
| _ ->
L.internal_error "@\ntyp_get_recursive_flds: unexpected type expr: %a@." Exp.pp typ_exp ;
assert false
let discover_para_roots tenv p root1 next1 root2 next2 : Sil.hpara option =
let eq_arg1 = Exp.equal root1 next1 in
let eq_arg2 = Exp.equal root2 next2 in
let precondition_check = (not eq_arg1) && not eq_arg2 in
if not precondition_check then None
else
let corres = [(next1, next2)] in
let todos = [(root1, root2)] in
let sigma = p.Prop.sigma in
match Match.find_partial_iso tenv (Prover.check_equal tenv p) corres todos sigma with
| None ->
None
| Some (new_corres, new_sigma1, _, _) ->
let hpara, _ = Match.hpara_create tenv new_corres new_sigma1 root1 next1 in
Some hpara
let discover_para_dll_roots tenv p root1 blink1 flink1 root2 blink2 flink2 : Sil.hpara_dll option =
let eq_arg1 = Exp.equal root1 blink1 in
let eq_arg1' = Exp.equal root1 flink1 in
let eq_arg2 = Exp.equal root2 blink2 in
let eq_arg2' = Exp.equal root2 flink2 in
let precondition_check = not (eq_arg1 || eq_arg1' || eq_arg2 || eq_arg2') in
if not precondition_check then None
else
let corres = [(blink1, blink2); (flink1, flink2)] in
let todos = [(root1, root2)] in
let sigma = p.Prop.sigma in
match Match.find_partial_iso tenv (Prover.check_equal tenv p) corres todos sigma with
| None ->
None
| Some (new_corres, new_sigma1, _, _) ->
let hpara_dll, _ = Match.hpara_dll_create tenv new_corres new_sigma1 root1 blink1 flink1 in
Some hpara_dll
let discover_para_candidates tenv p =
let edges = ref [] in
let add_edge edg = edges := edg :: !edges in
let get_edges_strexp rec_flds root se =
let is_rec_fld fld = List.exists ~f:(Typ.Fieldname.equal fld) rec_flds in
match se with
| Sil.Eexp _ | Sil.Earray _ ->
()
| Sil.Estruct (fsel, _) ->
let fsel' = List.filter ~f:(fun (fld, _) -> is_rec_fld fld) fsel in
let process (_, nextse) =
match nextse with Sil.Eexp (next, _) -> add_edge (root, next) | _ -> assert false
in
List.iter ~f:process fsel'
in
let rec get_edges_sigma = function
| [] ->
()
| Sil.Hlseg _ :: sigma_rest | Sil.Hdllseg _ :: sigma_rest ->
get_edges_sigma sigma_rest
| Sil.Hpointsto (root, se, te) :: sigma_rest ->
let rec_flds = typ_get_recursive_flds tenv te in
get_edges_strexp rec_flds root se ; get_edges_sigma sigma_rest
in
let rec find_all_consecutive_edges found edges_seen = function
| [] ->
List.rev found
| (e1, e2) :: edges_notseen ->
let edges_others = List.rev_append edges_seen edges_notseen in
let edges_matched = List.filter ~f:(fun (e1', _) -> Exp.equal e2 e1') edges_others in
let new_found =
let f found_acc (_, e3) = (e1, e2, e3) :: found_acc in
List.fold ~f ~init:found edges_matched
in
let new_edges_seen = (e1, e2) :: edges_seen in
find_all_consecutive_edges new_found new_edges_seen edges_notseen
in
let sigma = p.Prop.sigma in
get_edges_sigma sigma ;
find_all_consecutive_edges [] [] !edges
let discover_para_dll_candidates tenv p =
let edges = ref [] in
let add_edge edg = edges := edg :: !edges in
let get_edges_strexp rec_flds root se =
let is_rec_fld fld = List.exists ~f:(Typ.Fieldname.equal fld) rec_flds in
match se with
| Sil.Eexp _ | Sil.Earray _ ->
()
| Sil.Estruct (fsel, _) ->
