You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1719 lines
63 KiB

(*
* Copyright (c) 2009 - 2013 Monoidics ltd.
* Copyright (c) 2013 - present Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*)
open! IStd
module L = Logging
module F = Format
(** {1 Dotty} *)
(* When false it prints only the retain cycle part of a prop.
When true it prints the full property (maybe useful for debug) *)
let print_full_prop = ref false
type kind_of_dotty_prop =
| Generic_proposition
| Spec_precondition
| Spec_postcondition of Prop.normal Prop.t (** the precondition associated with the post *)
| Lambda_pred of int * int * bool
(* the kind of links between different kinds of nodes*)
type kind_of_links =
| LinkExpToExp
| LinkExpToStruct
| LinkStructToExp
| LinkStructToStruct
| LinkToArray
| LinkArrayToExp
| LinkArrayToStruct
| LinkToSSL
| LinkToDLL
| LinkRetainCycle
[@@deriving compare]
(* coordinate identifies a node using two dimension: id is an numerical identifier of the node,*)
(* lambda identifies in which hpred parameter id lays in*)
type coordinate = {id: int; lambda: int} [@@deriving compare]
(* define a link between two nodes. src_fld/trg_fld define the label of the src/trg field. It is*)
(* useful for having nodes from within a struct and/or to inside a struct *)
type link =
{kind: kind_of_links; src: coordinate; src_fld: string; trg: coordinate; trg_fld: string}
[@@deriving compare]
let equal_link = [%compare.equal : link]
(* type of the visualized boxes/nodes in the graph*)
type dotty_node =
| Dotnil of coordinate
(* nil box *)
(* Dotdangling(coo,e,c): dangling box for expression e at coordinate coo and color c *)
| Dotdangling of coordinate * Exp.t * string
(* Dotpointsto(coo,e,c): basic memory cell box for expression e at coordinate coo and color c *)
| Dotpointsto of coordinate * Exp.t * string
(* Dotstruct(coo,e,l,c): struct box for expression e with field list l at coordinate coo and color c *)
| Dotstruct of coordinate * Exp.t * (Typ.Fieldname.t * Sil.strexp) list * string * Exp.t
(* Dotarray(coo,e1,e2,l,t,c): array box for expression e1 with field list l at coordinate coo and color c*)
(* e2 is the len and t is the type *)
| Dotarray of coordinate * Exp.t * Exp.t * (Exp.t * Sil.strexp) list * Typ.t * string
(* Dotlseg(coo,e1,e2,k,h,c): list box from e1 to e2 at coordinate coo and color c*)
| Dotlseg of coordinate * Exp.t * Exp.t * Sil.lseg_kind * Sil.hpred list * string
(* Dotlseg(coo,e1,e2,e3,e4,k,h,c): doubly linked-list box from with parameters (e1,e2,e3,e4) at coordinate coo and color c*)
| Dotdllseg of
coordinate * Exp.t * Exp.t * Exp.t * Exp.t * Sil.lseg_kind * Sil.hpred list * string
let mk_coordinate i l = {id= i; lambda= l}
let mk_link k s sf t tf = {kind= k; src= s; src_fld= sf; trg= t; trg_fld= tf}
(* list of dangling boxes*)
let dangling_dotboxes = ref []
(* list of nil boxes*)
let nil_dotboxes = ref []
let exps_neq_zero = ref []
(* list of fields in the structs *)
let fields_structs = ref []
let struct_exp_nodes = ref []
(* general unique counter to assign a different number to boxex, *)
(* clusters,subgraphs etc. *)
let dotty_state_count = ref 0
let spec_counter = ref 0
let post_counter = ref 0
let lambda_counter = ref 0
let proposition_counter = ref 0
let target_invisible_arrow_pre = ref 0
let current_pre = ref 0
let spec_id = ref 0
let invisible_arrows = ref false
let print_stack_info = ref false
(* replace a dollar sign in a name with a D. We need this because dotty get confused if there is*)
(* a dollar sign i a label*)
let strip_special_chars b =
let replace st c c' =
if String.contains st c then
let idx = String.index_exn st c in
try st.[idx] <- c' ; st with Invalid_argument _ ->
L.internal_error "@\n@\nstrip_special_chars: Invalid argument!@\n@." ;
assert false
else st
in
let s0 = replace b '(' 'B' in
let s1 = replace s0 '$' 'D' in
let s2 = replace s1 '#' 'H' in
let s3 = replace s2 '&' 'E' in
let s4 = replace s3 '@' 'A' in
let s5 = replace s4 ')' 'B' in
let s6 = replace s5 '+' 'P' in
let s7 = replace s6 '-' 'M' in
s7
let rec strexp_to_string pe coo f se =
match se with
| Sil.Eexp (Exp.Lvar pvar, _) ->
F.fprintf f "%a" (Pvar.pp pe) pvar
| Sil.Eexp (Exp.Var id, _) ->
if !print_full_prop then F.fprintf f "%a" (Ident.pp pe) id else ()
| Sil.Eexp (e, _) ->
if !print_full_prop then F.fprintf f "%a" (Sil.pp_exp_printenv pe) e else F.fprintf f "_"
| Sil.Estruct (ls, _) ->
F.fprintf f " STRUCT | { %a } " (struct_to_dotty_str pe coo) ls
| Sil.Earray (e, idx, _) ->
F.fprintf f " ARRAY[%a] | { %a } " (Sil.pp_exp_printenv pe) e (get_contents pe coo) idx
and struct_to_dotty_str pe coo f ls : unit =
match ls with
| [] ->
()
| [(fn, se)] ->
F.fprintf f "{ <%s%iL%i> %s: %a } " (Typ.Fieldname.to_string fn) coo.id coo.lambda
(Typ.Fieldname.to_string fn) (strexp_to_string pe coo) se
| (fn, se) :: ls' ->
F.fprintf f " { <%s%iL%i> %s: %a } | %a" (Typ.Fieldname.to_string fn) coo.id coo.lambda
(Typ.Fieldname.to_string fn) (strexp_to_string pe coo) se (struct_to_dotty_str pe coo) ls'
and get_contents_sexp pe coo f se =
match se with
| Sil.Eexp (e', _) ->
F.fprintf f "%a" (Sil.pp_exp_printenv pe) e'
| Sil.Estruct (se', _) ->
F.fprintf f "| { %a }" (struct_to_dotty_str pe coo) se'
| Sil.Earray (e', [], _) ->
F.fprintf f "(ARRAY Size: %a) | { }" (Sil.pp_exp_printenv pe) e'
| Sil.Earray (e', (idx, a) :: linner, _) ->
F.fprintf f "(ARRAY Size: %a) | { %a: %a | %a }" (Sil.pp_exp_printenv pe) e'
(Sil.pp_exp_printenv pe) idx (strexp_to_string pe coo) a (get_contents pe coo) linner
and get_contents_single pe coo f (e, se) =
let e_no_special_char = strip_special_chars (Exp.to_string e) in
F.fprintf f "{ <%s> %a : %a }" e_no_special_char (Sil.pp_exp_printenv pe) e
(get_contents_sexp pe coo) se
and get_contents pe coo f = function
| [] ->
()
| [idx_se] ->
F.fprintf f "%a" (get_contents_single pe coo) idx_se
| idx_se :: l ->
F.fprintf f "%a | %a" (get_contents_single pe coo) idx_se (get_contents pe coo) l
(* true if node is the sorce node of the expression e*)
let is_source_node_of_exp e node =
match node with Dotpointsto (_, e', _) -> Exp.equal e e' | _ -> false
(* given a node returns its coordinates and the expression. Return -1 in case the expression doesn't*)
(* make sense for that case *)
let get_coordinate_and_exp dotnode =
match dotnode with
| Dotnil coo ->
(coo, Exp.minus_one)
| Dotarray (coo, _, _, _, _, _) ->
(coo, Exp.minus_one)
| Dotpointsto (coo, b, _)
| Dotlseg (coo, b, _, _, _, _)
| Dotdllseg (coo, b, _, _, _, _, _, _)
| Dotstruct (coo, b, _, _, _)
| Dotdangling (coo, b, _) ->
(coo, b)
(* true if a node is of a Dotstruct *)
let is_not_struct node = match node with Dotstruct _ -> false | _ -> true
(* returns the id field of the coordinate of node *)
let get_coordinate_id node =
let coo = fst (get_coordinate_and_exp node) in
coo.id
let rec look_up_for_back_pointer e dotnodes lambda =
match dotnodes with
| [] ->
[]
| (Dotdllseg (coo, _, _, _, e4, _, _, _)) :: dotnodes' ->
if Exp.equal e e4 && Int.equal lambda coo.lambda then [coo.id + 1]
else look_up_for_back_pointer e dotnodes' lambda
| _ :: dotnodes' ->
