You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

701 lines
28 KiB

(*
* Copyright (c) 2016-present, Programming Research Laboratory (ROPAS)
* Seoul National University, Korea
* Copyright (c) 2017-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
open! IStd
open AbsLoc
open! AbstractDomain.Types
module BoUtils = BufferOverrunUtils
module Dom = BufferOverrunDomain
module Relation = BufferOverrunDomainRelation
module L = Logging
module Models = BufferOverrunModels
module Sem = BufferOverrunSemantics
module Trace = BufferOverrunTrace
module TypModels = BufferOverrunTypModels
module Payload = SummaryPayload.Make (struct
type t = BufferOverrunSummary.t
let update_payloads astate (payloads : Payloads.t) = {payloads with buffer_overrun= Some astate}
let of_payloads (payloads : Payloads.t) = payloads.buffer_overrun
end)
type extras = Dom.OndemandEnv.t
module CFG = ProcCfg.NormalOneInstrPerNode
module Init = struct
let initial_state {ProcData.pdesc; tenv; extras= oenv} start_node =
let node_hash = CFG.Node.hash start_node in
let location = CFG.Node.loc start_node in
let pname = Procdesc.get_proc_name pdesc in
let rec decl_local pname ~node_hash location loc typ ~inst_num ~represents_multiple_values
~dimension mem =
match typ.Typ.desc with
| Typ.Tarray {elt= typ; length; stride} ->
let stride = Option.map ~f:IntLit.to_int_exn stride in
BoUtils.Exec.decl_local_array ~decl_local pname ~node_hash location loc typ ~length
?stride ~inst_num ~represents_multiple_values ~dimension mem
| Typ.Tstruct typname -> (
match TypModels.dispatch tenv typname with
| Some (CArray {element_typ; length}) ->
BoUtils.Exec.decl_local_array ~decl_local pname ~node_hash location loc element_typ
~length:(Some length) ~inst_num ~represents_multiple_values ~dimension mem
| Some JavaCollection | None ->
(mem, inst_num) )
| _ ->
(mem, inst_num)
in
let try_decl_local (mem, inst_num) {ProcAttributes.name; typ} =
let pvar = Pvar.mk name pname in
let loc = Loc.of_pvar pvar in
decl_local pname ~node_hash location loc typ ~inst_num ~represents_multiple_values:false
~dimension:1 mem
in
let mem = Dom.Mem.init oenv in
let mem, _ = List.fold ~f:try_decl_local ~init:(mem, 1) (Procdesc.get_locals pdesc) in
mem
end
module TransferFunctions = struct
module CFG = CFG
module Domain = Dom.Mem
type nonrec extras = extras
let instantiate_mem_reachable (ret_id, _) callee_pdesc callee_pname ~callee_exit_mem
({Dom.eval_locpath} as eval_sym_trace) mem location =
let formals = Procdesc.get_pvar_formals callee_pdesc in
let copy_reachable_locs_from locs mem =
let copy loc acc =
Option.value_map (Dom.Mem.find_opt loc callee_exit_mem) ~default:acc ~f:(fun v ->
let locs = PowLoc.subst_loc loc eval_locpath in
let v = Dom.Val.subst v eval_sym_trace location in
PowLoc.fold (fun loc acc -> Dom.Mem.add_heap loc v acc) locs acc )
in
let reachable_locs = Dom.Mem.get_reachable_locs_from formals locs callee_exit_mem in
PowLoc.fold copy reachable_locs mem
in
let instantiate_ret_alias mem =
let subst_loc l =
Option.find_map (Loc.get_path l) ~f:(fun partial ->
try
let locs = eval_locpath partial in
match PowLoc.is_singleton_or_more locs with
| IContainer.Singleton loc ->
Some loc
| _ ->
None
with Caml.Not_found -> None )
in
let ret_alias =
Option.find_map (Dom.Mem.find_ret_alias callee_exit_mem) ~f:(fun alias_target ->
Dom.AliasTarget.loc_map alias_target ~f:subst_loc )
in
Option.value_map ret_alias ~default:mem ~f:(fun l -> Dom.Mem.load_alias ret_id l mem)