let fsel' = List.rev_filter ~f:(fun (fld, _) -> is_rec_fld fld) fsel in
let convert_to_exp acc (_, se) =
match se with Sil.Eexp (e, _) -> e :: acc | _ -> assert false
in
let links = List.fold ~f:convert_to_exp ~init:[] fsel' in
let rec iter_pairs = function
| [] ->
()
| x :: l ->
List.iter ~f:(fun y -> add_edge (root, x, y)) l ;
iter_pairs l
in
iter_pairs links
in
let rec get_edges_sigma = function
| [] ->
()
| Sil.Hlseg _ :: sigma_rest | Sil.Hdllseg _ :: sigma_rest ->
get_edges_sigma sigma_rest
| Sil.Hpointsto (root, se, te) :: sigma_rest ->
let rec_flds = typ_get_recursive_flds tenv te in
get_edges_strexp rec_flds root se ; get_edges_sigma sigma_rest
in
let rec find_all_consecutive_edges found edges_seen = function
| [] ->
List.rev found
| (iF, blink, flink) :: edges_notseen ->
let edges_others = List.rev_append edges_seen edges_notseen in
let edges_matched = List.filter ~f:(fun (e1', _, _) -> Exp.equal flink e1') edges_others in
let new_found =
let f found_acc (_, _, flink2) = (iF, blink, flink, flink2) :: found_acc in
List.fold ~f ~init:found edges_matched
in
let new_edges_seen = (iF, blink, flink) :: edges_seen in
find_all_consecutive_edges new_found new_edges_seen edges_notseen
in
let sigma = p.Prop.sigma in
get_edges_sigma sigma ;
find_all_consecutive_edges [] [] !edges
let discover_para tenv p =
let candidates = discover_para_candidates tenv p in
let already_defined para paras =
List.exists ~f:(fun para' -> Match.hpara_iso tenv para para') paras
in
let f paras (root, next, out) =
match discover_para_roots tenv p root next next out with
| None ->
paras
| Some para ->
if already_defined para paras then paras else para :: paras
in
List.fold ~f ~init:[] candidates
let discover_para_dll tenv p =
(*
L.out "@[.... Called discover_dll para ...@.";
L.out "@[<4> PROP : %a@\n@." pp_prop p;
*)
let candidates = discover_para_dll_candidates tenv p in
let already_defined para paras =
List.exists ~f:(fun para' -> Match.hpara_dll_iso tenv para para') paras
in
let f paras (iF, oB, iF', oF) =
match discover_para_dll_roots tenv p iF oB iF' iF' iF oF with
| None ->
paras
| Some para ->
if already_defined para paras then paras else para :: paras
in
List.fold ~f ~init:[] candidates
(****************** End of Predicate Discovery ******************)
(****************** Start of the ADT abs_rules ******************)
(** Type of parameter for abstraction rules *)
type para_ty = SLL of Sil.hpara | DLL of Sil.hpara_dll
(** Rule set: a list of rules of a given type *)
type rule_set = para_ty * rule list
type rules = rule_set list
module Global = struct
let current_rules : rules ref = ref []
end
let get_current_rules () = !Global.current_rules
let set_current_rules rules = Global.current_rules := rules
let reset_current_rules () = Global.current_rules := []
let eqs_sub subst eqs =
List.map ~f:(fun (e1, e2) -> (Sil.exp_sub subst e1, Sil.exp_sub subst e2)) eqs
let eqs_solve ids_in eqs_in =
let rec solve (sub : Sil.subst) (eqs : (Exp.t * Exp.t) list) : Sil.subst option =
let do_default id e eqs_rest =
if not (List.exists ~f:(fun id' -> Ident.equal id id') ids_in) then None
else
let sub' =
match Sil.extend_sub sub id e with