look_up_for_back_pointer e dotnodes' lambda
(* get the nodes corresponding to an expression and a lambda*)
let rec select_nodes_exp_lambda dotnodes e lambda =
match dotnodes with
| [] ->
[]
| node :: l' ->
let coo, e' = get_coordinate_and_exp node in
if Exp.equal e e' && Int.equal lambda coo.lambda then
node :: select_nodes_exp_lambda l' e lambda
else select_nodes_exp_lambda l' e lambda
(* look-up the coordinate id in the list of dotnodes those nodes which correspond to expression e*)
(* this is written in this strange way for legacy reason. It should be changed a bit*)
let look_up dotnodes e lambda =
let r = select_nodes_exp_lambda dotnodes e lambda in
let r' = List.map ~f:get_coordinate_id r in
r' @ look_up_for_back_pointer e dotnodes lambda
let reset_proposition_counter () = proposition_counter := 0
let reset_dotty_spec_counter () = spec_counter := 0
let color_to_str (c: Pp.color) =
match c with
| Black ->
"black"
| Blue ->
"blue"
| Green ->
"green"
| Orange ->
"orange"
| Red ->
"red"
let make_dangling_boxes pe allocated_nodes (sigma_lambda: (Sil.hpred * int) list) =
let exp_color hpred (exp: Exp.t) =
if Pp.equal_color (pe.Pp.cmap_norm (Obj.repr hpred)) Pp.Red then Pp.Red
else pe.Pp.cmap_norm (Obj.repr exp)
in
let get_rhs_predicate (hpred, lambda) =
let n = !dotty_state_count in
incr dotty_state_count ;
let coo = mk_coordinate n lambda in
match hpred with
| Sil.Hpointsto (_, Sil.Eexp (e, _), _) when not (Exp.equal e Exp.zero) && !print_full_prop ->
let e_color_str = color_to_str (exp_color hpred e) in
[Dotdangling (coo, e, e_color_str)]
| Sil.Hlseg (_, _, _, e2, _) when not (Exp.equal e2 Exp.zero) ->
let e2_color_str = color_to_str (exp_color hpred e2) in
[Dotdangling (coo, e2, e2_color_str)]
| Sil.Hdllseg (_, _, _, e2, e3, _, _) ->
let e2_color_str = color_to_str (exp_color hpred e2) in
let e3_color_str = color_to_str (exp_color hpred e3) in
let ll =
if not (Exp.equal e2 Exp.zero) then [Dotdangling (coo, e2, e2_color_str)] else []
in
if not (Exp.equal e3 Exp.zero) then Dotdangling (coo, e3, e3_color_str) :: ll else ll
| Sil.Hpointsto (_, _, _) | _ ->
[]
(* arrays and struct do not give danglings*)
in
let is_allocated d =
match d with
| Dotdangling (_, e, _) ->
List.exists
~f:(fun a ->
match a with
| Dotpointsto (_, e', _)
| Dotarray (_, _, e', _, _, _)
| Dotlseg (_, e', _, _, _, _)
| Dotdllseg (_, e', _, _, _, _, _, _) ->
Exp.equal e e'
| _ ->
false)
allocated_nodes
| _ ->
false
(*this should never happen since d must be a dangling node *)
in
let rec filter_duplicate l seen_exp =
match l with
| [] ->
[]
| (Dotdangling (coo, e, color)) :: l' ->
if List.exists ~f:(Exp.equal e) seen_exp then filter_duplicate l' seen_exp
else Dotdangling (coo, e, color) :: filter_duplicate l' (e :: seen_exp)
| box :: l' ->
box :: filter_duplicate l' seen_exp
(* this case cannot happen*)
in
let rec subtract_allocated candidate_dangling =
match candidate_dangling with
| [] ->
[]
| d :: candidates ->
if is_allocated d then subtract_allocated candidates
else d :: subtract_allocated candidates
in
let candidate_dangling = List.concat_map ~f:get_rhs_predicate sigma_lambda in
let candidate_dangling = filter_duplicate candidate_dangling [] in
let dangling = subtract_allocated candidate_dangling in
dangling_dotboxes := dangling
let rec dotty_mk_node pe sigma =
let n = !dotty_state_count in
incr dotty_state_count ;
let do_hpred_lambda exp_color = function
| ( Sil.Hpointsto (e, Sil.Earray (e', l, _), Exp.Sizeof {typ= {Typ.desc= Tarray (t, _, _)}})
, lambda ) ->
incr dotty_state_count ;
(* increment once more n+1 is the box for the array *)
let e_color_str = color_to_str (exp_color e) in
let e_color_str' = color_to_str (exp_color e') in
[ Dotpointsto (mk_coordinate n lambda, e, e_color_str)
; Dotarray (mk_coordinate (n + 1) lambda, e, e', l, t, e_color_str') ]
| Sil.Hpointsto (e, Sil.Estruct (l, _), te), lambda ->
incr dotty_state_count ;
(* increment once more n+1 is the box for the struct *)
let e_color_str = color_to_str (exp_color e) in
(* [Dotpointsto((mk_coordinate n lambda), e, l, true, e_color_str)] *)
[ Dotpointsto (mk_coordinate n lambda, e, e_color_str)
; Dotstruct (mk_coordinate (n + 1) lambda, e, l, e_color_str, te) ]
| Sil.Hpointsto (e, _, _), lambda ->
let e_color_str = color_to_str (exp_color e) in
if List.mem ~equal:Exp.equal !struct_exp_nodes e then []
else [Dotpointsto (mk_coordinate n lambda, e, e_color_str)]
| Sil.Hlseg (k, hpara, e1, e2, _), lambda ->
incr dotty_state_count ;
(* increment once more n+1 is the box for last element of the list *)
let eq_color_str = color_to_str (exp_color e1) in
[Dotlseg (mk_coordinate n lambda, e1, e2, k, hpara.Sil.body, eq_color_str)]
| Sil.Hdllseg (k, hpara_dll, e1, e2, e3, e4, _), lambda ->
let e1_color_str = color_to_str (exp_color e1) in
incr dotty_state_count ;
(* increment once more n+1 is the box for e4 *)
[ Dotdllseg
(mk_coordinate n lambda, e1, e2, e3, e4, k, hpara_dll.Sil.body_dll, e1_color_str) ]
in
match sigma with
| [] ->
[]
| (hpred, lambda) :: sigma' ->
let exp_color (exp: Exp.t) =
if Pp.equal_color (pe.Pp.cmap_norm (Obj.repr hpred)) Pp.Red then Pp.Red
else pe.Pp.cmap_norm (Obj.repr exp)
in
do_hpred_lambda exp_color (hpred, lambda) @ dotty_mk_node pe sigma'
let set_exps_neq_zero pi =
let f = function
| Sil.Aneq (e, Exp.Const Const.Cint i) when IntLit.iszero i ->
exps_neq_zero := e :: !exps_neq_zero
| _ ->
()
in
exps_neq_zero := [] ;
List.iter ~f pi
let box_dangling e =
let entry_e =
List.filter
~f:(fun b -> match b with Dotdangling (_, e', _) -> Exp.equal e e' | _ -> false)
!dangling_dotboxes
in
match entry_e with [] -> None | (Dotdangling (coo, _, _)) :: _ -> Some coo.id | _ -> None
(* NOTE: this cannot be possible since entry_e can be composed only by Dotdangling, see def of entry_e*)
(* construct a Dotnil and returns it's id *)
let make_nil_node lambda =
let n = !dotty_state_count in
incr dotty_state_count ;
nil_dotboxes := Dotnil (mk_coordinate n lambda) :: !nil_dotboxes ;
n
let compute_fields_struct sigma =
fields_structs := [] ;
let rec do_strexp se in_struct =
match se with
| Sil.Eexp (e, _) ->
if in_struct then fields_structs := e :: !fields_structs else ()
| Sil.Estruct (l, _) ->
List.iter ~f:(fun e -> do_strexp e true) (snd (List.unzip l))
| Sil.Earray (_, l, _) ->
List.iter ~f:(fun e -> do_strexp e false) (snd (List.unzip l))
in
let rec fs s =
match s with
| [] ->
()
| (Sil.Hpointsto (_, se, _)) :: s' ->
do_strexp se false ; fs s'
| _ :: s' ->
fs s'
in
fs sigma
let compute_struct_exp_nodes sigma =
struct_exp_nodes := [] ;
let rec sen s =
match s with
| [] ->
()
| (Sil.Hpointsto (e, Sil.Estruct _, _)) :: s' ->
struct_exp_nodes := e :: !struct_exp_nodes ;
sen s'
| _ :: s' ->
sen s'
in
sen sigma
(* returns the expression of a node*)
let get_node_exp n = snd (get_coordinate_and_exp n)
let is_nil e prop = Exp.equal e Exp.zero || Prover.check_equal (Tenv.create ()) prop e Exp.zero
(* an edge is in cycle *)
let in_cycle cycle edge =
match cycle with
| Some cycle' ->
let fn, se = edge in
List.exists
~f:(fun (_, fn', se') -> Typ.Fieldname.equal fn fn' && Sil.equal_strexp se se')
cycle'
| _ ->
false