in
let ret_var = Loc.of_var (Var.of_id ret_id) in
let ret_val = Dom.Mem.find (Loc.of_pvar (Pvar.get_ret_pvar callee_pname)) callee_exit_mem in
let formal_locs =
List.fold formals ~init:PowLoc.bot ~f:(fun acc (formal, _) ->
let v = Dom.Mem.find (Loc.of_pvar formal) callee_exit_mem in
PowLoc.join acc (Dom.Val.get_all_locs v) )
in
Dom.Mem.add_stack ret_var (Dom.Val.subst ret_val eval_sym_trace location) mem
|> instantiate_ret_alias
|> copy_reachable_locs_from (PowLoc.join formal_locs (Dom.Val.get_all_locs ret_val))
let forget_ret_relation ret callee_pname mem =
let ret_loc = Loc.of_pvar (Pvar.get_ret_pvar callee_pname) in
let ret_var = Loc.of_var (Var.of_id (fst ret)) in
Dom.Mem.forget_locs (PowLoc.add ret_loc (PowLoc.singleton ret_var)) mem
let is_external pname =
match pname with
| Typ.Procname.Java java_pname ->
Typ.Procname.Java.is_external java_pname
| _ ->
false
let instantiate_mem :
Tenv.t
-> Typ.IntegerWidths.t
-> Ident.t * Typ.t
-> Procdesc.t
-> Typ.Procname.t
-> (Exp.t * Typ.t) list
-> Dom.Mem.t
-> BufferOverrunSummary.t
-> Location.t
-> Dom.Mem.t =
fun tenv integer_type_widths ret callee_pdesc callee_pname params caller_mem summary location ->
let callee_exit_mem = BufferOverrunSummary.get_output summary in
let rel_subst_map =
Sem.get_subst_map tenv integer_type_widths callee_pdesc params caller_mem callee_exit_mem
in
let eval_sym_trace =
Sem.mk_eval_sym_trace integer_type_widths callee_pdesc params caller_mem ~strict:false
in
let caller_mem =
instantiate_mem_reachable ret callee_pdesc callee_pname ~callee_exit_mem eval_sym_trace
caller_mem location
|> forget_ret_relation ret callee_pname
in
Dom.Mem.instantiate_relation rel_subst_map ~caller:caller_mem ~callee:callee_exit_mem
let exec_instr : Dom.Mem.t -> extras ProcData.t -> CFG.Node.t -> Sil.instr -> Dom.Mem.t =
fun mem {pdesc; tenv; extras= {integer_type_widths}} node instr ->
match instr with
| Load (id, _, _, _) when Ident.is_none id ->
mem
| Load (id, Exp.Lvar pvar, _, location) when Pvar.is_compile_constant pvar || Pvar.is_ice pvar
-> (
match Pvar.get_initializer_pname pvar with
| Some callee_pname -> (
match Ondemand.analyze_proc_name ~caller_pdesc:pdesc callee_pname with
| Some callee_summary -> (
match Payload.of_summary callee_summary with
| Some payload ->
let callee_mem = BufferOverrunSummary.get_output payload in
let v = Dom.Mem.find (Loc.of_pvar pvar) callee_mem in
Dom.Mem.add_stack (Loc.of_id id) v mem
| None ->
L.d_printfln_escaped "/!\\ Initializer of global constant %a has no inferbo payload"
(Pvar.pp Pp.text) pvar ;
Dom.Mem.add_unknown_from id ~callee_pname ~location mem )
| None ->
L.d_printfln_escaped "/!\\ Unknown initializer of global constant %a" (Pvar.pp Pp.text)
pvar ;
Dom.Mem.add_unknown_from id ~callee_pname ~location mem )
| None ->
L.d_printfln_escaped "/!\\ Failed to get initializer name of global constant %a"
(Pvar.pp Pp.text) pvar ;
Dom.Mem.add_unknown id ~location mem )
| Load (id, exp, _, _) ->
BoUtils.Exec.load_locs id (Sem.eval_locs exp mem) mem
| Store (exp1, _, Const (Const.Cstr s), location) ->
let pname = Procdesc.get_proc_name pdesc in
let node_hash = CFG.Node.hash node in
let locs = Sem.eval_locs exp1 mem in
BoUtils.Exec.decl_string pname ~node_hash integer_type_widths location locs s mem
| Store (exp1, _, exp2, location) ->
let locs = Sem.eval_locs exp1 mem in
let v =
Sem.eval integer_type_widths exp2 mem |> Dom.Val.add_assign_trace_elem location locs