| None ->
L.internal_error "@\n@\nERROR : Buggy Implementation.@\n@." ;
assert false
| Some sub' ->
sub'
in
let eqs_rest' = eqs_sub sub' eqs_rest in
solve sub' eqs_rest'
in
match eqs with
| [] ->
Some sub
| (e1, e2) :: eqs_rest when Exp.equal e1 e2 ->
solve sub eqs_rest
| (Exp.Var id1, (Exp.Const _ as e2)) :: eqs_rest ->
do_default id1 e2 eqs_rest
| ((Exp.Const _ as e1), (Exp.Var _ as e2)) :: eqs_rest ->
solve sub ((e2, e1) :: eqs_rest)
| ((Exp.Var id1 as e1), (Exp.Var id2 as e2)) :: eqs_rest ->
let n = Ident.compare id1 id2 in
if Int.equal n 0 then solve sub eqs_rest
else if n > 0 then solve sub ((e2, e1) :: eqs_rest)
else do_default id1 e2 eqs_rest
| _ :: _ ->
None
in
let compute_ids sub =
let sub_list = Sil.sub_to_list sub in
let sub_dom = List.map ~f:fst sub_list in
let filter id = not (List.exists ~f:(fun id' -> Ident.equal id id') sub_dom) in
List.filter ~f:filter ids_in
in
match solve Sil.sub_empty eqs_in with None -> None | Some sub -> Some (compute_ids sub, sub)
let sigma_special_cases_eqs sigma =
let rec f ids_acc eqs_acc sigma_acc = function
| [] ->
[(List.rev ids_acc, List.rev eqs_acc, List.rev sigma_acc)]
| (Sil.Hpointsto _ as hpred) :: sigma_rest ->
f ids_acc eqs_acc (hpred :: sigma_acc) sigma_rest
| (Sil.Hlseg (_, para, e1, e2, es) as hpred) :: sigma_rest ->
let empty_case = f ids_acc ((e1, e2) :: eqs_acc) sigma_acc sigma_rest in
let pointsto_case =
let eids, para_inst = Sil.hpara_instantiate para e1 e2 es in
f (eids @ ids_acc) eqs_acc sigma_acc (para_inst @ sigma_rest)
in
let general_case = f ids_acc eqs_acc (hpred :: sigma_acc) sigma_rest in
empty_case @ pointsto_case @ general_case
| (Sil.Hdllseg (_, para, e1, e2, e3, e4, es) as hpred) :: sigma_rest ->
let empty_case = f ids_acc ((e1, e3) :: (e2, e4) :: eqs_acc) sigma_acc sigma_rest in
let pointsto_case =
let eids, para_inst = Sil.hpara_dll_instantiate para e1 e2 e3 es in
f (eids @ ids_acc) eqs_acc sigma_acc (para_inst @ sigma_rest)
in
let general_case = f ids_acc eqs_acc (hpred :: sigma_acc) sigma_rest in
empty_case @ pointsto_case @ general_case
in
f [] [] [] sigma
let sigma_special_cases ids sigma : (Ident.t list * Sil.hpred list) list =
let special_cases_eqs = sigma_special_cases_eqs sigma in
let special_cases_rev =
let f acc (eids_cur, eqs_cur, sigma_cur) =
let ids_all = ids @ eids_cur in
match eqs_solve ids_all eqs_cur with
| None ->
acc
| Some (ids_res, sub) ->
(ids_res, List.map ~f:(Sil.hpred_sub sub) sigma_cur) :: acc
in
List.fold ~f ~init:[] special_cases_eqs
in
List.rev special_cases_rev
let hpara_special_cases hpara : Sil.hpara list =
let update_para (evars', body') = {hpara with Sil.evars= evars'; Sil.body= body'} in
let special_cases = sigma_special_cases hpara.Sil.evars hpara.Sil.body in
List.map ~f:update_para special_cases
let hpara_special_cases_dll hpara : Sil.hpara_dll list =
let update_para (evars', body') = {hpara with Sil.evars_dll= evars'; Sil.body_dll= body'} in
let special_cases = sigma_special_cases hpara.Sil.evars_dll hpara.Sil.body_dll in
List.map ~f:update_para special_cases
let abs_rules_apply_rsets tenv (rsets : rule_set list) (p_in : Prop.normal Prop.t) :
Prop.normal Prop.t =