let node_in_cycle cycle node =
match (cycle, node) with
| Some _, Dotstruct (_, _, l, _, _) ->
(* only struct nodes can be in cycle *)
List.exists ~f:(in_cycle cycle) l
| _ ->
false
(* compute a list of (kind of link, field name, coo.id target, name_target) *)
let rec compute_target_struct_fields dotnodes list_fld p f lambda cycle =
let find_target_one_fld (fn, se) =
match se with
| Sil.Eexp (e, _)
-> (
if is_nil e p then
let n' = make_nil_node lambda in
if !print_full_prop then [(LinkStructToExp, Typ.Fieldname.to_string fn, n', "")] else []
else
let nodes_e = select_nodes_exp_lambda dotnodes e lambda in
match nodes_e with
| [] -> (
match box_dangling e with
| None ->
[]
| Some n' ->
[(LinkStructToExp, Typ.Fieldname.to_string fn, n', "")] )
| [node] | [(Dotpointsto _); node] | [node; (Dotpointsto _)] ->
let n = get_coordinate_id node in
if List.mem ~equal:Exp.equal !struct_exp_nodes e then
let e_no_special_char = strip_special_chars (Exp.to_string e) in
let link_kind =
if in_cycle cycle (fn, se) && not !print_full_prop then LinkRetainCycle
else LinkStructToStruct
in
[(link_kind, Typ.Fieldname.to_string fn, n, e_no_special_char)]
else [(LinkStructToExp, Typ.Fieldname.to_string fn, n, "")]
| _ ->
(* by construction there must be at most 2 nodes for an expression*)
L.internal_error "@\n Too many nodes! Error! @\n@." ;
assert false )
| Sil.Estruct (_, _) ->
[] (* inner struct are printed by print_struc function *)
| Sil.Earray _ ->
[]
(* inner arrays are printed by print_array function *)
in
match list_fld with
| [] ->
[]
| a :: list_fld' ->
let targets_a = find_target_one_fld a in
targets_a @ compute_target_struct_fields dotnodes list_fld' p f lambda cycle
(* compute a list of (kind of link, field name, coo.id target, name_target) *)
let rec compute_target_array_elements dotnodes list_elements p f lambda =
let find_target_one_element (idx, se) =
match se with
| Sil.Eexp (e, _)
-> (
if is_nil e p then
let n' = make_nil_node lambda in
[(LinkArrayToExp, Exp.to_string idx, n', "")]
else
let nodes_e = select_nodes_exp_lambda dotnodes e lambda in
match nodes_e with
| [] -> (
match box_dangling e with
| None ->
[]
| Some n' ->
[(LinkArrayToExp, Exp.to_string idx, n', "")] )
| [node] | [(Dotpointsto _); node] | [node; (Dotpointsto _)] ->
let n = get_coordinate_id node in
if List.mem ~equal:Exp.equal !struct_exp_nodes e then
let e_no_special_char = strip_special_chars (Exp.to_string e) in
[(LinkArrayToStruct, Exp.to_string idx, n, e_no_special_char)]
else [(LinkArrayToExp, Exp.to_string idx, n, "")]
| _ ->
(* by construction there must be at most 2 nodes for an expression*)
L.internal_error "@\nToo many nodes! Error!@\n@." ;
assert false )
| Sil.Estruct (_, _) ->
[] (* inner struct are printed by print_struc function *)
| Sil.Earray _ ->
[]
(* inner arrays are printed by print_array function *)
in
match list_elements with
| [] ->
[]
| a :: list_ele' ->
let targets_a = find_target_one_element a in
targets_a @ compute_target_array_elements dotnodes list_ele' p f lambda
let compute_target_from_eexp dotnodes e p lambda =
if is_nil e p then
let n' = make_nil_node lambda in
[(LinkExpToExp, n', "")]
else
let nodes_e = select_nodes_exp_lambda dotnodes e lambda in
let nodes_e_no_struct = List.filter ~f:is_not_struct nodes_e in
let trg = List.map ~f:get_coordinate_id nodes_e_no_struct in
match trg with
| [] -> (
match box_dangling e with None -> [] | Some n -> [(LinkExpToExp, n, "")] )
| _ ->
List.map ~f:(fun n -> (LinkExpToExp, n, "")) trg
(* build the set of edges between nodes *)
let rec dotty_mk_set_links dotnodes sigma p f cycle =
let make_links_for_arrays e lie lambda sigma' =
(* used for both Earray and ENarray*)
let src = look_up dotnodes e lambda in
match src with
| [] ->
assert false
| n :: nl ->
let target_list = compute_target_array_elements dotnodes lie p f lambda in
(* below it's n+1 because n is the address, n+1 is the actual array node*)
let ff n =
List.map
~f:(fun (k, lab_src, m, lab_trg) ->
mk_link k
(mk_coordinate (n + 1) lambda)
(strip_special_chars lab_src) (mk_coordinate m lambda)
(strip_special_chars lab_trg))
target_list
in
let links_from_elements = List.concat_map ~f:ff (n :: nl) in
let trg_label = strip_special_chars (Exp.to_string e) in
let lnk =
mk_link LinkToArray (mk_coordinate n lambda) "" (mk_coordinate (n + 1) lambda) trg_label
in
lnk :: links_from_elements @ dotty_mk_set_links dotnodes sigma' p f cycle
in
match sigma with
| [] ->
[]
| (Sil.Hpointsto (e, Sil.Earray (_, lie, _), _), lambda) :: sigma' ->
make_links_for_arrays e lie lambda sigma'
| (Sil.Hpointsto (e, Sil.Estruct (lfld, _), _), lambda) :: sigma'
-> (
let src = look_up dotnodes e lambda in
match src with
| [] ->
assert false
| nl ->
(* L.out "@\n@\n List of nl= "; List.iter ~f:(L.out " %i ") nl; L.out "@.@.@."; *)
let target_list = compute_target_struct_fields dotnodes lfld p f lambda cycle in
let ff n =
List.map
~f:(fun (k, lab_src, m, lab_trg) ->
mk_link k (mk_coordinate n lambda) lab_src (mk_coordinate m lambda) lab_trg)
target_list
in
let nodes_e = select_nodes_exp_lambda dotnodes e lambda in
let address_struct_id =
get_coordinate_id (List.hd_exn (List.filter ~f:(is_source_node_of_exp e) nodes_e))
in
(* we need to exclude the address node from the sorce of fields. no fields should start from there*)
let nl' = List.filter ~f:(fun id -> address_struct_id <> id) nl in
let links_from_fields = List.concat_map ~f:ff nl' in
let lnk_from_address_struct =
if !print_full_prop then
let trg_label = strip_special_chars (Exp.to_string e) in
[ mk_link LinkExpToStruct
(mk_coordinate address_struct_id lambda)
""
(mk_coordinate (address_struct_id + 1) lambda)
trg_label ]
else []
in
lnk_from_address_struct @ links_from_fields
@ dotty_mk_set_links dotnodes sigma' p f cycle )
| (Sil.Hpointsto (e, Sil.Eexp (e', _), _), lambda) :: sigma'
-> (
let src = look_up dotnodes e lambda in
match src with
| [] ->
assert false
| nl ->
if !print_full_prop then
let target_list = compute_target_from_eexp dotnodes e' p lambda in
let ff n =
List.map
~f:(fun (k, m, lab_target) ->
mk_link k (mk_coordinate n lambda) "" (mk_coordinate m lambda)
(strip_special_chars lab_target))
target_list
in
let ll = List.concat_map ~f:ff nl in
ll @ dotty_mk_set_links dotnodes sigma' p f cycle
else dotty_mk_set_links dotnodes sigma' p f cycle )
| (Sil.Hlseg (_, _, e1, e2, _), lambda) :: sigma'
-> (
let src = look_up dotnodes e1 lambda in
match src with
| [] ->
assert false
| n :: _ ->
let _, m, lab = List.hd_exn (compute_target_from_eexp dotnodes e2 p lambda) in
let lnk =
mk_link LinkToSSL (mk_coordinate (n + 1) lambda) "" (mk_coordinate m lambda) lab
in
lnk :: dotty_mk_set_links dotnodes sigma' p f cycle )
| (Sil.Hdllseg (_, _, e1, e2, e3, _, _), lambda) :: sigma' ->
let src = look_up dotnodes e1 lambda in
match src with
| [] ->
assert false
| n :: _ ->
(* n is e1's box and n+1 is e4's box *)
let targetF = look_up dotnodes e3 lambda in
let target_Flink =
match targetF with
| [] ->
[]
| m :: _ ->
[mk_link LinkToDLL (mk_coordinate (n + 1) lambda) "" (mk_coordinate m lambda) ""]
in
let targetB = look_up dotnodes e2 lambda in