in
let mem =
let sym_exps =
Dom.Relation.SymExp.of_exps
~get_int_sym_f:(Sem.get_sym_f integer_type_widths mem)
~get_offset_sym_f:(Sem.get_offset_sym_f integer_type_widths mem)
~get_size_sym_f:(Sem.get_size_sym_f integer_type_widths mem)
exp2
in
Dom.Mem.store_relation locs sym_exps mem
in
let mem = Dom.Mem.update_mem locs v mem in
let mem =
if not v.represents_multiple_values then
match PowLoc.is_singleton_or_more locs with
| IContainer.Singleton loc_v -> (
let pname = Procdesc.get_proc_name pdesc in
match Typ.Procname.get_method pname with
| "__inferbo_empty" when Loc.is_return loc_v -> (
match Procdesc.get_pvar_formals pdesc with
| [(formal, _)] ->
let formal_v = Dom.Mem.find (Loc.of_pvar formal) mem in
Dom.Mem.store_empty_alias formal_v loc_v mem
| _ ->
assert false )
| _ ->
Dom.Mem.store_simple_alias loc_v exp2 mem )
| _ ->
mem
else mem
in
let mem = Dom.Mem.update_latest_prune ~updated_locs:locs exp1 exp2 mem in
mem
| Prune (exp, _, _, _) ->
Sem.Prune.prune integer_type_widths exp mem
| Call (((id, ret_typ) as ret), Const (Cfun callee_pname), params, location, _) -> (
let mem = Dom.Mem.add_stack_loc (Loc.of_id id) mem in
match Models.Call.dispatch tenv callee_pname params with
| Some {Models.exec} ->
let node_hash = CFG.Node.hash node in
let model_env =
Models.mk_model_env callee_pname node_hash location tenv integer_type_widths
in
exec model_env ~ret mem
| None -> (
match Ondemand.analyze_proc_name ~caller_pdesc:pdesc callee_pname with
| Some callee_summary -> (
match Payload.of_summary callee_summary with
| Some payload ->
let callee_pdesc = Summary.get_proc_desc callee_summary in
instantiate_mem tenv integer_type_widths ret callee_pdesc callee_pname params mem
payload location
| None ->
(* This may happen for procedures with a biabduction model. *)
L.d_printfln_escaped "/!\\ Call to %a has no inferbo payload" Typ.Procname.pp
callee_pname ;
Dom.Mem.add_unknown_from id ~callee_pname ~location mem )
| None ->
L.d_printfln_escaped "/!\\ Unknown call to %a" Typ.Procname.pp callee_pname ;
if is_external callee_pname then (
L.(debug BufferOverrun Verbose)
"/!\\ External call to unknown %a \n\n" Typ.Procname.pp callee_pname ;
let callsite = CallSite.make callee_pname location in
let path = Symb.SymbolPath.of_callsite ~ret_typ callsite in
let loc = Loc.of_allocsite (Allocsite.make_symbol path) in
let v = Dom.Mem.find loc mem in
Dom.Mem.add_stack (Loc.of_id id) v mem )
else Dom.Mem.add_unknown_from id ~callee_pname ~location mem ) )
| Call ((id, _), fun_exp, _, location, _) ->
let mem = Dom.Mem.add_stack_loc (Loc.of_id id) mem in
L.d_printfln_escaped "/!\\ Call to non-const function %a" Exp.pp fun_exp ;
Dom.Mem.add_unknown id ~location mem
| ExitScope (dead_vars, _) ->
Dom.Mem.remove_temps (List.filter_map dead_vars ~f:Var.get_ident) mem
| Abstract _ | Nullify _ ->
mem
let pp_session_name node fmt = F.fprintf fmt "bufferoverrun %a" CFG.Node.pp_id (CFG.Node.id node)
end
module Analyzer = AbstractInterpreter.MakeWTO (TransferFunctions)
type invariant_map = Analyzer.invariant_map
(* Use a weak Hashtbl to prevent memory leaks (GC unnecessarily
keeping invariant maps around) *)
module WeakInvMapHashTbl = Caml.Weak.Make (struct
type t = Typ.Procname.t * invariant_map option
let equal (pname1, _) (pname2, _) = Typ.Procname.equal pname1 pname2
let hash (pname, _) = Hashtbl.hash pname
end)
let inv_map_cache = WeakInvMapHashTbl.create 100
module Report = struct