let apply_rule (changed, p) r =
match sigma_rewrite tenv p r with
| None ->
(changed, p)
| Some p' ->
(*
L.out "@[.... abstraction (rewritten in abs_rules) ....@.";
L.out "@[<4> PROP:%a@\n@." pp_prop p';
*)
(true, p')
in
let rec apply_rule_set p rset =
let _, rules = rset in
let changed, p' = List.fold ~f:apply_rule ~init:(false, p) rules in
if changed then apply_rule_set p' rset else p'
in
List.fold ~f:apply_rule_set ~init:p_in rsets
let abs_rules_apply_lists tenv (p_in : Prop.normal Prop.t) : Prop.normal Prop.t =
let new_rsets = ref [] in
let old_rsets = get_current_rules () in
let rec discover_then_abstract p =
let closed_paras_sll, closed_paras_dll =
let paras_sll = discover_para tenv p in
let paras_dll = discover_para_dll tenv p in
let closed_paras_sll = List.concat_map ~f:hpara_special_cases paras_sll in
let closed_paras_dll = List.concat_map ~f:hpara_special_cases_dll paras_dll in
(closed_paras_sll, closed_paras_dll)
in
let todo_paras_sll, todo_paras_dll =
let eq_sll para rset =
match rset with SLL para', _ -> Match.hpara_iso tenv para para' | _ -> false
in
let eq_dll para rset =
match rset with DLL para', _ -> Match.hpara_dll_iso tenv para para' | _ -> false
in
let filter_sll para =
(not (List.exists ~f:(eq_sll para) old_rsets))
&& not (List.exists ~f:(eq_sll para) !new_rsets)
in
let filter_dll para =
(not (List.exists ~f:(eq_dll para) old_rsets))
&& not (List.exists ~f:(eq_dll para) !new_rsets)
in
let todo_paras_sll = List.filter ~f:filter_sll closed_paras_sll in
let todo_paras_dll = List.filter ~f:filter_dll closed_paras_dll in
(todo_paras_sll, todo_paras_dll)
in
let f_recurse () =
let todo_rsets_sll =
List.map ~f:(fun para -> (SLL para, mk_rules_for_sll tenv para)) todo_paras_sll
in
let todo_rsets_dll =
List.map ~f:(fun para -> (DLL para, mk_rules_for_dll tenv para)) todo_paras_dll
in
new_rsets := !new_rsets @ todo_rsets_sll @ todo_rsets_dll ;
let p' = abs_rules_apply_rsets tenv todo_rsets_sll p in
let p'' = abs_rules_apply_rsets tenv todo_rsets_dll p' in
discover_then_abstract p''
in
match (todo_paras_sll, todo_paras_dll) with [], [] -> p | _ -> f_recurse ()
in
let p1 = abs_rules_apply_rsets tenv old_rsets p_in in
let p2 = discover_then_abstract p1 in
let new_rules = old_rsets @ !new_rsets in
set_current_rules new_rules ; p2
let abs_rules_apply tenv (p_in : Prop.normal Prop.t) : Prop.normal Prop.t =
abs_rules_apply_lists tenv p_in
(****************** End of the ADT abs_rules ******************)
(****************** Start of Main Abstraction Functions ******************)
let abstract_pure_part tenv p ~(from_abstract_footprint : bool) =
let do_pure pure =
let pi_filtered =
let sigma = p.Prop.sigma in
let fav_sigma = Prop.sigma_free_vars sigma |> Ident.set_of_sequence in
let fav_nonpure = Prop.non_pure_free_vars p |> Ident.set_of_sequence in
(* vars in current and footprint sigma *)
let filter atom =
Sil.atom_free_vars atom
|> Sequence.for_all ~f:(fun id ->
if Ident.is_primed id then Ident.Set.mem id fav_sigma
else if Ident.is_footprint id then Ident.Set.mem id fav_nonpure
else true )
in
List.filter ~f:filter pure
in
let new_pure =
List.fold
~f:(fun pi a ->
match a with