let target_Blink =
match targetB with
| [] ->
[]
| m :: _ ->
[mk_link LinkToDLL (mk_coordinate n lambda) "" (mk_coordinate m lambda) ""]
in
target_Blink @ target_Flink @ dotty_mk_set_links dotnodes sigma' p f cycle
let print_kind f kind =
incr dotty_state_count ;
match kind with
| Spec_precondition ->
incr dotty_state_count ;
current_pre := !dotty_state_count ;
F.fprintf f "@\n PRE%iL0 [label=\"PRE %i \", style=filled, color= yellow]@\n"
!dotty_state_count !spec_counter ;
print_stack_info := true
| Spec_postcondition _ ->
F.fprintf f "@\n POST%iL0 [label=\"POST %i \", style=filled, color= yellow]@\n"
!dotty_state_count !post_counter ;
print_stack_info := true
| Generic_proposition ->
if !print_full_prop then
F.fprintf f "@\n HEAP%iL0 [label=\"HEAP %i \", style=filled, color= yellow]@\n"
!dotty_state_count !proposition_counter
| Lambda_pred (no, lev, array) ->
match array with
| false ->
F.fprintf f "%s @\n state%iL%i [label=\"INTERNAL STRUCTURE %i \", %s]@\n"
"style=dashed; color=blue" !dotty_state_count !lambda_counter !lambda_counter
"style=filled, color= lightblue" ;
F.fprintf f "state%iL%i -> state%iL%i [color=\"lightblue \" arrowhead=none] @\n"
!dotty_state_count !lambda_counter no lev
| true ->
F.fprintf f "%s @\n state%iL%i [label=\"INTERNAL STRUCTURE %i \", %s]@\n"
"style=dashed; color=blue" !dotty_state_count !lambda_counter !lambda_counter
"style=filled, color= lightblue" ;
(* F.fprintf f "state%iL%i -> struct%iL%i:%s [color=\"lightblue \" arrowhead=none] @\n"
!dotty_state_count !lambda_counter no lev lab;*)
incr dotty_state_count
(* print a link between two nodes in the graph *)
let dotty_pp_link f link =
let n1 = link.src.id in
let lambda1 = link.src.lambda in
let n2 = link.trg.id in
let lambda2 = link.trg.lambda in
let src_fld = link.src_fld in
let trg_fld = link.trg_fld in
match (n2, link.kind) with
| 0, _ when !print_full_prop ->
F.fprintf f "state%iL%i -> state%iL%i[label=\"%s DANG\", color= red];@\n" n1 lambda1 n2
lambda2 src_fld
| _, LinkToArray when !print_full_prop ->
F.fprintf f "state%iL%i -> struct%iL%i:%s%iL%i[label=\"\"]@\n" n1 lambda1 n2 lambda2 trg_fld
n2 lambda2
| _, LinkExpToStruct when !print_full_prop ->
F.fprintf f "state%iL%i -> struct%iL%i:%s%iL%i[label=\"\"]@\n" n1 lambda1 n2 lambda2 trg_fld
n2 lambda2
| _, LinkStructToExp when !print_full_prop ->
F.fprintf f "struct%iL%i:%s%iL%i -> state%iL%i[label=\"\"]@\n" n1 lambda1 src_fld n1 lambda1
n2 lambda2
| _, LinkRetainCycle ->
F.fprintf f "struct%iL%i:%s%iL%i -> struct%iL%i:%s%iL%i[label=\"\", color= red]@\n" n1
lambda1 src_fld n1 lambda1 n2 lambda2 trg_fld n2 lambda2
| _, LinkStructToStruct when !print_full_prop ->
F.fprintf f "struct%iL%i:%s%iL%i -> struct%iL%i:%s%iL%i[label=\"\"]@\n" n1 lambda1 src_fld n1
lambda1 n2 lambda2 trg_fld n2 lambda2
| _, LinkArrayToExp when !print_full_prop ->
F.fprintf f "struct%iL%i:%s -> state%iL%i[label=\"\"]@\n" n1 lambda1 src_fld n2 lambda2
| _, LinkArrayToStruct when !print_full_prop ->
F.fprintf f "struct%iL%i:%s -> struct%iL%i[label=\"\"]@\n" n1 lambda1 src_fld n2 lambda2
| _, _ ->
if !print_full_prop then
F.fprintf f "state%iL%i -> state%iL%i[label=\"%s\"];@\n" n1 lambda1 n2 lambda2 src_fld
else ()
(* given the list of nodes and links get rid of spec nodes that are not pointed to by anybody*)
let filter_useless_spec_dollar_box (nodes: dotty_node list) (links: link list) =
let tmp_nodes = ref nodes in
let tmp_links = ref links in
let remove_links_from ln =
List.filter ~f:(fun n' -> not (List.mem ~equal:equal_link ln n')) !tmp_links
in
let remove_node n ns =
List.filter
~f:(fun n' ->
match n' with Dotpointsto _ -> get_coordinate_id n' <> get_coordinate_id n | _ -> true)
ns
in
let rec boxes_pointed_by n lns =
match lns with
| [] ->
[]
| l :: ln' ->
let n_id = get_coordinate_id n in
if Int.equal l.src.id n_id && String.equal l.src_fld "" then
(*L.out "@\n Found link (%i,%i)" l.src.id l.trg.id;*)
l :: boxes_pointed_by n ln'
else boxes_pointed_by n ln'
in
let rec boxes_pointing_at n lns =
match lns with
| [] ->
[]
| l :: ln' ->
let n_id = get_coordinate_id n in
if Int.equal l.trg.id n_id && String.equal l.trg_fld "" then
(*L.out "@\n Found link (%i,%i)" l.src.id l.trg.id;*)
l :: boxes_pointing_at n ln'
else boxes_pointing_at n ln'
in
let is_spec_variable = function
| Exp.Var id ->
Ident.is_normal id && Ident.equal_name (Ident.get_name id) Ident.name_spec
| _ ->
false
in
let handle_one_node node =
match node with
| Dotpointsto _ ->
let e = get_node_exp node in
if is_spec_variable e then
let links_from_node = boxes_pointed_by node links in
let links_to_node = boxes_pointing_at node links in
if List.is_empty links_to_node then (
tmp_links := remove_links_from links_from_node ;
tmp_nodes := remove_node node !tmp_nodes )
| _ ->
()
in
List.iter ~f:handle_one_node nodes ;
(!tmp_nodes, !tmp_links)
(* print a struct node *)
let rec print_struct f pe e te l coo c =
let print_type =
match te with
| Exp.Sizeof {typ}
-> (
let str_t = Typ.to_string typ in
match Str.split_delim (Str.regexp_string Config.anonymous_block_prefix) str_t with
| [_; _] ->
"BLOCK object"
| _ ->
str_t )
| _ ->
Exp.to_string te
in
let n = coo.id in
let lambda = coo.lambda in
let e_no_special_char = strip_special_chars (Exp.to_string e) in
F.fprintf f "subgraph structs_%iL%i {@\n" n lambda ;
if !print_full_prop then
F.fprintf f
" node [%s]; @\n struct%iL%i [label=\"{<%s%iL%i> STRUCT: %a } | %a\" ] fontcolor=%s@\n"
"shape=record" n lambda e_no_special_char n lambda (Sil.pp_exp_printenv pe) e
(struct_to_dotty_str pe coo) l c
else
F.fprintf f
" node [%s]; @\n struct%iL%i [label=\"{<%s%iL%i> OBJECT: %s } | %a\" ] fontcolor=%s@\n"
"shape=record" n lambda e_no_special_char n lambda print_type (struct_to_dotty_str pe coo) l
c ;
F.fprintf f "}@\n"
and print_array f pe e1 e2 l coo c =
let n = coo.id in
let lambda = coo.lambda in
let e_no_special_char = strip_special_chars (Exp.to_string e1) in
F.fprintf f "subgraph structs_%iL%i {@\n" n lambda ;
F.fprintf f
" node [%s]; @\n struct%iL%i [label=\"{<%s%iL%i> ARRAY| SIZE: %a } | %a\" ] fontcolor=%s@\n"
"shape=record" n lambda e_no_special_char n lambda (Sil.pp_exp_printenv pe) e2
(get_contents pe coo) l c ;
F.fprintf f "}@\n"
and print_sll f pe nesting k e1 coo =
let n = coo.id in
let lambda = coo.lambda in
let n' = !dotty_state_count in
incr dotty_state_count ;
( match k with
| Sil.Lseg_NE ->
F.fprintf f
"subgraph cluster_%iL%i { %s node [style=filled,color=white]; label=\"list NE\";" n'
lambda "style=filled; color=lightgrey;"
| Sil.Lseg_PE ->
F.fprintf f
"subgraph cluster_%iL%i { %s node [style=filled,color=white]; label=\"list PE\";" n'
lambda "style=filled; color=lightgrey;" ) ;
F.fprintf f "state%iL%i [label=\"%a\"]@\n" n lambda (Sil.pp_exp_printenv pe) e1 ;
let n' = !dotty_state_count in
incr dotty_state_count ;
F.fprintf f "state%iL%i [label=\"... \" style=filled color=lightgrey] @\n" n' lambda ;
F.fprintf f "state%iL%i -> state%iL%i [label=\" \"] @\n" n lambda n' lambda ;
F.fprintf f "state%iL%i [label=\" \"] @\n" (n + 1) lambda ;
F.fprintf f "state%iL%i -> state%iL%i [label=\" \"] }" n' lambda (n + 1) lambda ;
