You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2050 lines
76 KiB

(*
* Copyright (c) 2009 - 2013 Monoidics ltd.
* Copyright (c) 2013 - present Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*)
open! Utils
(** Operators for the abstract domain. In particular, join and meet. *)
module L = Logging
module F = Format
let (++) = IntLit.add
let (--) = IntLit.sub
(** {2 Utility functions for ids} *)
let can_rename id =
Ident.is_primed id || Ident.is_footprint id
(** {2 Utility functions for sigma} *)
let sigma_equal sigma1 sigma2 =
let rec f sigma1_rest sigma2_rest =
match (sigma1_rest, sigma2_rest) with
| [], [] -> ()
| [], _:: _ | _:: _, [] ->
(L.d_strln "failure reason 1"; raise IList.Fail)
| hpred1:: sigma1_rest', hpred2:: sigma2_rest' ->
if Sil.hpred_equal hpred1 hpred2 then f sigma1_rest' sigma2_rest'
else (L.d_strln "failure reason 2"; raise IList.Fail) in
let sigma1_sorted = IList.sort Sil.hpred_compare sigma1 in
let sigma2_sorted = IList.sort Sil.hpred_compare sigma2 in
f sigma1_sorted sigma2_sorted
let sigma_get_start_lexps_sort sigma =
let exp_compare_neg e1 e2 = - (Exp.compare e1 e2) in
let filter e = Sil.fav_for_all (Sil.exp_fav e) Ident.is_normal in
let lexps = Sil.hpred_list_get_lexps filter sigma in
IList.sort exp_compare_neg lexps
(** {2 Utility functions for side} *)
type side = Lhs | Rhs
let select side e1 e2 =
match side with
| Lhs -> e1
| Rhs -> e2
let opposite side =
match side with
| Lhs -> Rhs
| Rhs -> Lhs
let do_side side f e1 e2 =
match side with
| Lhs -> f e1 e2
| Rhs -> f e2 e1
(** {2 Sets for expression pairs} *)
module EPset = Set.Make
(struct
type t = Exp.t * Exp.t
let compare (e1, e1') (e2, e2') =
match (Exp.compare e1 e2) with
| i when i <> 0 -> i
| _ -> Exp.compare e1' e2'
end)
(** {2 Module for maintaining information about noninjectivity during join} *)
module NonInj : sig
val init : unit -> unit
val final : unit -> unit
val add : side -> Exp.t -> Exp.t -> unit
val check : side -> Exp.t list -> bool
end = struct
(* mappings from primed or footprint var exps to primed or footprint var exps *)
let equiv_tbl1 = Hashtbl.create 32
let equiv_tbl2 = Hashtbl.create 32
(* mappings from primed or footprint var exps to normal var, lvar or const exps *)
let const_tbl1 = Hashtbl.create 32
let const_tbl2 = Hashtbl.create 32
let reset () =
Hashtbl.clear equiv_tbl1;
Hashtbl.clear equiv_tbl2;
Hashtbl.clear const_tbl1;
Hashtbl.clear const_tbl2
let init () = reset ()
let final () = reset ()
let lookup' tbl e default =
match e with
| Exp.Var _ ->
begin
try Hashtbl.find tbl e
with Not_found -> (Hashtbl.replace tbl e default; default)
end
| _ -> assert false
let lookup_equiv' tbl e =
lookup' tbl e e
let lookup_const' tbl e =
lookup' tbl e Exp.Set.empty
let rec find' tbl e =
let e' = lookup_equiv' tbl e in
match e' with
| Exp.Var _ ->
if Exp.equal e e' then e
else
begin
let root = find' tbl e' in
Hashtbl.replace tbl e root;
root
end
| _ -> assert false
let union' tbl const_tbl e1 e2 =
let r1 = find' tbl e1 in
let r2 = find' tbl e2 in
let new_r, old_r =
match (Exp.compare r1 r2) with
| i when i <= 0 -> r1, r2
| _ -> r2, r1 in
let new_c = lookup_const' const_tbl new_r in
let old_c = lookup_const' const_tbl old_r in
let res_c = Exp.Set.union new_c old_c in
if Exp.Set.cardinal res_c > 1 then (L.d_strln "failure reason 3"; raise IList.Fail);
Hashtbl.replace tbl old_r new_r;
Hashtbl.replace const_tbl new_r res_c
let replace_const' tbl const_tbl e c =
let r = find' tbl e in
let set = Exp.Set.add c (lookup_const' const_tbl r) in
if Exp.Set.cardinal set > 1 then (L.d_strln "failure reason 4"; raise IList.Fail);
Hashtbl.replace const_tbl r set
let add side e e' =
let tbl, const_tbl =
match side with
| Lhs -> equiv_tbl1, const_tbl1
| Rhs -> equiv_tbl2, const_tbl2
in
match e, e' with
| Exp.Var id, Exp.Var id' ->
begin
match can_rename id, can_rename id' with
| true, true -> union' tbl const_tbl e e'
| true, false -> replace_const' tbl const_tbl e e'
| false, true -> replace_const' tbl const_tbl e' e
| _ -> L.d_strln "failure reason 5"; raise IList.Fail
end
| Exp.Var id, Exp.Const _ | Exp.Var id, Exp.Lvar _ ->
if (can_rename id) then replace_const' tbl const_tbl e e'
else (L.d_strln "failure reason 6"; raise IList.Fail)