(* we only use Lt and Le because Gt and Ge are inserted in terms of Lt and Le. *)
| Sil.Aeq (Exp.Const (Const.Cint i), Exp.BinOp (Binop.Lt, _, _))
| Sil.Aeq (Exp.BinOp (Binop.Lt, _, _), Exp.Const (Const.Cint i))
| Sil.Aeq (Exp.Const (Const.Cint i), Exp.BinOp (Binop.Le, _, _))
| Sil.Aeq (Exp.BinOp (Binop.Le, _, _), Exp.Const (Const.Cint i))
when IntLit.isone i ->
a :: pi
| Sil.Aeq (Exp.Var name, e) when not (Ident.is_primed name) -> (
match e with Exp.Var _ | Exp.Const _ -> a :: pi | _ -> pi )
| Sil.Aneq (Var _, _) | Sil.Apred (_, Var _ :: _) | Anpred (_, Var _ :: _) ->
a :: pi
| Sil.Aeq _ | Aneq _ | Apred _ | Anpred _ ->
pi )
~init:[] pi_filtered
in
List.rev new_pure
in
let new_pure = do_pure (Prop.get_pure p) in
let eprop' = Prop.set p ~pi:new_pure ~sub:Sil.sub_empty in
let eprop'' =
if !BiabductionConfig.footprint && not from_abstract_footprint then
let new_pi_footprint = do_pure p.Prop.pi_fp in
Prop.set eprop' ~pi_fp:new_pi_footprint
else eprop'
in
Prop.normalize tenv eprop''
(** Collect symbolic garbage from pi and sigma *)
let abstract_gc tenv p =
let pi = p.Prop.pi in
let p_without_pi = Prop.normalize tenv (Prop.set p ~pi:[]) in
let fav_p_without_pi = Prop.free_vars p_without_pi |> Ident.set_of_sequence in
(* let weak_filter atom =
let fav_atom = atom_fav atom in
IList.intersect compare fav_p_without_pi fav_atom in *)
let check fav_seq =
Sequence.is_empty fav_seq
|| (* non-empty intersection with [fav_p_without_pi] *)
Sequence.exists fav_seq ~f:(fun id -> Ident.Set.mem id fav_p_without_pi)
in
let strong_filter = function
| Sil.Aeq (e1, e2) | Sil.Aneq (e1, e2) ->
check (Exp.free_vars e1) && check (Exp.free_vars e2)
| (Sil.Apred _ | Anpred _) as a ->
check (Sil.atom_free_vars a)
in
let new_pi = List.filter ~f:strong_filter pi in
let prop = Prop.normalize tenv (Prop.set p ~pi:new_pi) in
match Prop.prop_iter_create prop with
| None ->
prop
| Some iter ->
Prop.prop_iter_to_prop tenv (Prop.prop_iter_gc_fields iter)
(** find the id's in sigma reachable from the given roots *)
let sigma_reachable root_fav sigma =
let reach_set = ref root_fav in
let edges = ref [] in
let do_hpred hpred =
let hp_fav_set = Sil.hpred_free_vars hpred |> Ident.set_of_sequence in
let add_entry e = edges := (e, hp_fav_set) :: !edges in
List.iter ~f:add_entry (Sil.hpred_entries hpred)
in
List.iter ~f:do_hpred sigma ;
let edge_fires (e, _) =
match e with
| Exp.Var id ->
if Ident.is_primed id || Ident.is_footprint id then Ident.Set.mem id !reach_set else true
| _ ->
true
in
let rec apply_once edges_to_revisit edges_todo modified =
match edges_todo with
| [] ->
(edges_to_revisit, modified)
| edge :: edges_todo' ->
if edge_fires edge then (
reach_set := Ident.Set.union (snd edge) !reach_set ;
apply_once edges_to_revisit edges_todo' true )
else apply_once (edge :: edges_to_revisit) edges_todo' modified
in
let rec find_fixpoint edges_todo =
let edges_to_revisit, modified = apply_once [] edges_todo false in
if modified then find_fixpoint edges_to_revisit
in
find_fixpoint !edges ;
(* L.d_str "reachable: ";
Ident.Set.iter (fun id -> Sil.d_exp (Exp.Var id); L.d_str " ") !reach_set;
L.d_ln (); *)
!reach_set