incr lambda_counter ;
pp_dotty f (Lambda_pred (n + 1, lambda, false))
(Prop.normalize (Tenv.create ()) (Prop.from_sigma nesting))
None
and print_dll f pe nesting k e1 e4 coo =
let n = coo.id in
let lambda = coo.lambda in
let n' = !dotty_state_count in
incr dotty_state_count ;
( match k with
| Sil.Lseg_NE ->
F.fprintf f "subgraph cluster_%iL%i { %s node [style=filled,color=white]; label=\"%s\";" n'
lambda "style=filled; color=lightgrey;" "doubly-linked list NE"
| Sil.Lseg_PE ->
F.fprintf f "subgraph cluster_%iL%i { %s node [style=filled,color=white]; label=\"%s\";" n'
lambda "style=filled; color=lightgrey;" "doubly-linked list PE" ) ;
F.fprintf f "state%iL%i [label=\"%a\"]@\n" n lambda (Sil.pp_exp_printenv pe) e1 ;
let n' = !dotty_state_count in
incr dotty_state_count ;
F.fprintf f "state%iL%i [label=\"... \" style=filled color=lightgrey] @\n" n' lambda ;
F.fprintf f "state%iL%i -> state%iL%i [label=\" \"]@\n" n lambda n' lambda ;
F.fprintf f "state%iL%i -> state%iL%i [label=\" \"]@\n" n' lambda n lambda ;
F.fprintf f "state%iL%i [label=\"%a\"]@\n" (n + 1) lambda (Sil.pp_exp_printenv pe) e4 ;
F.fprintf f "state%iL%i -> state%iL%i [label=\" \"]@\n" (n + 1) lambda n' lambda ;
F.fprintf f "state%iL%i -> state%iL%i [label=\" \"]}@\n" n' lambda (n + 1) lambda ;
incr lambda_counter ;
pp_dotty f (Lambda_pred (n', lambda, false))
(Prop.normalize (Tenv.create ()) (Prop.from_sigma nesting))
None
and dotty_pp_state f pe cycle dotnode =
let dotty_exp coo e c is_dangling =
let n = coo.id in
let lambda = coo.lambda in
if is_dangling then
F.fprintf f "state%iL%i [label=\"%a \", color=red, style=dashed, fontcolor=%s]@\n" n lambda
(Sil.pp_exp_printenv pe) e c
else
F.fprintf f "state%iL%i [label=\"%a\" fontcolor=%s]@\n" n lambda (Sil.pp_exp_printenv pe) e c
in
match dotnode with
| Dotnil coo when !print_full_prop ->
F.fprintf f "state%iL%i [label=\"NIL \", color=green, style=filled]@\n" coo.id coo.lambda
| Dotdangling (coo, e, c) when !print_full_prop ->
dotty_exp coo e c true
| Dotpointsto (coo, e1, c) when !print_full_prop ->
dotty_exp coo e1 c false
| Dotstruct (coo, e1, l, c, te) ->
let l' =
if !print_full_prop then l else List.filter ~f:(fun edge -> in_cycle cycle edge) l
in
print_struct f pe e1 te l' coo c
| Dotarray (coo, e1, e2, l, _, c) when !print_full_prop ->
print_array f pe e1 e2 l coo c
| Dotlseg (coo, e1, _, Sil.Lseg_NE, nesting, _) when !print_full_prop ->
print_sll f pe nesting Sil.Lseg_NE e1 coo
| Dotlseg (coo, e1, _, Sil.Lseg_PE, nesting, _) when !print_full_prop ->
print_sll f pe nesting Sil.Lseg_PE e1 coo
| Dotdllseg (coo, e1, _, _, e4, Sil.Lseg_NE, nesting, _) when !print_full_prop ->
print_dll f pe nesting Sil.Lseg_NE e1 e4 coo
| Dotdllseg (coo, e1, _, _, e4, Sil.Lseg_PE, nesting, _) when !print_full_prop ->
print_dll f pe nesting Sil.Lseg_PE e1 e4 coo
| _ ->
()
(* Build the graph data structure to be printed *)
and build_visual_graph f pe p cycle =
let sigma = p.Prop.sigma in
compute_fields_struct sigma ;
compute_struct_exp_nodes sigma ;
(* L.out "@\n@\n Computed fields structs: ";
List.iter ~f:(fun e -> L.out " %a " (Sil.pp_exp_printenv pe) e) !fields_structs;
L.out "@\n@.";
L.out "@\n@\n Computed exp structs nodes: ";
List.iter ~f:(fun e -> L.out " %a " (Sil.pp_exp_printenv pe) e) !struct_exp_nodes;
L.out "@\n@."; *)
let sigma_lambda = List.map ~f:(fun hp -> (hp, !lambda_counter)) sigma in
let nodes = dotty_mk_node pe sigma_lambda in
if !print_full_prop then make_dangling_boxes pe nodes sigma_lambda ;
let links = dotty_mk_set_links nodes sigma_lambda p f cycle in
filter_useless_spec_dollar_box nodes links
and display_pure_info f pe prop =
let print_invisible_objects () =
for j = 1 to 4 do
F.fprintf f " inv_%i%i [style=invis]@\n" !spec_counter j ;
F.fprintf f " inv_%i%i%i [style=invis]@\n" !spec_counter j j ;
F.fprintf f " inv_%i%i%i%i [style=invis]@\n" !spec_counter j j j
done ;
for j = 1 to 4 do
F.fprintf f " state_pi_%i -> inv_%i%i [style=invis]@\n" !proposition_counter !spec_counter j ;
F.fprintf f " inv_%i%i -> inv_%i%i%i [style=invis]@\n" !spec_counter j !spec_counter j j ;
F.fprintf f " inv_%i%i%i -> inv_%i%i%i%i [style=invis]@\n" !spec_counter j j !spec_counter j
j j
done
in
let pure = Prop.get_pure prop in
F.fprintf f "subgraph {@\n" ;
F.fprintf f
" node [shape=box]; @\n state_pi_%i [label=\"STACK \\n\\n %a\" color=orange style=filled]@\n"
!proposition_counter (Prop.pp_pi pe) pure ;
if !invisible_arrows then print_invisible_objects () ;
F.fprintf f "}@\n"
(** Pretty print a proposition in dotty format. *)
and pp_dotty f kind (prop_: Prop.normal Prop.t) cycle =
incr proposition_counter ;
let pe, prop =
match kind with
| Spec_postcondition pre ->
target_invisible_arrow_pre := !proposition_counter ;
let diff =
Propgraph.compute_diff Black (Propgraph.from_prop pre) (Propgraph.from_prop prop_)
in
let cmap_norm = Propgraph.diff_get_colormap false diff in
let cmap_foot = Propgraph.diff_get_colormap true diff in
let pe = {(Prop.prop_update_obj_sub Pp.text pre) with cmap_norm; cmap_foot} in
(* add stack vars from pre *)
let pre_stack = fst (Prop.sigma_get_stack_nonstack true pre.Prop.sigma) in
let prop = Prop.set prop_ ~sigma:(pre_stack @ prop_.Prop.sigma) in
(pe, Prop.normalize (Tenv.create ()) prop)
| _ ->
let pe = Prop.prop_update_obj_sub Pp.text prop_ in
(pe, prop_)
in
dangling_dotboxes := [] ;
nil_dotboxes := [] ;
set_exps_neq_zero prop.Prop.pi ;
incr dotty_state_count ;
F.fprintf f "@\n subgraph cluster_prop_%i { color=black @\n" !proposition_counter ;
print_kind f kind ;
if !print_stack_info then (
display_pure_info f pe prop ;
print_stack_info := false ) ;
(* F.fprintf f "@\n subgraph cluster_%i { color=black @\n" !dotty_state_count; *)
let nodes, links = build_visual_graph f pe prop cycle in
let all_nodes = nodes @ !dangling_dotboxes @ !nil_dotboxes in
if !print_full_prop then List.iter ~f:(dotty_pp_state f pe cycle) all_nodes
else
List.iter
~f:(fun node -> if node_in_cycle cycle node then dotty_pp_state f pe cycle node)
all_nodes ;
List.iter ~f:(dotty_pp_link f) links ;
(* F.fprintf f "@\n } @\n"; *)
F.fprintf f "@\n } @\n"
let pp_dotty_one_spec f pre posts =
post_counter := 0 ;
incr spec_counter ;
incr proposition_counter ;
incr dotty_state_count ;
F.fprintf f "@\n subgraph cluster_%i { color=blue @\n" !dotty_state_count ;
incr dotty_state_count ;
F.fprintf f "@\n state%iL0 [label=\"SPEC %i \", style=filled, color= lightblue]@\n"
!dotty_state_count !spec_counter ;
spec_id := !dotty_state_count ;
invisible_arrows := true ;
pp_dotty f Spec_precondition pre None ;
invisible_arrows := false ;
List.iter
~f:(fun (po, _) ->
incr post_counter ;
pp_dotty f (Spec_postcondition pre) po None ;
for j = 1 to 4 do
F.fprintf f " inv_%i%i%i%i -> state_pi_%i [style=invis]@\n" !spec_counter j j j
!target_invisible_arrow_pre
done)
posts ;
F.fprintf f "@\n } @\n"
(* this is used to print a list of proposition when considered in a path of nodes *)
let pp_dotty_prop_list_in_path f plist prev_n curr_n =
try
incr proposition_counter ;
incr dotty_state_count ;
F.fprintf f "@\n subgraph cluster_%i { color=blue @\n" !dotty_state_count ;