module PO = BufferOverrunProofObligations
module ExitStatement = struct
(* check that we are the last significant instruction
* of a procedure (no more significant instruction)
* or of a block (goes directly to a node with multiple predecessors)
*)
let rec is_end_of_block_or_procedure (cfg : CFG.t) node rem_instrs =
Instrs.for_all rem_instrs ~f:Sil.instr_is_auxiliary
&&
match IContainer.singleton_or_more node ~fold:(CFG.fold_succs cfg) with
| IContainer.Empty ->
true
| Singleton succ ->
(* [succ] is a join, i.e. [node] is the end of a block *)
IContainer.mem_nth succ 1 ~fold:(CFG.fold_preds cfg)
|| is_end_of_block_or_procedure cfg succ (CFG.instrs succ)
| More ->
false
end
let check_unreachable_code summary tenv (cfg : CFG.t) (node : CFG.Node.t) instr rem_instrs =
match instr with
| Sil.Prune (_, _, _, (Ik_land_lor | Ik_bexp)) ->
()
| Sil.Prune (cond, location, true_branch, _) ->
let desc =
let err_desc =
let i = match cond with Exp.Const (Const.Cint i) -> i | _ -> IntLit.zero in
Errdesc.explain_condition_always_true_false tenv i cond (CFG.Node.underlying_node node)
location
in
F.asprintf "%a" Localise.pp_error_desc err_desc
in
let issue_type =
if true_branch then IssueType.condition_always_false else IssueType.condition_always_true
in
let ltr = [Errlog.make_trace_element 0 location "Here" []] in
Reporting.log_warning summary ~loc:location ~ltr issue_type desc
(* special case for `exit` when we're at the end of a block / procedure *)
| Sil.Call (_, Const (Cfun pname), _, _, _)
when String.equal (Typ.Procname.get_method pname) "exit"
&& ExitStatement.is_end_of_block_or_procedure cfg node rem_instrs ->
()
| _ ->
let location = Sil.instr_get_loc instr in
let ltr = [Errlog.make_trace_element 0 location "Here" []] in
Reporting.log_error summary ~loc:location ~ltr IssueType.unreachable_code_after
"Unreachable code after statement"
let check_binop_array_access :
Typ.IntegerWidths.t
-> is_plus:bool
-> e1:Exp.t
-> e2:Exp.t
-> Location.t
-> Dom.Mem.t
-> PO.ConditionSet.checked_t
-> PO.ConditionSet.checked_t =
fun integer_type_widths ~is_plus ~e1 ~e2 location mem cond_set ->
let arr = Sem.eval integer_type_widths e1 mem in
let idx = Sem.eval integer_type_widths e2 mem in
let idx_sym_exp =
Relation.SymExp.of_exp ~get_sym_f:(Sem.get_sym_f integer_type_widths mem) e2
in
let relation = Dom.Mem.get_relation mem in
let latest_prune = Dom.Mem.get_latest_prune mem in
BoUtils.Check.array_access ~arr ~idx ~idx_sym_exp ~relation ~is_plus ~last_included:false
~latest_prune location cond_set
let check_binop :
Typ.IntegerWidths.t
-> bop:Binop.t
-> e1:Exp.t
-> e2:Exp.t
-> Location.t
-> Dom.Mem.t
-> PO.ConditionSet.checked_t
-> PO.ConditionSet.checked_t =
fun integer_type_widths ~bop ~e1 ~e2 location mem cond_set ->
match bop with
| Binop.PlusPI ->
check_binop_array_access integer_type_widths ~is_plus:true ~e1 ~e2 location mem cond_set
| Binop.MinusPI ->
check_binop_array_access integer_type_widths ~is_plus:false ~e1 ~e2 location mem cond_set
| _ ->
cond_set
let check_expr_for_array_access :
Typ.IntegerWidths.t
-> Exp.t
-> Location.t
-> Dom.Mem.t
-> PO.ConditionSet.checked_t
-> PO.ConditionSet.checked_t =
fun integer_type_widths exp location mem cond_set ->
let rec check_sub_expr exp cond_set =
match exp with
| Exp.Lindex (array_exp, index_exp) ->
cond_set |> check_sub_expr array_exp |> check_sub_expr index_exp
|> BoUtils.Check.lindex integer_type_widths ~array_exp ~index_exp ~last_included:false