let check_observer_is_unsubscribed_deallocation tenv prop e =
let pvar_opt =
match Attribute.get_resource tenv prop e with
| Some (Apred (Aresource {ra_vpath= Some (Dpvar pvar)}, _)) ->
Some pvar
| _ ->
None
in
let loc = State.get_loc_exn () in
match Attribute.get_observer tenv prop e with
| Some (Apred (Aobserver, _)) -> (
match pvar_opt with
| Some pvar when Config.nsnotification_center_checker_backend ->
L.d_strln
( " ERROR: Object " ^ Pvar.to_string pvar
^ " is being deallocated while still registered in a notification center" ) ;
let desc = Localise.desc_registered_observer_being_deallocated pvar loc in
raise (Exceptions.Registered_observer_being_deallocated (desc, __POS__))
| _ ->
() )
| _ ->
()
let check_junk pname tenv prop =
let leaks_reported = ref [] in
let remove_junk_once fp_part fav_root sigma =
let id_considered_reachable =
(* reachability function *)
let reach_set = sigma_reachable fav_root sigma in
fun id -> Ident.Set.mem id reach_set
in
let should_remove_hpred entries =
let predicate = function
| Exp.Var id ->
(Ident.is_primed id || Ident.is_footprint id)
&& (not (Ident.Set.mem id fav_root))
&& not (id_considered_reachable id)
| _ ->
false
in
List.for_all ~f:predicate entries
in
let rec remove_junk_recursive sigma_done sigma_todo =
match sigma_todo with
| [] ->
List.rev sigma_done
| hpred :: sigma_todo' ->
let entries = Sil.hpred_entries hpred in
if should_remove_hpred entries then (
let part = if fp_part then "footprint" else "normal" in
L.d_printfln ".... Prop with garbage in %s part ...." part ;
L.d_increase_indent () ;
L.d_strln "PROP:" ;
Prop.d_prop prop ;
L.d_ln () ;
L.d_strln "PREDICATE:" ;
Prop.d_sigma [hpred] ;
L.d_ln () ;
let alloc_attribute =
(* find the alloc attribute of one of the roots of hpred, if it exists *)
let res = ref None in
let do_entry e =
check_observer_is_unsubscribed_deallocation tenv prop e ;
match Attribute.get_wontleak tenv prop e with
| Some (Apred ((Awont_leak as a), _)) ->
L.d_strln "WONT_LEAK" ;
res := Some a
| _ -> (
match Attribute.get_resource tenv prop e with
| Some (Apred ((Aresource {ra_kind= Racquire} as a), _)) ->
L.d_str "ATTRIBUTE: " ;
PredSymb.d_attribute a ;
L.d_ln () ;
res := Some a
| _ -> (
match Attribute.get_undef tenv prop e with
| Some (Apred ((Aundef _ as a), _)) ->
L.d_strln "UNDEF" ;
res := Some a
| _ ->
() ) )
in
List.iter ~f:do_entry entries ; !res
in
L.d_decrease_indent () ;
let is_undefined =
Option.value_map ~f:PredSymb.is_undef ~default:false alloc_attribute
in
let resource =
match Errdesc.hpred_is_open_resource tenv prop hpred with
| Some res ->
res
| None ->
PredSymb.Rmemory PredSymb.Mmalloc
in
let ml_bucket_opt =
match resource with
| (PredSymb.Rmemory PredSymb.Mnew | PredSymb.Rmemory PredSymb.Mnew_array)
when Language.curr_language_is Clang ->
Mleak_buckets.should_raise_cpp_leak
| _ ->
None
in
let exn_leak =
Exceptions.Leak
( fp_part
, hpred
, Errdesc.explain_leak tenv hpred prop alloc_attribute ml_bucket_opt
, !Absarray.array_abstraction_performed
, resource
, __POS__ )
in
let ignore_resource, exn =
match (alloc_attribute, resource) with
| Some PredSymb.Awont_leak, Rmemory _ ->
(true, exn_leak)
| Some _, Rmemory Mobjc ->