incr dotty_state_count ;
F.fprintf f "@\n state%iN [label=\"NODE %i \", style=filled, color= lightblue]@\n" curr_n
curr_n ;
List.iter
~f:(fun po ->
incr proposition_counter ;
pp_dotty f Generic_proposition po None)
plist ;
if prev_n <> -1 then F.fprintf f "@\n state%iN ->state%iN@\n" prev_n curr_n ;
F.fprintf f "@\n } @\n"
with exn when SymOp.exn_not_failure exn -> ()
let pp_dotty_prop fmt (prop, cycle) =
reset_proposition_counter () ;
Format.fprintf fmt "@\n@\n@\ndigraph main { @\nnode [shape=box]; @\n" ;
Format.fprintf fmt "@\n compound = true; rankdir =LR; @\n" ;
pp_dotty fmt Generic_proposition prop (Some cycle) ;
Format.fprintf fmt "@\n}"
let dotty_prop_to_str prop cycle =
try Some (F.asprintf "%a" pp_dotty_prop (prop, cycle))
with exn when SymOp.exn_not_failure exn -> None
(* create a dotty file with a single proposition *)
let dotty_prop_to_dotty_file fname prop cycle =
try
let out_dot = Out_channel.create fname in
let fmt_dot = Format.formatter_of_out_channel out_dot in
pp_dotty_prop fmt_dot (prop, cycle) ;
Out_channel.close out_dot
with exn when SymOp.exn_not_failure exn -> ()
(* This is used only to print a list of prop parsed with the external parser. Basically
deprecated.*)
let pp_proplist_parsed2dotty_file filename plist =
try
let pp_list f plist =
reset_proposition_counter () ;
F.fprintf f "@\n@\n@\ndigraph main { @\nnode [shape=box];@\n" ;
F.fprintf f "@\n compound = true; @\n" ;
F.fprintf f "@\n /* size=\"12,7\"; ratio=fill;*/ @\n" ;
ignore (List.map ~f:(pp_dotty f Generic_proposition) plist) ;
F.fprintf f "@\n}"
in
let outc = Out_channel.create filename in
let fmt = F.formatter_of_out_channel outc in
F.fprintf fmt "#### Dotty version: ####@.%a@.@." pp_list plist ;
Out_channel.close outc
with exn when SymOp.exn_not_failure exn -> ()
(********** START of Print interprocedural cfgs in dotty format *)
(********** Print control flow graph (in dot form) for fundec to *)
(* channel. You have to compute an interprocedural cfg first *)
let pp_cfgnodename pname fmt (n: Procdesc.Node.t) =
F.fprintf fmt "\"%s_%d\""
(Escape.escape_dotty (Typ.Procname.to_filename pname))
(Procdesc.Node.get_id n :> int)
let pp_etlist byvals fmt etl =
List.iteri
~f:(fun index (id, ({Typ.desc} as ty)) ->
let is_ptr = match desc with Tptr _ -> true | _ -> false in
let byval_mark =
if is_ptr && List.mem byvals index ~equal:Int.equal then "(byval)" else ""
in
Format.fprintf fmt " %a:%a%s" Mangled.pp id (Typ.pp_full Pp.text) ty byval_mark)
etl
let pp_local_list fmt etl =
List.iter
~f:(fun (id, ty) -> Format.fprintf fmt " %a:%a" Mangled.pp id (Typ.pp_full Pp.text) ty)
etl
let pp_cfgnodelabel pdesc fmt (n: Procdesc.Node.t) =
let pp_label fmt n =
match Procdesc.Node.get_kind n with
| Procdesc.Node.Start_node pname ->
let pname_string = Escape.escape_dotty (Typ.Procname.to_string pname) in
let attributes = Procdesc.get_attributes pdesc in
let byvals = attributes.ProcAttributes.by_vals in
Format.fprintf fmt "Start %s\\nFormals: %a\\nLocals: %a" pname_string (pp_etlist byvals)
(Procdesc.get_formals pdesc) pp_local_list (Procdesc.get_locals pdesc) ;
if List.length (Procdesc.get_captured pdesc) <> 0 then
Format.fprintf fmt "\\nCaptured: %a" pp_local_list (Procdesc.get_captured pdesc) ;
let method_annotation = attributes.ProcAttributes.method_annotation in
if not (Annot.Method.is_empty method_annotation) then
Format.fprintf fmt "\\nAnnotation: %a" (Annot.Method.pp pname_string) method_annotation
| Procdesc.Node.Exit_node pname ->
Format.fprintf fmt "Exit %s" (Escape.escape_dotty (Typ.Procname.to_string pname))
| Procdesc.Node.Join_node ->
Format.fprintf fmt "+"
| Procdesc.Node.Prune_node (is_true_branch, _, _) ->
Format.fprintf fmt "Prune (%b branch)" is_true_branch
| Procdesc.Node.Stmt_node s ->
Format.fprintf fmt " %s" s
| Procdesc.Node.Skip_node s ->
Format.fprintf fmt "Skip %s" s
in
let instr_string i =
let pp f = Sil.pp_instr Pp.text f i in
let str = F.asprintf "%t" pp in
Escape.escape_dotty str
in
let pp_instrs fmt instrs =
List.iter ~f:(fun i -> F.fprintf fmt " %s\\n " (instr_string i)) instrs
in
let instrs = Procdesc.Node.get_instrs n in
F.fprintf fmt "%d: %a \\n %a" (Procdesc.Node.get_id n :> int) pp_label n pp_instrs instrs
let pp_cfgnodeshape fmt (n: Procdesc.Node.t) =
match Procdesc.Node.get_kind n with
| Procdesc.Node.Start_node _ | Procdesc.Node.Exit_node _ ->
F.fprintf fmt "color=yellow style=filled"
| Procdesc.Node.Prune_node _ ->
F.fprintf fmt "shape=\"invhouse\""
| Procdesc.Node.Skip_node _ ->
F.fprintf fmt "color=\"gray\""
| Procdesc.Node.Stmt_node _ ->
F.fprintf fmt "shape=\"box\""
| _ ->
()
let pp_cfgnode pdesc fmt (n: Procdesc.Node.t) =
let pname = Procdesc.get_proc_name pdesc in
F.fprintf fmt "%a [label=\"%a\" %a]@\n\t@\n" (pp_cfgnodename pname) n (pp_cfgnodelabel pdesc) n
pp_cfgnodeshape n ;
let print_edge n1 n2 is_exn =
let color = if is_exn then "[color=\"red\" ]" else "" in
match Procdesc.Node.get_kind n2 with
| Procdesc.Node.Exit_node _ when is_exn ->
(* don't print exception edges to the exit node *)
()
| _ ->
F.fprintf fmt "@\n\t %a -> %a %s;" (pp_cfgnodename pname) n1 (pp_cfgnodename pname) n2
color
in
List.iter ~f:(fun n' -> print_edge n n' false) (Procdesc.Node.get_succs n) ;
List.iter ~f:(fun n' -> print_edge n n' true) (Procdesc.Node.get_exn n)
(* * print control flow graph (in dot form) for fundec to channel let *)
(* print_cfg_channel (chan : out_channel) (fd : fundec) = let pnode (s: *)
(* stmt) = fprintf chan "%a@\n" d_cfgnode s in forallStmts pnode fd * *)
(* Print control flow graph (in dot form) for fundec to file let *)
(* print_cfg_filename (filename : string) (fd : fundec) = let chan = *)
(* open_out filename in begin print_cfg_channel chan fd; close_out chan; *)
(* end *)
(* Print the extra information related to the inteprocedural aspect, ie., *)
(* special node, and call / return edges *)
let print_icfg source fmt cfg =
let print_node pdesc node =
let loc = Procdesc.Node.get_loc node in
if Config.dotty_cfg_libs || SourceFile.equal loc.Location.file source then
F.fprintf fmt "%a@\n" (pp_cfgnode pdesc) node
in
Cfg.iter_all_nodes ~sorted:true print_node cfg
let write_icfg_dotty_to_file source cfg fname =
let chan = Out_channel.create fname in
let fmt = Format.formatter_of_out_channel chan in
(* avoid phabricator thinking this file was generated by substituting substring with %s *)
F.fprintf fmt "/* %@%s */@\ndigraph iCFG {@\n" "generated" ;
print_icfg source fmt cfg ;
F.fprintf fmt "}@\n" ;
Out_channel.close chan
let print_icfg_dotty source cfg =
let fname =
match Config.icfg_dotty_outfile with
| Some file ->
file
| None when Config.frontend_tests ->
SourceFile.to_abs_path source ^ ".test.dot"
| None ->
DB.filename_to_string
(DB.Results_dir.path_to_filename (DB.Results_dir.Abs_source_dir source)
[Config.dotty_output])
in
write_icfg_dotty_to_file source cfg fname
(********** END of Printing dotty files ***********)
(** Dotty printing for specs *)
let pp_speclist_dotty f (splist: Prop.normal Specs.spec list) =
let pp_simple_saved = !Config.pp_simple in
Config.pp_simple := true ;
reset_proposition_counter () ;
reset_dotty_spec_counter () ;