mem location
| Exp.BinOp (_, e1, e2) ->
cond_set |> check_sub_expr e1 |> check_sub_expr e2
| Exp.Lfield (e, _, _) | Exp.UnOp (_, e, _) | Exp.Exn e ->
check_sub_expr e cond_set
| Exp.Cast (_, e) ->
check_sub_expr e cond_set
| Exp.Closure {captured_vars} ->
List.fold captured_vars ~init:cond_set ~f:(fun cond_set (e, _, _) ->
check_sub_expr e cond_set )
| Exp.Var _ | Exp.Lvar _ | Exp.Const _ | Exp.Sizeof _ ->
cond_set
in
let cond_set = check_sub_expr exp cond_set in
match exp with
| Exp.Var _ ->
let arr = Sem.eval integer_type_widths exp mem in
let idx, idx_sym_exp = (Dom.Val.Itv.zero, Some Relation.SymExp.zero) in
let relation = Dom.Mem.get_relation mem in
let latest_prune = Dom.Mem.get_latest_prune mem in
BoUtils.Check.array_access ~arr ~idx ~idx_sym_exp ~relation ~is_plus:true
~last_included:false ~latest_prune location cond_set
| Exp.BinOp (bop, e1, e2) ->
check_binop integer_type_widths ~bop ~e1 ~e2 location mem cond_set
| _ ->
cond_set
let check_binop_for_integer_overflow integer_type_widths bop ~lhs ~rhs location mem cond_set =
match bop with
| Binop.PlusA (Some _) | Binop.MinusA (Some _) | Binop.Mult (Some _) ->
let lhs_v = Sem.eval integer_type_widths lhs mem in
let rhs_v = Sem.eval integer_type_widths rhs mem in
let latest_prune = Dom.Mem.get_latest_prune mem in
BoUtils.Check.binary_operation integer_type_widths bop ~lhs:lhs_v ~rhs:rhs_v ~latest_prune
location cond_set
| _ ->
cond_set
let rec check_expr_for_integer_overflow integer_type_widths exp location mem cond_set =
match exp with
| Exp.UnOp (_, e, _)
| Exp.Exn e
| Exp.Lfield (e, _, _)
| Exp.Cast (_, e)
| Exp.Sizeof {dynamic_length= Some e} ->
check_expr_for_integer_overflow integer_type_widths e location mem cond_set
| Exp.BinOp (bop, lhs, rhs) ->
cond_set
|> check_binop_for_integer_overflow integer_type_widths bop ~lhs ~rhs location mem
|> check_expr_for_integer_overflow integer_type_widths lhs location mem
|> check_expr_for_integer_overflow integer_type_widths rhs location mem
| Exp.Lindex (e1, e2) ->
cond_set
|> check_expr_for_integer_overflow integer_type_widths e1 location mem
|> check_expr_for_integer_overflow integer_type_widths e2 location mem
| Exp.Closure {captured_vars} ->
List.fold captured_vars ~init:cond_set ~f:(fun cond_set (e, _, _) ->
check_expr_for_integer_overflow integer_type_widths e location mem cond_set )
| Exp.Var _ | Exp.Const _ | Exp.Lvar _ | Exp.Sizeof {dynamic_length= None} ->
cond_set
let instantiate_cond :
Tenv.t
-> Typ.IntegerWidths.t
-> Procdesc.t
-> (Exp.t * Typ.t) list
-> Dom.Mem.t
-> Payload.t
-> Location.t
-> PO.ConditionSet.checked_t =
fun tenv integer_type_widths callee_pdesc params caller_mem summary location ->
let callee_exit_mem = BufferOverrunSummary.get_output summary in
let callee_cond = BufferOverrunSummary.get_cond_set summary in
let rel_subst_map =
Sem.get_subst_map tenv integer_type_widths callee_pdesc params caller_mem callee_exit_mem
in
let pname = Procdesc.get_proc_name callee_pdesc in
let caller_rel = Dom.Mem.get_relation caller_mem in
let eval_sym_trace =
Sem.mk_eval_sym_trace integer_type_widths callee_pdesc params caller_mem
in
PO.ConditionSet.subst callee_cond eval_sym_trace rel_subst_map caller_rel pname location
let check_instr :
Procdesc.t
-> Tenv.t
-> Typ.IntegerWidths.t
-> CFG.Node.t
-> Sil.instr
-> Dom.Mem.t
-> PO.ConditionSet.checked_t
-> PO.ConditionSet.checked_t =
fun pdesc tenv integer_type_widths node instr mem cond_set ->