(true, exn_leak)
| (Some _, Rmemory Mnew | Some _, Rmemory Mnew_array)
when Language.curr_language_is Clang ->
(is_none ml_bucket_opt, exn_leak)
| Some _, Rmemory _ ->
(Language.curr_language_is Java, exn_leak)
| Some _, Rignore ->
(true, exn_leak)
| Some _, Rfile ->
(false, exn_leak)
| Some _, Rlock ->
(false, exn_leak)
| _ ->
(Language.curr_language_is Java, exn_leak)
in
let already_reported () =
let attr_opt_equal ao1 ao2 =
match (ao1, ao2) with
| None, None ->
true
| Some a1, Some a2 ->
PredSymb.equal a1 a2
| Some _, None | None, Some _ ->
false
in
(is_none alloc_attribute && !leaks_reported <> [])
|| (* None attribute only reported if it's the first one *)
List.mem ~equal:attr_opt_equal !leaks_reported alloc_attribute
in
let ignore_leak =
!BiabductionConfig.allow_leak || ignore_resource || is_undefined
|| already_reported ()
in
let report_and_continue =
Language.curr_language_is Java || !BiabductionConfig.footprint
in
let report_leak () =
if not report_and_continue then raise exn
else (
Reporting.log_issue_deprecated_using_state Exceptions.Error pname exn ;
leaks_reported := alloc_attribute :: !leaks_reported )
in
if not ignore_leak then report_leak () ;
remove_junk_recursive sigma_done sigma_todo' )
else remove_junk_recursive (hpred :: sigma_done) sigma_todo'
in
remove_junk_recursive [] sigma
in
let rec remove_junk fp_part fav_root sigma =
(* call remove_junk_once until sigma stops shrinking *)
let sigma' = remove_junk_once fp_part fav_root sigma in
if Int.equal (List.length sigma') (List.length sigma) then sigma'
else remove_junk fp_part fav_root sigma'
in
let sigma_new =
let fav_sub = Sil.subst_free_vars prop.Prop.sub |> Ident.set_of_sequence in
let fav_sub_sigmafp =
Prop.sigma_free_vars prop.Prop.sigma_fp |> Ident.set_of_sequence ~init:fav_sub
in
remove_junk false fav_sub_sigmafp prop.Prop.sigma
in
let sigma_fp_new = remove_junk true Ident.Set.empty prop.Prop.sigma_fp in
if Prop.equal_sigma prop.Prop.sigma sigma_new && Prop.equal_sigma prop.Prop.sigma_fp sigma_fp_new
then prop
else Prop.normalize tenv (Prop.set prop ~sigma:sigma_new ~sigma_fp:sigma_fp_new)
(** Check whether the prop contains junk. If it does, and [Config.allowleak] is true, remove the
junk, otherwise raise a Leak exception. *)
let abstract_junk pname tenv prop =
Absarray.array_abstraction_performed := false ;
check_junk pname tenv prop
(** Remove redundant elements in an array, and check for junk afterwards *)
let remove_redundant_array_elements pname tenv prop =
Absarray.array_abstraction_performed := false ;
let prop' = Absarray.remove_redundant_elements tenv prop in
check_junk pname tenv prop'
let abstract_prop pname tenv ~(rename_primed : bool) ~(from_abstract_footprint : bool) p =
Absarray.array_abstraction_performed := false ;
let pure_abs_p = abstract_pure_part tenv ~from_abstract_footprint:true p in
let array_abs_p =
if from_abstract_footprint then pure_abs_p
else
abstract_pure_part tenv ~from_abstract_footprint
(Absarray.abstract_array_check tenv pure_abs_p)
in
let abs_p = abs_rules_apply tenv array_abs_p in
let abs_p = abstract_gc tenv abs_p in
(* abstraction might enable more gc *)