| Exp.Const _, Exp.Var id' | Exp.Lvar _, Exp.Var id' ->
if (can_rename id') then replace_const' tbl const_tbl e' e
else (L.d_strln "failure reason 7"; raise IList.Fail)
| _ ->
if not (Exp.equal e e') then (L.d_strln "failure reason 8"; raise IList.Fail) else ()
let check side es =
let f = function Exp.Var id -> can_rename id | _ -> false in
let vars, nonvars = IList.partition f es in
let tbl, const_tbl =
match side with
| Lhs -> equiv_tbl1, const_tbl1
| Rhs -> equiv_tbl2, const_tbl2
in
if (IList.length nonvars > 1) then false
else
match vars, nonvars with
| [], _ | [_], [] -> true
| v:: vars', _ ->
let r = find' tbl v in
let set = lookup_const' const_tbl r in
(IList.for_all (fun v' -> Exp.equal (find' tbl v') r) vars') &&
(IList.for_all (fun c -> Exp.Set.mem c set) nonvars)
end
(** {2 Modules for checking whether join or meet loses too much info} *)
module type InfoLossCheckerSig =
sig
val init : Prop.sigma -> Prop.sigma -> unit
val final : unit -> unit
val lost_little : side -> Exp.t -> Exp.t list -> bool
val add : side -> Exp.t -> Exp.t -> unit
end
module Dangling : sig
val init : Prop.sigma -> Prop.sigma -> unit
val final : unit -> unit
val check : side -> Exp.t -> bool
end = struct
let lexps1 = ref Exp.Set.empty
let lexps2 = ref Exp.Set.empty
let get_lexp_set' sigma =
let lexp_lst = Sil.hpred_list_get_lexps (fun _ -> true) sigma in
IList.fold_left (fun set e -> Exp.Set.add e set) Exp.Set.empty lexp_lst
let init sigma1 sigma2 =
lexps1 := get_lexp_set' sigma1;
lexps2 := get_lexp_set' sigma2
let final () =
lexps1 := Exp.Set.empty;
lexps2 := Exp.Set.empty
(* conservatively checks whether e is dangling *)
let check side e =
let lexps =
match side with
| Lhs -> !lexps1
| Rhs -> !lexps2
in
match e with
| Exp.Var id -> can_rename id && not (Exp.Set.mem e lexps)
| Exp.Const _ -> not (Exp.Set.mem e lexps)
| Exp.BinOp _ -> not (Exp.Set.mem e lexps)
| _ -> false
end
module CheckJoinPre : InfoLossCheckerSig = struct
let init sigma1 sigma2 =
NonInj.init ();
Dangling.init sigma1 sigma2
let final () =
NonInj.final ();
Dangling.final ()
let fail_case side e es =
let side_op = opposite side in
match e with
| Exp.Lvar _ -> false
| Exp.Var id when Ident.is_normal id -> IList.length es >= 1
| Exp.Var _ ->
if Config.join_cond = 0 then
IList.exists (Exp.equal Exp.zero) es
else if Dangling.check side e then
begin
let r = IList.exists (fun e' -> not (Dangling.check side_op e')) es in
if r then begin
L.d_str ".... Dangling Check (dang e:"; Sil.d_exp e;
L.d_str ") (? es:"; Sil.d_exp_list es; L.d_strln ") ....";
L.d_ln ()
end;
r
end
else
begin
let r = IList.exists (Dangling.check side_op) es in
if r then begin
L.d_str ".... Dangling Check (notdang e:"; Sil.d_exp e;
L.d_str ") (? es:"; Sil.d_exp_list es; L.d_strln ") ....";
L.d_ln ()
end;
r
end
| _ -> false
let lost_little side e es =
let side_op = opposite side in
let es = match e with Exp.Const _ -> [] | _ -> es in
if (fail_case side e es) then false
else
match es with
| [] | [_] -> true
| _ -> (NonInj.check side_op es)
let add = NonInj.add
end
module CheckJoinPost : InfoLossCheckerSig = struct
let init _ _ =
NonInj.init ()
let final () =
NonInj.final ()
let fail_case _ e es =
match e with
| Exp.Lvar _ -> false
| Exp.Var id when Ident.is_normal id -> IList.length es >= 1
| Exp.Var _ -> false
| _ -> false
let lost_little side e es =
let side_op = opposite side in
let es = match e with Exp.Const _ -> [] | _ -> es in
if (fail_case side e es) then false
else
match es with
| [] | [_] -> true
| _ -> NonInj.check side_op es
let add = NonInj.add
end
module CheckJoin : sig
val init : JoinState.mode -> Prop.sigma -> Prop.sigma -> unit
val final : unit -> unit
val lost_little : side -> Exp.t -> Exp.t list -> bool
val add : side -> Exp.t -> Exp.t -> unit
end = struct
let mode_ref : JoinState.mode ref = ref JoinState.Post
let init mode sigma1 sigma2 =
mode_ref := mode;
match mode with
| JoinState.Pre -> CheckJoinPre.init sigma1 sigma2
| JoinState.Post -> CheckJoinPost.init sigma1 sigma2
let final () =
match !mode_ref with
| JoinState.Pre -> CheckJoinPre.final (); mode_ref := JoinState.Post
| JoinState.Post -> CheckJoinPost.final (); mode_ref := JoinState.Post
let lost_little side e es =