match instr with
| Sil.Load (_, exp, _, location) ->
cond_set
|> check_expr_for_array_access integer_type_widths exp location mem
|> check_expr_for_integer_overflow integer_type_widths exp location mem
| Sil.Store (lexp, _, rexp, location) ->
cond_set
|> check_expr_for_array_access integer_type_widths lexp location mem
|> check_expr_for_integer_overflow integer_type_widths lexp location mem
|> check_expr_for_integer_overflow integer_type_widths rexp location mem
| Sil.Call (_, Const (Cfun callee_pname), params, location, _) -> (
let cond_set =
List.fold params ~init:cond_set ~f:(fun cond_set (exp, _) ->
check_expr_for_integer_overflow integer_type_widths exp location mem cond_set )
in
match Models.Call.dispatch tenv callee_pname params with
| Some {Models.check} ->
let node_hash = CFG.Node.hash node in
let pname = Procdesc.get_proc_name pdesc in
check
(Models.mk_model_env pname node_hash location tenv integer_type_widths)
mem cond_set
| None -> (
match Ondemand.analyze_proc_name ~caller_pdesc:pdesc callee_pname with
| Some callee_summary -> (
match Payload.of_summary callee_summary with
| Some callee_payload ->
let callee_pdesc = Summary.get_proc_desc callee_summary in
instantiate_cond tenv integer_type_widths callee_pdesc params mem callee_payload
location
|> PO.ConditionSet.join cond_set
| None ->
(* no inferbo payload *) cond_set )
| None ->
(* unknown call *) cond_set ) )
| Sil.Prune (exp, location, _, _) ->
check_expr_for_integer_overflow integer_type_widths exp location mem cond_set
| _ ->
cond_set
let print_debug_info : Sil.instr -> Dom.Mem.t -> PO.ConditionSet.checked_t -> unit =
fun instr pre cond_set ->
L.(debug BufferOverrun Verbose) "@\n@\n================================@\n" ;
L.(debug BufferOverrun Verbose) "@[<v 2>Pre-state : @,%a" Dom.Mem.pp pre ;
L.(debug BufferOverrun Verbose) "@]@\n@\n%a" (Sil.pp_instr ~print_types:true Pp.text) instr ;
L.(debug BufferOverrun Verbose) "@\n@\n@[<v 2>%a" PO.ConditionSet.pp cond_set ;
L.(debug BufferOverrun Verbose) "@]@\n" ;
L.(debug BufferOverrun Verbose) "================================@\n@."
let check_instrs :
Summary.t
-> Procdesc.t
-> Tenv.t
-> Typ.IntegerWidths.t
-> CFG.t
-> CFG.Node.t
-> Instrs.not_reversed_t
-> Dom.Mem.t AbstractInterpreter.State.t
-> PO.ConditionSet.checked_t
-> PO.ConditionSet.checked_t =
fun summary pdesc tenv integer_type_widths cfg node instrs state cond_set ->
match state with
| _ when Instrs.is_empty instrs ->
cond_set
| {AbstractInterpreter.State.pre= Bottom} ->
cond_set
| {AbstractInterpreter.State.pre= NonBottom _ as pre; post} ->
if Instrs.nth_exists instrs 1 then
L.(die InternalError) "Did not expect several instructions" ;
let instr = Instrs.nth_exn instrs 0 in
let () =
match post with
| Bottom ->
check_unreachable_code summary tenv cfg node instr Instrs.empty
| NonBottom _ ->
()
in
let cond_set = check_instr pdesc tenv integer_type_widths node instr pre cond_set in
print_debug_info instr pre cond_set ;
cond_set
let check_node :
Summary.t
-> Procdesc.t
-> Tenv.t
-> Typ.IntegerWidths.t
-> CFG.t
-> Analyzer.invariant_map
-> PO.ConditionSet.checked_t
-> CFG.Node.t
-> PO.ConditionSet.checked_t =
fun summary pdesc tenv integer_type_widths cfg inv_map cond_set node ->
match Analyzer.extract_state (CFG.Node.id node) inv_map with
| Some state ->
let instrs = CFG.instrs node in
check_instrs summary pdesc tenv integer_type_widths cfg node instrs state cond_set
| _ ->
cond_set
let check_proc :
