You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

103 lines
2.4 KiB

(*
* Copyright (c) 2009 -2013 Monoidics ltd.
* Copyright (c) 2013 - Facebook.
* All rights reserved.
*)
(** Functions for Propositions (i.e., Symbolic Heaps) *)
module L = Logging
module F = Format
open Utils
(** {2 Sets of Propositions} *)
module PropSet =
Set.Make(struct
type t = Prop.normal Prop.t
let compare = Prop.prop_compare
end)
let compare = PropSet.compare
(** Sets of propositions.
The invariant is maintaned that Prop.prop_rename_primed_footprint_vars is called on any prop added to the set. *)
type t = PropSet.t
let add p pset =
let ps = Prop.prop_expand p in
list_fold_left (fun pset' p' -> PropSet.add (Prop.prop_rename_primed_footprint_vars p') pset') pset ps
(** Singleton set. *)
let singleton p =
add p PropSet.empty
(** Set union. *)
let union = PropSet.union
(** Set membership *)
let mem p =
PropSet.mem p
(** Set intersection *)
let inter = PropSet.inter
(** Set difference. *)
let diff =
PropSet.diff
let empty = PropSet.empty
(** Set emptiness check. *)
let is_empty = PropSet.is_empty
(** Size of the set *)
let size = PropSet.cardinal
let filter = PropSet.filter
let from_proplist plist =
list_fold_left (fun pset p -> add p pset) empty plist
let to_proplist pset =
PropSet.elements pset
(** Apply function to all the elements of [propset], removing those where it returns [None]. *)
let map_option f pset =
let plisto = list_map f (to_proplist pset) in
let plisto = list_filter (function | Some _ -> true | None -> false) plisto in
let plist = list_map (function Some p -> p | None -> assert false) plisto in
from_proplist plist
(** Apply function to all the elements of [propset]. *)
let map f pset =
from_proplist (list_map f (to_proplist pset))
(** [fold f pset a] computes [f (... (f (f a p1) p2) ...) pn]
where [p1 ... pN] are the elements of pset, in increasing order. *)
let fold f a pset =
let l = to_proplist pset in
list_fold_left f a l
(** [iter f pset] computes (f p1;f p2;..;f pN)
where [p1 ... pN] are the elements of pset, in increasing order. *)
let iter =
PropSet.iter
let subseteq =
PropSet.subset
let partition =
PropSet.partition
(** {2 Pretty print} *)
(** Pretty print a set of propositions, obtained from the given prop. *)
let pp pe prop f pset =
let plist = to_proplist pset in
(Propgraph.pp_proplist pe "PROP" (prop, false)) f plist
let d p ps =
let plist = to_proplist ps in
Propgraph.d_proplist p plist