match !mode_ref with
| JoinState.Pre -> CheckJoinPre.lost_little side e es
| JoinState.Post -> CheckJoinPost.lost_little side e es
let add side e1 e2 =
match !mode_ref with
| JoinState.Pre -> CheckJoinPre.add side e1 e2
| JoinState.Post -> CheckJoinPost.add side e1 e2
end
module CheckMeet : InfoLossCheckerSig = struct
let lexps1 = ref Exp.Set.empty
let lexps2 = ref Exp.Set.empty
let init sigma1 sigma2 =
let lexps1_lst = Sil.hpred_list_get_lexps (fun _ -> true) sigma1 in
let lexps2_lst = Sil.hpred_list_get_lexps (fun _ -> true) sigma2 in
lexps1 := Sil.elist_to_eset lexps1_lst;
lexps2 := Sil.elist_to_eset lexps2_lst
let final () =
lexps1 := Exp.Set.empty;
lexps2 := Exp.Set.empty
let lost_little side e es =
let lexps = match side with
| Lhs -> !lexps1
| Rhs -> !lexps2
in
match es, e with
| [], _ ->
true
| [Exp.Const _], Exp.Lvar _ ->
false
| [Exp.Const _], Exp.Var _ ->
not (Exp.Set.mem e lexps)
| [Exp.Const _], _ ->
assert false
| [_], Exp.Lvar _ | [_], Exp.Var _ ->
true
| [_], _ ->
assert false
| _, Exp.Lvar _ | _, Exp.Var _ ->
false
| _, Exp.Const _ ->
assert false
| _ -> assert false
let add = NonInj.add
end
(** {2 Module for worklist} *)
module Todo : sig
exception Empty
type t
val init : unit -> unit
val final : unit -> unit
val reset : (Exp.t * Exp.t * Exp.t) list -> unit
val push : (Exp.t * Exp.t * Exp.t) -> unit
val pop : unit -> (Exp.t * Exp.t * Exp.t)
val set : t -> unit
val take : unit -> t
end = struct
exception Empty
type t = (Exp.t * Exp.t * Exp.t) list
let tbl = ref []
let init () = tbl := []
let final () = tbl := []
let reset todo = tbl := todo
let push e =
tbl := e :: !tbl
let pop () =
match !tbl with
| h:: t -> tbl := t; h
| _ -> raise Empty
let set todo = tbl := todo
let take () = let res = !tbl in tbl := []; res
end
(** {2 Module for introducing fresh variables} *)
module FreshVarExp : sig
val init : unit -> unit
val get_fresh_exp : Exp.t -> Exp.t -> Exp.t
val get_induced_pi : unit -> Prop.pi
val final : unit -> unit
(*
val lookup : side -> Exp.t -> (Exp.t * Exp.t) option
*)
end = struct
let t = ref []
let init () = t := []
let final () = t := []
let entry_compare (e1, e2, _) (_, e2', _) =
let n1 = Exp.compare e1 e2 in
if n1 <> 0 then n1 else Exp.compare e2 e2'
let get_fresh_exp e1 e2 =
try
let (_, _, e) = IList.find (fun (e1', e2', _) -> Exp.equal e1 e1' && Exp.equal e2 e2') !t in
e
with Not_found ->
let e = Exp.get_undefined (JoinState.get_footprint ()) in
t := (e1, e2, e)::!t;
e
let get_induced_atom acc strict_lower upper e =
let ineq_lower = Prop.mk_inequality (Exp.BinOp(Binop.Lt, strict_lower, e)) in
let ineq_upper = Prop.mk_inequality (Exp.BinOp(Binop.Le, e, upper)) in
ineq_lower:: ineq_upper:: acc
let minus2_to_2 = IList.map IntLit.of_int [-2; -1; 0; 1; 2]
let get_induced_pi () =
let t_sorted = IList.sort entry_compare !t in
let add_and_chk_eq e1 e1' n =
match e1, e1' with
| Exp.Const (Const.Cint n1), Exp.Const (Const.Cint n1') -> IntLit.eq (n1 ++ n) n1'
| _ -> false in
let add_and_gen_eq e e' n =
let e_plus_n = Exp.BinOp(Binop.PlusA, e, Exp.int n) in
Prop.mk_eq e_plus_n e' in
let rec f_eqs_entry ((e1, e2, e) as entry) eqs_acc t_seen = function
| [] -> eqs_acc, t_seen
| ((e1', e2', e') as entry'):: t_rest' ->
try
let n = IList.find (fun n -> add_and_chk_eq e1 e1' n && add_and_chk_eq e2 e2' n) minus2_to_2 in
let eq = add_and_gen_eq e e' n in
let eqs_acc' = eq:: eqs_acc in
f_eqs_entry entry eqs_acc' t_seen t_rest'
with Not_found ->
let t_seen' = entry':: t_seen in
f_eqs_entry entry eqs_acc t_seen' t_rest' in
let rec f_eqs eqs_acc t_acc = function
| [] -> (eqs_acc, t_acc)
| entry:: t_rest ->
let eqs_acc', t_rest' = f_eqs_entry entry eqs_acc [] t_rest in
let t_acc' = entry:: t_acc in
f_eqs eqs_acc' t_acc' t_rest' in
let eqs, t_minimal = f_eqs [] [] t_sorted in
let f_ineqs acc (e1, e2, e) =
match e1, e2 with
| Exp.Const (Const.Cint n1), Exp.Const (Const.Cint n2) ->
let strict_lower1, upper1 =
if IntLit.leq n1 n2 then (n1 -- IntLit.one, n2) else (n2 -- IntLit.one, n1) in
let e_strict_lower1 = Exp.int strict_lower1 in
let e_upper1 = Exp.int upper1 in
get_induced_atom acc e_strict_lower1 e_upper1 e
| _ -> acc in
IList.fold_left f_ineqs eqs t_minimal
(*
let lookup side e =
try
let (e1, e2, e) =