Summary.t
-> Procdesc.t
-> Tenv.t
-> Typ.IntegerWidths.t
-> CFG.t
-> Analyzer.invariant_map
-> PO.ConditionSet.checked_t =
fun summary pdesc tenv integer_type_widths cfg inv_map ->
CFG.fold_nodes cfg
~f:(check_node summary pdesc tenv integer_type_widths cfg inv_map)
~init:PO.ConditionSet.empty
let report_errors : Summary.t -> PO.ConditionSet.checked_t -> PO.ConditionSet.t =
fun summary cond_set ->
let report cond trace issue_type =
let location = PO.ConditionTrace.get_report_location trace in
let description ~markup = PO.description ~markup cond trace in
let trace =
let description = description ~markup:false in
Trace.Issue.make_err_trace ~description (PO.ConditionTrace.get_val_traces trace)
|> Errlog.concat_traces
in
Reporting.log_error summary ~loc:location ~ltr:trace issue_type (description ~markup:true)
in
PO.ConditionSet.check_all ~report cond_set
let forget_locs = PO.ConditionSet.forget_locs
let for_summary = PO.ConditionSet.for_summary
end
let extract_pre = Analyzer.extract_pre
let extract_post = Analyzer.extract_post
let get_local_decls proc_desc =
let proc_name = Procdesc.get_proc_name proc_desc in
let accum_local_decls acc {ProcAttributes.name} =
let pvar = Pvar.mk name proc_name in
let loc = Loc.of_pvar pvar in
PowLoc.add loc acc
in
Procdesc.get_locals proc_desc |> List.fold ~init:PowLoc.empty ~f:accum_local_decls
let compute_invariant_map_and_check : Callbacks.proc_callback_args -> invariant_map * Summary.t =
fun {proc_desc; tenv; integer_type_widths; summary} ->
Preanal.do_preanalysis proc_desc tenv ;
let pdata =
let oenv = Dom.OndemandEnv.mk proc_desc tenv integer_type_widths in
ProcData.make proc_desc tenv oenv
in
let cfg = CFG.from_pdesc proc_desc in
let initial = Init.initial_state pdata (CFG.start_node cfg) in
let inv_map = Analyzer.exec_pdesc ~do_narrowing:true ~initial pdata in
let exit_node = CFG.exit_node cfg in
let underlying_exit_node = CFG.Node.underlying_node exit_node in
let pp_name f = F.pp_print_string f "bufferoverrun check" in
NodePrinter.start_session ~pp_name underlying_exit_node ;
let summary =
let locals = get_local_decls proc_desc in
let cond_set =
Report.check_proc summary proc_desc tenv integer_type_widths cfg inv_map
|> Report.report_errors summary |> Report.forget_locs locals |> Report.for_summary
in
let exit_mem = extract_post (CFG.Node.id exit_node) inv_map in
match exit_mem with
| Some exit_mem ->
let exit_mem = exit_mem |> Dom.Mem.forget_locs locals |> Dom.Mem.unset_oenv in
let payload = (exit_mem, cond_set) in
Payload.update_summary payload summary
| _ ->
summary
in
NodePrinter.finish_session underlying_exit_node ;
if Config.hoisting_report_only_expensive then
let pname = Procdesc.get_proc_name proc_desc in
WeakInvMapHashTbl.add inv_map_cache (pname, Some inv_map)
else () ;
(inv_map, summary)
let lookup_inv_map_cache (callback_args : Callbacks.proc_callback_args) (pname : Typ.Procname.t) :
invariant_map =
(* Since we are using a weak Hashtbl, represented as a set of
(Procname) hashed values, we have to lookup with a dummy element
*)
match WeakInvMapHashTbl.find_opt inv_map_cache (pname, None) with
| Some (_, Some inv_map) ->
inv_map
| Some (_, None) ->
(* this should never happen *)
assert false
| None ->
(* if bufferoverrun has not been run yet, run it *)
compute_invariant_map_and_check callback_args |> fst
let checker : Callbacks.proc_callback_args -> Summary.t =
fun args -> compute_invariant_map_and_check args |> snd