F.fprintf f "@\n@\n@\ndigraph main { @\nnode [shape=box]; @\n" ;
F.fprintf f "@\n compound = true; @\n" ;
(* F.fprintf f "@\n size=\"12,7\"; ratio=fill; @\n"; *)
List.iter
~f:(fun s -> pp_dotty_one_spec f (Specs.Jprop.to_prop s.Specs.pre) s.Specs.posts)
splist ;
F.fprintf f "@\n}" ;
Config.pp_simple := pp_simple_saved
let pp_speclist_to_file (filename: DB.filename) spec_list =
let pp_simple_saved = !Config.pp_simple in
Config.pp_simple := true ;
let outc = Out_channel.create (DB.filename_to_string (DB.filename_add_suffix filename ".dot")) in
let fmt = F.formatter_of_out_channel outc in
let () = F.fprintf fmt "#### Dotty version: ####@\n%a@\n@\n" pp_speclist_dotty spec_list in
Out_channel.close outc ;
Config.pp_simple := pp_simple_saved
let pp_speclist_dotty_file (filename: DB.filename) spec_list =
try pp_speclist_to_file filename spec_list with exn when SymOp.exn_not_failure exn -> ()
(**********************************************************************)
(* Code prodicing a xml version of a graph *)
(**********************************************************************)
(* each node has an unique integer identifier *)
type visual_heap_node =
| VH_dangling of int * Exp.t
| VH_pointsto of int * Exp.t * Sil.strexp * Exp.t
(* VH_pointsto(id,address,content,type) *)
| VH_lseg of int * Exp.t * Exp.t * Sil.lseg_kind
(*VH_lseg(id,address,content last cell, kind) *)
(*VH_dllseg(id, address, content first cell, content last cell, address last cell, kind) *)
| VH_dllseg of int * Exp.t * Exp.t * Exp.t * Exp.t * Sil.lseg_kind
(* an edge is a pair of node identifiers*)
type visual_heap_edge = {src: int; trg: int; lab: string}
let mk_visual_heap_edge s t l = {src= s; trg= t; lab= l}
(* used to generate unique identifier for all the nodes in the set of visual graphs used to *)
(* represent a proposition*)
let global_node_counter = ref 0
let working_list = ref []
let set_dangling_nodes = ref []
(* convert an exp into a string which is xml friendly, ie. special character are replaced by*)
(* the proper xml way to visualize them*)
let exp_to_xml_string e = F.asprintf "%a" (Sil.pp_exp_printenv (Pp.html Black)) e
(* convert an atom into an xml-friendly string without special characters *)
let atom_to_xml_string a = F.asprintf "%a" (Sil.pp_atom (Pp.html Black)) a
(* return the dangling node corresponding to an expression it exists or None *)
let exp_dangling_node e =
let entry_e =
List.filter
~f:(fun b -> match b with VH_dangling (_, e') -> Exp.equal e e' | _ -> false)
!set_dangling_nodes
in
match entry_e with
| [] ->
None
| (VH_dangling (n, e')) :: _ ->
Some (VH_dangling (n, e'))
| _ ->
None
(* NOTE: this cannot be possible since entry_e can be composed only by VH_dangling, see def of entry_e*)
(* make nodes and when it finds a list records in the working list *)
(* to do (n, prop) where n is the integer identifier of the list node. *)
(* This allow to keep the connection between the list node and the graph *)
(* that displays its contents. *)
let rec make_visual_heap_nodes sigma =
let n = !global_node_counter in
incr global_node_counter ;
match sigma with
| [] ->
[]
| (Sil.Hpointsto (e, se, t)) :: sigma' ->
VH_pointsto (n, e, se, t) :: make_visual_heap_nodes sigma'
| (Sil.Hlseg (k, hpara, e1, e2, _)) :: sigma' ->
working_list := (n, hpara.Sil.body) :: !working_list ;
VH_lseg (n, e1, e2, k) :: make_visual_heap_nodes sigma'
| (Sil.Hdllseg (k, hpara_dll, e1, e2, e3, e4, _)) :: sigma' ->
working_list := (n, hpara_dll.Sil.body_dll) :: !working_list ;
VH_dllseg (n, e1, e2, e3, e4, k) :: make_visual_heap_nodes sigma'
(* given a node returns its id and address*)
let get_node_id_and_addr node =
match node with
| VH_dangling (n, e)
| VH_pointsto (n, e, _, _)
| VH_lseg (n, e, _, _)
| VH_dllseg (n, e, _, _, _, _) ->
(n, e)
(* return node's id*)
let get_node_id node = fst (get_node_id_and_addr node)
(* return node's address*)
let get_node_addr node = snd (get_node_id_and_addr node)
(* return the nodes corresponding to an address given by an expression *)
let rec select_node_at_address nodes e =
match nodes with
| [] ->
None
| n :: l' ->
let e' = get_node_addr n in
if Exp.equal e e' then Some n else select_node_at_address l' e
(* look-up the ids in the list of nodes corresponding to expression e*)
(* let look_up_nodes_ids nodes e =
List.map ~f:get_node_id (select_nodes_exp nodes e) *)
(* create a list of dangling nodes *)
let make_set_dangling_nodes allocated_nodes (sigma: Sil.hpred list) =
let make_new_dangling e =
let n = !global_node_counter in
incr global_node_counter ; VH_dangling (n, e)
in
let get_rhs_predicate hpred =
match hpred with
| Sil.Hpointsto (_, Sil.Eexp (e, _), _) when not (Exp.equal e Exp.zero) ->
[e]
| Sil.Hlseg (_, _, _, e2, _) when not (Exp.equal e2 Exp.zero) ->
[e2]
| Sil.Hdllseg (_, _, _, e2, e3, _, _) ->
if Exp.equal e2 Exp.zero then if Exp.equal e3 Exp.zero then [] else [e3] else [e2; e3]
| Sil.Hpointsto (_, _, _) | _ ->
[]
(* arrays and struct do not give danglings. CHECK THIS!*)
in
let is_not_allocated e =
let allocated =
List.exists
~f:(fun a ->
match a with
| VH_pointsto (_, e', _, _) | VH_lseg (_, e', _, _) | VH_dllseg (_, e', _, _, _, _) ->
Exp.equal e e'
| _ ->
false)
allocated_nodes
in
not allocated
in
let rec filter_duplicate l seen_exp =
match l with
| [] ->
[]
| e :: l' ->
if List.exists ~f:(Exp.equal e) seen_exp then filter_duplicate l' seen_exp
else e :: filter_duplicate l' (e :: seen_exp)
in
let rhs_exp_list = List.concat_map ~f:get_rhs_predicate sigma in
let candidate_dangling_exps = filter_duplicate rhs_exp_list [] in
(* get rid of allocated ones*)
let dangling_exps = List.filter ~f:is_not_allocated candidate_dangling_exps in
List.map ~f:make_new_dangling dangling_exps
(* return a list of pairs (n,field_lab) where n is a target node*)
(* corresponding to se and is going to be used a target for and edge*)
(* field_lab is the name of the field which points to n (if any)*)
let rec compute_target_nodes_from_sexp nodes se prop field_lab =
match se with
| Sil.Eexp (e, _) when is_nil e prop ->
(* Nil is not represented by a node, it's just a value which should be printed*)
[]
| Sil.Eexp (e, _)
-> (
let e_node = select_node_at_address nodes e in
match e_node with
| None -> (
match exp_dangling_node e with None -> [] | Some dang_node -> [(dang_node, field_lab)] )
| Some n ->
[(n, field_lab)] )
| Sil.Estruct (lfld, inst) -> (
match lfld with
| [] ->
[]
| (fn, se2) :: l' ->
compute_target_nodes_from_sexp nodes se2 prop (Typ.Fieldname.to_string fn)
@ compute_target_nodes_from_sexp nodes (Sil.Estruct (l', inst)) prop "" )
| Sil.Earray (len, lie, inst) ->
match lie with
| [] ->
[]
| (idx, se2) :: l' ->
let lab = "[" ^ exp_to_xml_string idx ^ "]" in
compute_target_nodes_from_sexp nodes se2 prop lab
@ compute_target_nodes_from_sexp nodes (Sil.Earray (len, l', inst)) prop ""
(* build the set of edges between nodes *)
let rec make_visual_heap_edges nodes sigma prop =
let combine_source_target_label n (m, lab) =
mk_visual_heap_edge (get_node_id n) (get_node_id m) lab
in
match sigma with
| [] ->
[]
| (Sil.Hpointsto (e, se, _)) :: sigma'