IList.find (fun (e1', e2', _) -> Exp.equal e (select side e1' e2')) !t in
Some (e, select (opposite side) e1 e2)
with Not_found ->
None
*)
end
(** {2 Modules for renaming} *)
module Rename : sig
type data_opt = ExtFresh | ExtDefault of Exp.t
val init : unit -> unit
val final : unit -> unit
val reset : unit -> (Exp.t * Exp.t * Exp.t) list
val extend : Exp.t -> Exp.t -> data_opt -> Exp.t
val check : (side -> Exp.t -> Exp.t list -> bool) -> bool
val get_others : side -> Exp.t -> (Exp.t * Exp.t) option
val get_other_atoms : side -> Sil.atom -> (Sil.atom * Sil.atom) option
val lookup : side -> Exp.t -> Exp.t
val lookup_list : side -> Exp.t list -> Exp.t list
val lookup_list_todo : side -> Exp.t list -> Exp.t list
val to_subst_proj : side -> Sil.fav -> Sil.subst
val to_subst_emb : side -> Sil.subst
(*
val get : Exp.t -> Exp.t -> Exp.t option
val pp : printenv -> Format.formatter -> (Exp.t * Exp.t * Exp.t) list -> unit
*)
end = struct
type t = (Exp.t * Exp.t * Exp.t) list
let tbl : t ref = ref []
let init () = tbl := []
let final () = tbl := []
let reset () =
let f = function
| Exp.Var id, e, _ | e, Exp.Var id, _ ->
(Ident.is_footprint id) &&
(Sil.fav_for_all (Sil.exp_fav e) (fun id -> not (Ident.is_primed id)))
| _ -> false in
let t' = IList.filter f !tbl in
tbl := t';
t'
let push v = tbl := v :: !tbl
let check lost_little =
let f side e =
let side_op = opposite side in
let assoc_es =
match e with
| Exp.Const _ -> []
| Exp.Lvar _ | Exp.Var _
| Exp.BinOp (Binop.PlusA, Exp.Var _, _) ->
let is_same_e (e1, e2, _) = Exp.equal e (select side e1 e2) in
let assoc = IList.filter is_same_e !tbl in
IList.map (fun (e1, e2, _) -> select side_op e1 e2) assoc
| _ ->
L.d_str "no pattern match in check lost_little e: "; Sil.d_exp e; L.d_ln ();
raise IList.Fail in
lost_little side e assoc_es in
let lhs_es = IList.map (fun (e1, _, _) -> e1) !tbl in
let rhs_es = IList.map (fun (_, e2, _) -> e2) !tbl in
(IList.for_all (f Rhs) rhs_es) && (IList.for_all (f Lhs) lhs_es)
let lookup_side' side e =
let f (e1, e2, _) = Exp.equal e (select side e1 e2) in
IList.filter f !tbl
let lookup_side_induced' side e =
let res = ref [] in
let f v = match v, side with
| (Exp.BinOp (Binop.PlusA, e1', Exp.Const (Const.Cint i)), e2, e'), Lhs
when Exp.equal e e1' ->
let c' = Exp.int (IntLit.neg i) in
let v' = (e1', Exp.BinOp(Binop.PlusA, e2, c'), Exp.BinOp (Binop.PlusA, e', c')) in
res := v'::!res
| (e1, Exp.BinOp (Binop.PlusA, e2', Exp.Const (Const.Cint i)), e'), Rhs
when Exp.equal e e2' ->
let c' = Exp.int (IntLit.neg i) in
let v' = (Exp.BinOp(Binop.PlusA, e1, c'), e2', Exp.BinOp (Binop.PlusA, e', c')) in
res := v'::!res
| _ -> () in
begin
IList.iter f !tbl;
IList.rev !res
end
(* Return the triple whose side is [e], if it exists unique *)
let lookup' todo side e : Exp.t =
match e with
| Exp.Var id when can_rename id ->
begin
let r = lookup_side' side e in
match r with
| [(_, _, id) as t] -> if todo then Todo.push t; id
| _ -> L.d_strln "failure reason 9"; raise IList.Fail
end
| Exp.Var _ | Exp.Const _ | Exp.Lvar _ -> if todo then Todo.push (e, e, e); e
| _ -> L.d_strln "failure reason 10"; raise IList.Fail
let lookup side e = lookup' false side e
let lookup_todo side e = lookup' true side e
let lookup_list side l = IList.map (lookup side) l
let lookup_list_todo side l = IList.map (lookup_todo side) l
let to_subst_proj (side: side) vars =
let renaming_restricted =
IList.filter (function (_, _, Exp.Var i) -> Sil.fav_mem vars i | _ -> assert false) !tbl in
let sub_list_side =
IList.map
(function (e1, e2, Exp.Var i) -> (i, select side e1 e2) | _ -> assert false)
renaming_restricted in
let sub_list_side_sorted =
IList.sort (fun (_, e) (_, e') -> Exp.compare e e') sub_list_side in
let rec find_duplicates =
function
| (_, e):: ((_, e'):: _ as t) -> Exp.equal e e' || find_duplicates t
| _ -> false in
if find_duplicates sub_list_side_sorted then (L.d_strln "failure reason 11"; raise IList.Fail)
else Sil.sub_of_list sub_list_side
let to_subst_emb (side : side) =
let renaming_restricted =
let pick_id_case (e1, e2, _) =
match select side e1 e2 with
| Exp.Var i -> can_rename i
| _ -> false in
IList.filter pick_id_case !tbl in
let sub_list =
let project (e1, e2, e) =
match select side e1 e2 with
| Exp.Var i -> (i, e)
| _ -> assert false in
IList.map project renaming_restricted in
let sub_list_sorted =
let compare (i, _) (i', _) = Ident.compare i i' in
IList.sort compare sub_list in
let rec find_duplicates = function
| (i, _):: ((i', _):: _ as t) -> Ident.equal i i' || find_duplicates t
| _ -> false in
if find_duplicates sub_list_sorted then (L.d_strln "failure reason 12"; raise IList.Fail)
else Sil.sub_of_list sub_list_sorted
let get_others' f_lookup side e =
let side_op = opposite side in
let r = f_lookup side e in
match r with
| [] -> None
| [(e1, e2, e')] -> Some (e', select side_op e1 e2)
| _ -> None
let get_others = get_others' lookup_side'
let get_others_direct_or_induced side e =
let others = get_others side e in
match others with
| None -> get_others' lookup_side_induced' side e
| Some _ -> others
let get_others_deep side = function
| Exp.BinOp(op, e, e') ->
let others = get_others_direct_or_induced side e in
let others' = get_others_direct_or_induced side e' in
(match others, others' with
| None, _ | _, None -> None
| Some (e_res, e_op), Some(e_res', e_op') ->
let e_res'' = Exp.BinOp(op, e_res, e_res') in
let e_op'' = Exp.BinOp(op, e_op, e_op') in
Some (e_res'', e_op''))
| _ -> None
let get_other_atoms side atom_in =
let build_other_atoms construct side e =
if Config.trace_join then (L.d_str "build_other_atoms: "; Sil.d_exp e; L.d_ln ());
let others1 = get_others_direct_or_induced side e in
let others2 = match others1 with None -> get_others_deep side e | Some _ -> others1 in
match others2 with
| None -> None
| Some (e_res, e_op) ->
let a_res = construct e_res in
let a_op = construct e_op in
if Config.trace_join then begin
L.d_str "build_other_atoms (successful) ";
Sil.d_atom a_res; L.d_str ", "; Sil.d_atom a_op; L.d_ln ()
end;
Some (a_res, a_op) in
let exp_contains_only_normal_ids e =
let fav = Sil.exp_fav e in
Sil.fav_for_all fav Ident.is_normal in
let atom_contains_only_normal_ids a =
let fav = Sil.atom_fav a in
Sil.fav_for_all fav Ident.is_normal in
let normal_ids_only = atom_contains_only_normal_ids atom_in in
if normal_ids_only then Some (atom_in, atom_in)
else
begin
match atom_in with
| Sil.Aneq((Exp.Var id as e), e') | Sil.Aneq(e', (Exp.Var id as e))
when (exp_contains_only_normal_ids e' && not (Ident.is_normal id)) ->
build_other_atoms (fun e0 -> Prop.mk_neq e0 e') side e
| Sil.Apred (a, (Var id as e) :: es)
when not (Ident.is_normal id) && IList.for_all exp_contains_only_normal_ids es ->
build_other_atoms (fun e0 -> Prop.mk_pred a (e0 :: es)) side e
| Sil.Anpred (a, (Var id as e) :: es)
when not (Ident.is_normal id) && IList.for_all exp_contains_only_normal_ids es ->
build_other_atoms (fun e0 -> Prop.mk_npred a (e0 :: es)) side e
| Sil.Aeq((Exp.Var id as e), e') | Sil.Aeq(e', (Exp.Var id as e))
when (exp_contains_only_normal_ids e' && not (Ident.is_normal id)) ->
build_other_atoms (fun e0 -> Prop.mk_eq e0 e') side e
| Sil.Aeq(Exp.BinOp(Binop.Le, e, e'), Exp.Const (Const.Cint i))
| Sil.Aeq(Exp.Const (Const.Cint i), Exp.BinOp(Binop.Le, e, e'))
when IntLit.isone i && (exp_contains_only_normal_ids e') ->
let construct e0 = Prop.mk_inequality (Exp.BinOp(Binop.Le, e0, e')) in
build_other_atoms construct side e
| Sil.Aeq(Exp.BinOp(Binop.Lt, e', e), Exp.Const (Const.Cint i))
| Sil.Aeq(Exp.Const (Const.Cint i), Exp.BinOp(Binop.Lt, e', e))
when IntLit.isone i && (exp_contains_only_normal_ids e') ->
let construct e0 = Prop.mk_inequality (Exp.BinOp(Binop.Lt, e', e0)) in
build_other_atoms construct side e
| Sil.Aeq _ | Aneq _ | Apred _ | Anpred _ -> None
end
type data_opt = ExtFresh | ExtDefault of Exp.t
(* Extend the renaming relation. At least one of e1 and e2
* should be a primed or footprint variable *)
let extend e1 e2 default_op =
try
let eq_to_e (f1, f2, _) = Exp.equal e1 f1 && Exp.equal e2 f2 in
let _, _, res = IList.find eq_to_e !tbl in
res
with Not_found ->
let fav1 = Sil.exp_fav e1 in
let fav2 = Sil.exp_fav e2 in
let no_ren1 = not (Sil.fav_exists fav1 can_rename) in
let no_ren2 = not (Sil.fav_exists fav2 can_rename) in
let some_primed () = Sil.fav_exists fav1 Ident.is_primed || Sil.fav_exists fav2 Ident.is_primed in
let e =
if (no_ren1 && no_ren2) then
if (Exp.equal e1 e2) then e1 else (L.d_strln "failure reason 13"; raise IList.Fail)
else
match default_op with
| ExtDefault e -> e
| ExtFresh ->
let kind = if JoinState.get_footprint () && not (some_primed ()) then Ident.kfootprint else Ident.kprimed in
Exp.Var (Ident.create_fresh kind) in
let entry = e1, e2, e in
push entry;
Todo.push entry;
e
(*
let get e1 e2 =
let f (e1', e2', _) = Exp.equal e1 e1' && Exp.equal e2 e2' in
match (IList.filter f !tbl) with
| [] -> None
| (_, _, e):: _ -> Some e
let pp pe f renaming =
let pp_triple f (e1, e2, e3) =
F.fprintf f "(%a,%a,%a)" (Sil.pp_exp pe) e3 (Sil.pp_exp pe) e1 (Sil.pp_exp pe) e2 in
(pp_seq pp_triple) f renaming
*)
end
(** {2 Functions for constructing fresh sil data types} *)
let extend_side' kind side e =
match Rename.get_others side e with
| None ->
let e_op = Exp.Var (Ident.create_fresh kind) in
let e_new = Exp.Var (Ident.create_fresh kind) in
let e1, e2 =
match side with
| Lhs -> e, e_op
| Rhs -> e_op, e in
Rename.extend e1 e2 (Rename.ExtDefault (e_new))
| Some (e', _) -> e'
let rec exp_construct_fresh side e =
match e with
| Exp.Var id ->
if Ident.is_normal id then
(Todo.push (e, e, e); e)
else if Ident.is_footprint id then
extend_side' Ident.kfootprint side e
else
extend_side' Ident.kprimed side e
| Exp.Const _ -> e
| Exp.Cast (t, e1) ->
let e1' = exp_construct_fresh side e1 in
Exp.Cast (t, e1')
| Exp.UnOp(unop, e1, topt) ->
let e1' = exp_construct_fresh side e1 in
Exp.UnOp(unop, e1', topt)
| Exp.BinOp(binop, e1, e2) ->
let e1' = exp_construct_fresh side e1 in
let e2' = exp_construct_fresh side e2 in
Exp.BinOp(binop, e1', e2')
| Exp.Exn _ -> e
| Exp.Closure _ -> e
| Exp.Lvar _ ->
e
| Exp.Lfield(e1, fld, typ) ->
let e1' = exp_construct_fresh side e1 in
Exp.Lfield(e1', fld, typ)
| Exp.Lindex(e1, e2) ->
let e1' = exp_construct_fresh side e1 in
let e2' = exp_construct_fresh side e2 in
Exp.Lindex(e1', e2')
| Exp.Sizeof (_, None, _) ->
e
| Exp.Sizeof (typ, Some len, st) ->
Exp.Sizeof (typ, Some (exp_construct_fresh side len), st)
let strexp_construct_fresh side =
let f (e, inst_opt) = (exp_construct_fresh side e, inst_opt) in
Sil.strexp_expmap f
let hpred_construct_fresh side =
let f (e, inst_opt) = (exp_construct_fresh side e, inst_opt) in
Sil.hpred_expmap f
(** {2 Join and Meet for Ids} *)
let ident_same_kind_primed_footprint id1 id2 =
(Ident.is_primed id1 && Ident.is_primed id2) ||
(Ident.is_footprint id1 && Ident.is_footprint id2)
let ident_partial_join (id1: Ident.t) (id2: Ident.t) =
match Ident.is_normal id1, Ident.is_normal id2 with
| true, true ->
if Ident.equal id1 id2 then Exp.Var id1 else (L.d_strln "failure reason 14"; raise IList.Fail)
| true, _ | _, true ->
Rename.extend (Exp.Var id1) (Exp.Var id2) Rename.ExtFresh
| _ ->
begin
if not (ident_same_kind_primed_footprint id1 id2) then
(L.d_strln "failure reason 15"; raise IList.Fail)
else
let e1 = Exp.Var id1 in
let e2 = Exp.Var id2 in
Rename.extend e1 e2 Rename.ExtFresh
end
let ident_partial_meet (id1: Ident.t) (id2: Ident.t) =
match Ident.is_normal id1, Ident.is_normal id2 with
| true, true ->
if Ident.equal id1 id2 then Exp.Var id1
else (L.d_strln "failure reason 16"; raise IList.Fail)
| true, _ ->
let e1, e2 = Exp.Var id1, Exp.Var id2 in
Rename.extend e1 e2 (Rename.ExtDefault(e1))
| _, true ->
let e1, e2 = Exp.Var id1, Exp.Var id2 in
Rename.extend e1 e2 (Rename.ExtDefault(e2))
| _ ->
if Ident.is_primed id1 && Ident.is_primed id2 then
Rename.extend (Exp.Var id1) (Exp.Var id2) Rename.ExtFresh
else if Ident.is_footprint id1 && Ident.equal id1 id2 then
let e = Exp.Var id1 in Rename.extend e e (Rename.ExtDefault(e))
else
(L.d_strln "failure reason 17"; raise IList.Fail)
(** {2 Join and Meet for Exps} *)
let option_partial_join partial_join o1 o2 =
match o1, o2 with
| None, _ -> o2
| _, None -> o1
| Some x1, Some x2 -> partial_join x1 x2
let const_partial_join c1 c2 =
let is_int = function Const.Cint _ -> true | _ -> false in
if Const.equal c1 c2 then Exp.Const c1
else if Const.kind_equal c1 c2 && not (is_int c1) then
(L.d_strln "failure reason 18"; raise IList.Fail)
else if !Config.abs_val >= 2 then
FreshVarExp.get_fresh_exp (Exp.Const c1) (Exp.Const c2)
else (L.d_strln "failure reason 19"; raise IList.Fail)
let rec exp_partial_join (e1: Exp.t) (e2: Exp.t) : Exp.t =
(* L.d_str "exp_partial_join "; Sil.d_exp e1; L.d_str " "; Sil.d_exp e2; L.d_ln (); *)
match e1, e2 with
| Exp.Var id1, Exp.Var id2 ->
ident_partial_join id1 id2
| Exp.Var id, Exp.Const _
| Exp.Const _, Exp.Var id ->
if Ident.is_normal id then
(L.d_strln "failure reason 20"; raise IList.Fail)
else
Rename.extend e1 e2 Rename.ExtFresh
| Exp.Const c1, Exp.Const c2 ->
const_partial_join c1 c2
| Exp.Var id, Exp.Lvar _
| Exp.Lvar _, Exp.Var id ->
if Ident.is_normal id then (L.d_strln "failure reason 21"; raise IList.Fail)
else Rename.extend e1 e2 Rename.ExtFresh
| Exp.BinOp(Binop.PlusA, Exp.Var id1, Exp.Const _), Exp.Var id2
| Exp.Var id1, Exp.BinOp(Binop.PlusA, Exp.Var id2, Exp.Const _)
when ident_same_kind_primed_footprint id1 id2 ->
Rename.extend e1 e2 Rename.ExtFresh
| Exp.BinOp(Binop.PlusA, Exp.Var id1, Exp.Const (Const.Cint c1)), Exp.Const (Const.Cint c2)
when can_rename id1 ->
let c2' = c2 -- c1 in
let e_res = Rename.extend (Exp.Var id1) (Exp.int c2') Rename.ExtFresh in
Exp.BinOp(Binop.PlusA, e_res, Exp.int c1)
| Exp.Const (Const.Cint c1), Exp.BinOp(Binop.PlusA, Exp.Var id2, Exp.Const (Const.Cint c2))
when can_rename id2 ->
let c1' = c1 -- c2 in
let e_res = Rename.extend (Exp.int c1') (Exp.Var id2) Rename.ExtFresh in
Exp.BinOp(Binop.PlusA, e_res, Exp.int c2)
| Exp.Cast(t1, e1), Exp.Cast(t2, e2) ->
if not (Typ.equal t1 t2) then (L.d_strln "failure reason 22"; raise IList.Fail)
else
let e1'' = exp_partial_join e1 e2 in
Exp.Cast (t1, e1'')
| Exp.UnOp(unop1, e1, topt1), Exp.UnOp(unop2, e2, _) ->
if not (Unop.equal unop1 unop2) then (L.d_strln "failure reason 23"; raise IList.Fail)
else Exp.UnOp (unop1, exp_partial_join e1 e2, topt1) (* should be topt1 = topt2 *)
| Exp.BinOp(Binop.PlusPI, e1, e1'), Exp.BinOp(Binop.PlusPI, e2, e2') ->
let e1'' = exp_partial_join e1 e2 in
let e2'' = match e1', e2' with
| Exp.Const _, Exp.Const _ -> exp_partial_join e1' e2'
| _ -> FreshVarExp.get_fresh_exp e1 e2 in
Exp.BinOp(Binop.PlusPI, e1'', e2'')
| Exp.BinOp(binop1, e1, e1'), Exp.BinOp(binop2, e2, e2') ->
if not (Binop.equal binop1 binop2) then (L.d_strln "failure reason 24"; raise IList.Fail)
else
let e1'' = exp_partial_join e1 e2 in
let e2'' = exp_partial_join e1' e2' in
Exp.BinOp(binop1, e1'', e2'')
| Exp.Lvar(pvar1), Exp.Lvar(pvar2) ->
if not (Pvar.equal pvar1 pvar2) then (L.d_strln "failure reason 25"; raise IList.Fail)
else e1
| Exp.Lfield(e1, f1, t1), Exp.Lfield(e2, f2, _) ->
if not (Ident.fieldname_equal f1 f2) then (L.d_strln "failure reason 26"; raise IList.Fail)
else Exp.Lfield(exp_partial_join e1 e2, f1, t1) (* should be t1 = t2 *)
| Exp.Lindex(e1, e1'), Exp.Lindex(e2, e2') ->
let e1'' = exp_partial_join e1 e2 in
let e2'' = exp_partial_join e1' e2' in
Exp.Lindex(e1'', e2'')
| Exp.Sizeof (t1, len1, st1), Exp.Sizeof (t2, len2, st2) ->
Exp.Sizeof
(typ_partial_join t1 t2, dynamic_length_partial_join len1 len2, Subtype.join st1 st2)
| _ ->
L.d_str "exp_partial_join no match "; Sil.d_exp e1; L.d_str " "; Sil.d_exp e2; L.d_ln ();
raise IList.Fail
and length_partial_join len1 len2 = match len1, len2 with
| Exp.BinOp(Binop.PlusA, e1, Exp.Const c1), Exp.BinOp(Binop.PlusA, e2, Exp.Const c2) ->
let e' = exp_partial_join e1 e2 in
let c' = exp_partial_join (Exp.Const c1) (Exp.Const c2) in
Exp.BinOp (Binop.PlusA, e', c')
| Exp.BinOp(Binop.PlusA, _, _), Exp.BinOp(Binop.PlusA, _, _) ->
Rename.extend len1 len2 Rename.ExtFresh
| Exp.Var id1, Exp.Var id2 when Ident.equal id1 id2 ->
len1
| _ -> exp_partial_join len1 len2
and static_length_partial_join l1 l2 =
option_partial_join (fun len1 len2 -> if IntLit.eq len1 len2 then Some len1 else None) l1 l2
and dynamic_length_partial_join l1 l2 =
option_partial_join (fun len1 len2 -> Some (length_partial_join len1 len2)) l1 l2
and typ_partial_join t1 t2 = match t1, t2 with
| Typ.Tptr (t1, pk1), Typ.Tptr (t2, pk2) when Typ.ptr_kind_compare pk1 pk2 = 0 ->
Typ.Tptr (typ_partial_join t1 t2, pk1)
| Typ.Tarray (typ1, len1), Typ.Tarray (typ2, len2) ->
let t = typ_partial_join typ1 typ2 in
let len = static_length_partial_join len1 len2 in
Typ.Tarray (t, len)
| _ when Typ.equal t1 t2 -> t1 (* common case *)
| _ ->
L.d_str "typ_partial_join no match ";
Typ.d_full t1; L.d_str " "; Typ.d_full t2; L.d_ln ();
raise IList.Fail
let rec exp_partial_meet (e1: Exp.t) (e2: Exp.t) : Exp.t =
match e1, e2 with
| Exp.Var id1, Exp.Var id2 ->
ident_partial_meet id1 id2
| Exp.Var id, Exp.Const _ ->
if not (Ident.is_normal id) then
Rename.extend e1 e2 (Rename.ExtDefault(e2))
else (L.d_strln "failure reason 27"; raise IList.Fail)
| Exp.Const _, Exp.Var id ->
if not (Ident.is_normal id) then
Rename.extend e1 e2 (Rename.ExtDefault(e1))
else (L.d_strln "failure reason 28"; raise IList.Fail)
| Exp.Const c1, Exp.Const c2 ->
if (Const.equal c1 c2) then e1 else (L.d_strln "failure reason 29"; raise IList.Fail)
| Exp.Cast(t1, e1), Exp.Cast(t2, e2) ->
if not (Typ.equal t1 t2) then (L.d_strln "failure reason 30"; raise IList.Fail)
else
let e1'' = exp_partial_meet e1 e2 in
Exp.Cast (t1, e1'')
| Exp.UnOp(unop1, e1, topt1), Exp.UnOp(unop2, e2, _) ->
if not (Unop.equal unop1 unop2) then (L.d_strln "failure reason 31"; raise IList.Fail)
else Exp.UnOp (unop1, exp_partial_meet e1 e2, topt1) (* should be topt1 = topt2 *)
| Exp.BinOp(binop1, e1, e1'), Exp.BinOp(binop2, e2, e2') ->
if not (Binop.equal binop1 binop2) then (L.d_strln "failure reason 32"; raise IList.Fail)
else
let e1'' = exp_partial_meet e1 e2 in
let e2'' = exp_partial_meet e1' e2' in
Exp.BinOp(binop1, e1'', e2'')
| Exp.Var id, Exp.Lvar _ ->
if not (Ident.is_normal id) then
Rename.extend e1 e2 (Rename.ExtDefault(e2))
else (L.d_strln "failure reason 33"; raise IList.Fail)
| Exp.Lvar _, Exp.Var id ->
if not (Ident.is_normal id) then
Rename.extend e1 e2 (Rename.ExtDefault(e1))
else (L.d_strln "failure reason 34"; raise IList.Fail)
| Exp.Lvar(pvar1), Exp.Lvar(pvar2) ->
if not (Pvar.equal pvar1 pvar2) then (L.d_strln "failure reason 35"; raise IList.Fail)
else e1
| Exp.Lfield(e1, f1, t1), Exp.Lfield(e2, f2, _) ->
if not (Ident.fieldname_equal f1 f2) then (L.d_strln "failure reason 36"; raise IList.Fail)
else Exp.Lfield(exp_partial_meet e1 e2, f1, t1) (* should be t1 = t2 *)
| Exp.Lindex(e1, e1'), Exp.Lindex(e2, e2') ->
let e1'' = exp_partial_meet e1 e2 in
let e2'' = exp_partial_meet e1' e2' in
Exp.Lindex(e1'', e2'')
| _ -> (L.d_strln "failure reason 37"; raise IList.Fail)
let exp_list_partial_join = IList.map2 exp_partial_join
let exp_list_partial_meet = IList.map2 exp_partial_meet
(** {2 Join and Meet for Strexp} *)
let rec strexp_partial_join mode (strexp1: Sil.strexp) (strexp2: Sil.strexp) : Sil.strexp =
let rec f_fld_se_list inst mode acc fld_se_list1 fld_se_list2 =
match fld_se_list1, fld_se_list2 with
| [], [] -> Sil.Estruct (IList.rev acc, inst)
| [], _ | _, [] ->
begin
match mode with
| JoinState.Pre -> (L.d_strln "failure reason 42"; raise IList.Fail)
| JoinState.Post -> Sil.Estruct (IList.rev acc, inst)
end
| (fld1, se1):: fld_se_list1', (fld2, se2):: fld_se_list2' ->
let comparison = Ident.fieldname_compare fld1 fld2 in
if comparison = 0 then
let strexp' = strexp_partial_join mode se1 se2 in
let fld_se_list_new = (fld1, strexp') :: acc in
f_fld_se_list inst mode fld_se_list_new fld_se_list1' fld_se_list2'
else begin
match mode with
| JoinState.Pre ->
(L.d_strln "failure reason 43"; raise IList.Fail)
| JoinState.Post ->
if comparison < 0 then begin
f_fld_se_list inst mode acc fld_se_list1' fld_se_list2
end
else if comparison > 0 then begin
f_fld_se_list inst mode acc fld_se_list1 fld_se_list2'
end
else
assert false (* This case should not happen. *)
end in
let rec f_idx_se_list inst len idx_se_list_acc idx_se_list1 idx_se_list2 =
match idx_se_list1, idx_se_list2 with
| [], [] -> Sil.Earray (len, IList.rev idx_se_list_acc, inst)
| [], _ | _, [] ->
begin
match mode with
| JoinState.Pre -> (L.d_strln "failure reason 44"; raise IList.Fail)
| JoinState.Post ->
Sil.Earray (len, IList.rev idx_se_list_acc, inst)
end
| (idx1, se1):: idx_se_list1', (idx2, se2):: idx_se_list2' ->
let idx = exp_partial_join idx1 idx2 in
let strexp' = strexp_partial_join mode se1 se2 in
let idx_se_list_new = (idx, strexp') :: idx_se_list_acc in
f_idx_se_list inst len idx_se_list_new idx_se_list1' idx_se_list2' in
match strexp1, strexp2 with
| Sil.Eexp (e1, inst1), Sil.Eexp (e2, inst2) ->
Sil.Eexp (exp_partial_join e1 e2, Sil.inst_partial_join inst1 inst2)
| Sil.Estruct (fld_se_list1, inst1), