You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

356 lines
11 KiB

9 years ago
(* ocamldot.mll, July 1999, Trevor Jim *)
{
module StringSet =
Set.Make(struct type t = string let compare = compare end)
let dependencies = ref []
let currentSource = ref ""
let addDepend t =
let s = !currentSource in
if s<>t
then dependencies := (s,t)::(!dependencies)
}
rule processSource = parse
['.' '-' '/' 'A'-'Z' 'a'-'z' '_' '\192'-'\214' '\216'-'\246'
'\248'-'\255' '\'' '0'-'9' ]+ '.' ['A'-'Z' 'a'-'z']+
[' ' '\009']* ':'
{ let s = Lexing.lexeme lexbuf in
let i = String.rindex s '.' in
let s = String.sub s 0 i in
let s = Filename.basename s in
let s = String.capitalize s in
currentSource := s;
processTargets lexbuf }
| eof
{ () }
| _
{ processSource lexbuf }
and processTargets = parse
[' ' '\009']+
{ processTargets lexbuf }
| '\\' [' ' '\009']* ['\010' '\013']+ [' ' '\009']+
{ processTargets lexbuf }
| ['.' '/' 'A'-'Z' 'a'-'z' '_' '\192'-'\214' '\216'-'\246'
'\248'-'\255' '\'' '0'-'9' ]+ '.' ['A'-'Z' 'a'-'z']+
{ let t = Lexing.lexeme lexbuf in
let i = String.rindex t '.' in
let t = String.sub t 0 i in
let t = Filename.basename t in
let t = String.capitalize t in
addDepend t;
processTargets lexbuf }
| eof
{ () }
| _
{ processSource lexbuf }
{
(********************************)
(* Utility functions for graphs *)
(********************************)
(**********************************************************************)
(* A graph is represented by a (string * StringSet) list, *)
(* that is, a list of (source,targets) pairs. *)
(**********************************************************************)
let emptyGraph = []
(**********************************************************************)
(* divideGraph graph source = (sourceTargets, graphWithoutSource) *)
(* *)
(* Return the targets of a source in a graph and the graph with the *)
(* source substracted from the sources. GraphWithoutSources may *)
(* still contain source as a target. *)
(**********************************************************************)
let divideGraph graph source =
let rec aux l =
match l with
[] -> (StringSet.empty,[])
| (s,ts)::tl ->
if s=source then (ts,tl)
else
let (sourceTargets,tlWithoutSource) = aux tl in
(sourceTargets,(s,ts)::tlWithoutSource) in
aux graph
(*********************************************)
(* Add the edge (source,target) to the graph *)
(*********************************************)
let addEdge graph source target =
let (sourceTargets,graphWithoutSource) = divideGraph graph source in
(source,StringSet.add target sourceTargets)::graphWithoutSource
(************************************************************)
(* Add the edges { (source,t) | t in targets } to the graph *)
(************************************************************)
let addEdges graph source targets =
let (sourceTargets,graphWithoutSource) = divideGraph graph source in
(source,StringSet.union targets sourceTargets)::graphWithoutSource
(**************************************************)
(* Remove the edge (source,target) from the graph *)
(**************************************************)
let removeEdge graph source target =
let rec loop l =
match l with
[] -> []
| (s,ts)::tl ->
if s=source
then (s,StringSet.remove target ts)::tl
else (s,ts)::(loop tl)
in loop graph
(*****************************************************************)
(* Remove the edges { (source,t) | t in targets } from the graph *)
(*****************************************************************)
let removeEdges graph source targets =
let rec loop l =
match l with
[] -> []
| (s,ts)::tl ->
if s=source
then (s,StringSet.diff ts targets)::tl
else (s,ts)::(loop tl)
in loop graph
(**********************************************************************)
(* Convert between an edge-list representation of graphs and our *)
(* representation. *)
(**********************************************************************)
let edgesOfGraph graph =
List.concat
(List.map
(fun (s,ts) ->
List.map (fun t -> (s,t)) (StringSet.elements ts))
graph)
let graphOfEdges edges =
List.fold_left
(fun g (s,t) -> addEdge g s t)
emptyGraph
edges
(****************************)
(* Is an edge in the graph? *)
(****************************)
let isEdge graph source target =
try
let sourceTargets = List.assoc source graph in
StringSet.mem target sourceTargets
with Not_found -> false
(*****************)
(* Print a graph *)
(*****************)
let printGraph graph =
let printEdges(source,targets) =
StringSet.iter
(fun t -> Printf.printf " \"%s\" -> \"%s\" ;\n" source t)
targets in
List.iter printEdges graph
(********************************)
(* Targets of a node in a graph *)
(********************************)
let targetsOf graph node = (* A set of nodes *)
try List.assoc node graph
with Not_found -> StringSet.empty
(*****************************************)
(* Sources that target a node in a graph *)
(*****************************************)
let sourcesOf graph node = (* A list of nodes *)
let rec aux l =
match l with
[] -> []
| (s,ts)::tl ->