let abs_p = check_junk pname tenv abs_p in
let ren_abs_p =
if rename_primed then Prop.prop_rename_primed_footprint_vars tenv abs_p else abs_p
in
ren_abs_p
let get_local_stack cur_sigma init_sigma =
let filter_stack = function
| Sil.Hpointsto (Exp.Lvar _, _, _) ->
true
| Sil.Hpointsto _ | Sil.Hlseg _ | Sil.Hdllseg _ ->
false
in
let get_stack_var = function
| Sil.Hpointsto (Exp.Lvar pvar, _, _) ->
pvar
| Sil.Hpointsto _ | Sil.Hlseg _ | Sil.Hdllseg _ ->
assert false
in
let filter_local_stack olds = function
| Sil.Hpointsto (Exp.Lvar pvar, _, _) ->
not (List.exists ~f:(Pvar.equal pvar) olds)
| Sil.Hpointsto _ | Sil.Hlseg _ | Sil.Hdllseg _ ->
false
in
let init_stack = List.filter ~f:filter_stack init_sigma in
let init_stack_pvars = List.map ~f:get_stack_var init_stack in
let cur_local_stack = List.filter ~f:(filter_local_stack init_stack_pvars) cur_sigma in
let cur_local_stack_pvars = List.map ~f:get_stack_var cur_local_stack in
(cur_local_stack, cur_local_stack_pvars)
(** Extract the footprint, add a local stack and return it as a prop *)
let extract_footprint_for_abs (p : 'a Prop.t) : Prop.exposed Prop.t * Pvar.t list =
let sigma = p.Prop.sigma in
let pi_fp = p.Prop.pi_fp in
let sigma_fp = p.Prop.sigma_fp in
let local_stack, local_stack_pvars = get_local_stack sigma sigma_fp in
let p0 = Prop.from_sigma (local_stack @ sigma_fp) in
let p1 = Prop.set p0 ~pi:pi_fp in
(p1, local_stack_pvars)
let remove_local_stack sigma pvars =
let filter_non_stack = function
| Sil.Hpointsto (Exp.Lvar pvar, _, _) ->
not (List.exists ~f:(Pvar.equal pvar) pvars)
| Sil.Hpointsto _ | Sil.Hlseg _ | Sil.Hdllseg _ ->
true
in
List.filter ~f:filter_non_stack sigma
(** [prop_set_fooprint p p_foot] removes a local stack from [p_foot], and sets proposition [p_foot]
as footprint of [p]. *)
let set_footprint_for_abs (p : 'a Prop.t) (p_foot : 'a Prop.t) local_stack_pvars :
Prop.exposed Prop.t =
let p_foot_pure = Prop.get_pure p_foot in
let p_sigma_fp = p_foot.Prop.sigma in
let pi = p_foot_pure in
let sigma = remove_local_stack p_sigma_fp local_stack_pvars in
Prop.set p ~pi_fp:pi ~sigma_fp:sigma
(** Abstract the footprint of prop *)
let abstract_footprint pname (tenv : Tenv.t) (prop : Prop.normal Prop.t) : Prop.normal Prop.t =
let p, added_local_vars = extract_footprint_for_abs prop in
let p_abs =
abstract_prop pname tenv ~rename_primed:false ~from_abstract_footprint:true
(Prop.normalize tenv p)
in
let prop' = set_footprint_for_abs prop p_abs added_local_vars in
Prop.normalize tenv prop'
let abstract_ pname pay tenv p =
if pay then SymOp.pay () ;
(* pay one symop *)
let p' = if !BiabductionConfig.footprint then abstract_footprint pname tenv p else p in
abstract_prop pname tenv ~rename_primed:true ~from_abstract_footprint:false p'
let abstract pname tenv p = abstract_ pname true tenv p
let abstract_no_symop pname tenv p = abstract_ pname false tenv p
let lifted_abstract pname tenv pset =
let f p = if Prover.check_inconsistency tenv p then None else Some (abstract pname tenv p) in
let abstracted_pset = Propset.map_option tenv f pset in
abstracted_pset
(***************** End of Main Abstraction Functions *****************)