-> (
let e_node = select_node_at_address nodes e in
match e_node with
| None ->
assert false
| Some n ->
let target_nodes = compute_target_nodes_from_sexp nodes se prop "" in
let ll = List.map ~f:(combine_source_target_label n) target_nodes in
ll @ make_visual_heap_edges nodes sigma' prop )
| (Sil.Hlseg (_, _, e1, e2, _)) :: sigma'
-> (
let e1_node = select_node_at_address nodes e1 in
match e1_node with
| None ->
assert false
| Some n ->
let target_nodes =
compute_target_nodes_from_sexp nodes (Sil.Eexp (e2, Sil.inst_none)) prop ""
in
let ll = List.map ~f:(combine_source_target_label n) target_nodes in
ll @ make_visual_heap_edges nodes sigma' prop )
| (Sil.Hdllseg (_, _, e1, e2, e3, _, _)) :: sigma' ->
let e1_node = select_node_at_address nodes e1 in
match e1_node with
| None ->
assert false
| Some n ->
let target_nodesF =
compute_target_nodes_from_sexp nodes (Sil.Eexp (e3, Sil.inst_none)) prop ""
in
let target_nodesB =
compute_target_nodes_from_sexp nodes (Sil.Eexp (e2, Sil.inst_none)) prop ""
in
let llF = List.map ~f:(combine_source_target_label n) target_nodesF in
let llB = List.map ~f:(combine_source_target_label n) target_nodesB in
llF @ llB @ make_visual_heap_edges nodes sigma' prop
(* from a prop generate and return visual proposition *)
let prop_to_set_of_visual_heaps prop =
let result = ref [] in
working_list := [(!global_node_counter, prop.Prop.sigma)] ;
incr global_node_counter ;
while !working_list <> [] do
set_dangling_nodes := [] ;
let n, h = List.hd_exn !working_list in
working_list := List.tl_exn !working_list ;
let nodes = make_visual_heap_nodes h in
set_dangling_nodes := make_set_dangling_nodes nodes h ;
let edges = make_visual_heap_edges nodes h prop in
result := !result @ [(n, nodes @ !set_dangling_nodes, edges)]
done ;
!result
let rec pointsto_contents_to_xml (co: Sil.strexp) : Io_infer.Xml.node =
match co with
| Sil.Eexp (e, _) ->
Io_infer.Xml.create_tree "cell" [("content-value", exp_to_xml_string e)] []
| Sil.Estruct (fel, _) ->
let f (fld, exp) =
Io_infer.Xml.create_tree "struct-field" [("id", Typ.Fieldname.to_string fld)]
[pointsto_contents_to_xml exp]
in
Io_infer.Xml.create_tree "struct" [] (List.map ~f fel)
| Sil.Earray (len, nel, _) ->
let f (e, se) =
Io_infer.Xml.create_tree "array-element" [("index", exp_to_xml_string e)]
[pointsto_contents_to_xml se]
in
Io_infer.Xml.create_tree "array" [("size", exp_to_xml_string len)] (List.map ~f nel)
(* Convert an atom to xml in a light version. Namely, the expressions are not fully blown-up into *)
(* xml tree but visualized as strings *)
let atom_to_xml_light (a: Sil.atom) : Io_infer.Xml.node =
let kind_info =
match a with
| Sil.Aeq _ when Prop.atom_is_inequality a ->
"inequality"
| Sil.Aeq _ ->
"equality"
| Sil.Aneq _ ->
"disequality"
| Sil.Apred _ ->
"pred"
| Sil.Anpred _ ->
"npred"
in
Io_infer.Xml.create_tree "stack-variable"
[("type", kind_info); ("instance", atom_to_xml_string a)] []
let xml_pure_info prop =
let pure = Prop.get_pure prop in
let xml_atom_list = List.map ~f:atom_to_xml_light pure in
Io_infer.Xml.create_tree "stack" [] xml_atom_list
(** Return a string describing the kind of a pointsto address *)
let pointsto_addr_kind = function
| Exp.Lvar pv ->
if Pvar.is_global pv then "global"
else if Pvar.is_local pv && Mangled.equal (Pvar.get_name pv) Ident.name_return then "return"
else if Pvar.is_local pv then "parameter"
else "other"
| _ ->
"other"
let heap_node_to_xml node =
match node with
| VH_dangling (id, addr) ->
let atts =
[ ("id", string_of_int id)
; ("address", exp_to_xml_string addr)
; ("node-type", "dangling")
; ("memory-type", pointsto_addr_kind addr) ]
in
Io_infer.Xml.create_tree "node" atts []
| VH_pointsto (id, addr, cont, _) ->
let atts =
[ ("id", string_of_int id)
; ("address", exp_to_xml_string addr)
; ("node-type", "allocated")
; ("memory-type", pointsto_addr_kind addr) ]
in
let contents = pointsto_contents_to_xml cont in
Io_infer.Xml.create_tree "node" atts [contents]
| VH_lseg (id, addr, _, Sil.Lseg_NE) ->
let atts =
[ ("id", string_of_int id)
; ("address", exp_to_xml_string addr)
; ("node-type", "single linked list")
; ("list-type", "non-empty")
; ("memory-type", "other") ]
in
Io_infer.Xml.create_tree "node" atts []
| VH_lseg (id, addr, _, Sil.Lseg_PE) ->
let atts =
[ ("id", string_of_int id)
; ("address", exp_to_xml_string addr)
; ("node-type", "single linked list")
; ("list-type", "possibly empty")
; ("memory-type", "other") ]
in
Io_infer.Xml.create_tree "node" atts []
| VH_dllseg (id, addr1, cont1, cont2, addr2, _) ->
let contents1 = pointsto_contents_to_xml (Sil.Eexp (cont1, Sil.inst_none)) in
let contents2 = pointsto_contents_to_xml (Sil.Eexp (cont2, Sil.inst_none)) in
let atts =
[ ("id", string_of_int id)
; ("addr-first", exp_to_xml_string addr1)
; ("addr-last", exp_to_xml_string addr2)
; ("node-type", "double linked list")
; ("memory-type", "other") ]
in
Io_infer.Xml.create_tree "node" atts [contents1; contents2]
let heap_edge_to_xml edge =
let atts =
[("source", string_of_int edge.src); ("target", string_of_int edge.trg); ("label", edge.lab)]
in
Io_infer.Xml.create_tree "edge" atts []
let visual_heap_to_xml heap =
let n, nodes, edges = heap in
let xml_heap_nodes = List.map ~f:heap_node_to_xml nodes in
let xml_heap_edges = List.map ~f:heap_edge_to_xml edges in
Io_infer.Xml.create_tree "heap" [("id", string_of_int n)] (xml_heap_nodes @ xml_heap_edges)
(** convert a proposition to xml with the given tag and id *)
let prop_to_xml prop tag_name id =
let visual_heaps = prop_to_set_of_visual_heaps prop in
let xml_visual_heaps = List.map ~f:visual_heap_to_xml visual_heaps in
let xml_pure_part = xml_pure_info prop in
let xml_graph =
Io_infer.Xml.create_tree tag_name [("id", string_of_int id)]
(xml_visual_heaps @ [xml_pure_part])
in
xml_graph
(** reset the counter used for node and heap identifiers *)
let reset_node_counter () = global_node_counter := 0
let print_specs_xml signature specs loc fmt =
reset_node_counter () ;
let do_one_spec pre posts n =
let add_stack_to_prop prop_ =
(* add stack vars from pre *)
let pre_stack = fst (Prop.sigma_get_stack_nonstack true pre.Prop.sigma) in
let prop'_ = Prop.set prop_ ~sigma:(pre_stack @ prop_.Prop.sigma) in
Prop.normalize (Tenv.create ()) prop'_
in
let jj = ref 0 in
let xml_pre = prop_to_xml pre "precondition" !jj in
let xml_spec =
xml_pre
:: List.map
~f:(fun (po, _) ->
jj := !jj + 1 ;
prop_to_xml (add_stack_to_prop po) "postcondition" !jj)
posts
in
Io_infer.Xml.create_tree "specification" [("id", string_of_int n)] xml_spec
in
let j = ref 0 in
let list_of_specs_xml =
List.map
~f:(fun s ->
j := !j + 1 ;
do_one_spec (Specs.Jprop.to_prop s.Specs.pre) s.Specs.posts !j)
specs
in
let xml_specifications = Io_infer.Xml.create_tree "specifications" [] list_of_specs_xml in
let xml_signature = Io_infer.Xml.create_tree "signature" [("name", signature)] [] in
let proc_summary =
Io_infer.Xml.create_tree "procedure"
[("file", SourceFile.to_string loc.Location.file); ("line", string_of_int loc.Location.line)]
[xml_signature; xml_specifications]
in
Io_infer.Xml.pp_document true fmt proc_summary