if StringSet.mem node ts then s::(aux tl)
else aux tl in
aux graph
(******************************************************************)
(* Add an edge to a transitively closed graph, and return the new *)
(* transitive closure. *)
(******************************************************************)
let addEdgeTc graph source target =
let targetTargets = targetsOf graph target in
let (sourceTargets,graphWithoutSource) = divideGraph graph source in
let sourceSources = sourcesOf graphWithoutSource source in
let newSourceTargets =
StringSet.add target
(StringSet.union sourceTargets targetTargets) in
(source,newSourceTargets)::
(List.fold_right
(fun s g -> addEdges g s newSourceTargets)
sourceSources
graphWithoutSource)
(**********************************************************)
(* Compute the transitive closure of a graph from scratch *)
(**********************************************************)
let tc graph =
let loop graph (source,targets) =
let reachableFromSource =
List.fold_left
(fun r (s,ts) ->
if StringSet.mem s r then StringSet.union r ts
else r)
targets
graph in
(source,reachableFromSource)::
(List.map
(fun (s,ts) ->
if StringSet.mem source ts
then (s,StringSet.union ts reachableFromSource)
else (s,ts))
graph) in
List.fold_left loop [] graph
(************************************************************************)
(* The transitive kernel (tk) of a dag is a subset of the dag whose *)
(* transitive closure is the same as the transitive closure of the dag. *)
(* *)
(* IF THE GRAPH IS NOT A DAG, THIS CODE WON'T WORK PROPERLY!!! *)
(************************************************************************)
(************************************************************************)
(* Add an edge to a kernel dag and return the new kernel and transitive *)
(* closure of the new kernel. Requires the transitive closure of the *)
(* old kernel. *)
(************************************************************************)
let addEdgeTk kernel tcKernel source target =
if isEdge tcKernel source target
then (kernel,tcKernel)
else if source=target
then (addEdge kernel source target,tcKernel)
else
begin
let (sourceTargets,kernelWithoutSource) = divideGraph kernel source in
let targetTargets = StringSet.add target (targetsOf tcKernel target) in
let sourceSources = sourcesOf tcKernel source in
let kernelWithoutSource =
List.fold_left
(fun kws s -> removeEdges kws s targetTargets)
kernelWithoutSource
sourceSources in
((source,
StringSet.add target
(StringSet.diff sourceTargets targetTargets))
::kernelWithoutSource,
addEdgeTc tcKernel source target)
end
(**********************************)
(* The transitive kernel of a dag *)
(**********************************)
let tk dag =
let edges = edgesOfGraph dag in
let (kernel,tcKernel) =
List.fold_left
(fun (k,tck) (s,t) -> addEdgeTk k tck s t)
(emptyGraph,emptyGraph)
edges in
kernel
(**************************)
(* Print the dependencies *)
(**************************)
let doKernel = ref true
let printDepend graph =
if (!doKernel) then printGraph (tk graph)
else printGraph graph
let calledOnFile = ref false
let getDependFromFile file =
calledOnFile := true;
try
let ic = open_in file in
let lexbuf = Lexing.from_channel ic in
processSource lexbuf;
close_in ic
with Sys_error msg -> ()
| Exit -> ()
let getDependFromStdin () =
try
let lexbuf = Lexing.from_channel stdin in
processSource lexbuf
with Sys_error msg -> ()
| Exit -> ()
(***************)
(* Entry point *)
(***************)
let usage = "Usage: ocamldot [options] <files>"
let leftToRight = ref false
let landscape = ref false
let roots = ref []
;;
Arg.parse
[
("-fullgraph",
Arg.Clear doKernel,
" draw the full graph (default is to draw only the kernel)");
("-landscape",
Arg.Set landscape,
" output in landscape format (default is portrait)");
("-lr",
Arg.Set leftToRight,
" draw graph from left to right (default is top to bottom)");
("-r",
Arg.String(fun s -> roots := s::!roots),
"<r> use <r> as a root in the graph; nodes reachable from <r>\n will be shown")
]
getDependFromFile usage;
if not(!calledOnFile) then getDependFromStdin();
print_string "digraph G {\n";
if !landscape
then print_string " size=\"10,7.5\" ;\n rotate=90 ;\n"
else print_string " size=\"7.5,10\" ;\n";
if (!leftToRight) then print_string " rankdir = LR ;\n"
else print_string " rankdir = TB ;\n";
let graph = graphOfEdges(!dependencies) in
begin
match !roots with
[] -> printDepend graph
| roots ->
(* Set up the graph so that the roots are printed at the same level *)
print_string " { rank=same ;\n";
List.iter
(fun r ->
print_string " ";
print_string r;
print_string " ;\n")
roots;
print_string " };\n";
(* Find the graph reachable from the roots *)
let tcGraph = tc graph in
let reachable node =
(List.exists (fun r -> r=node) roots)
or
(List.exists (fun r -> isEdge tcGraph r node) roots) in
let reachableFromRoots =
List.concat
(List.map
(fun (source,targets) ->
if reachable source
then [(source,targets)]
else [])
graph) in
printDepend reachableFromRoots
end;
print_string "}\n";
exit 0
;;
}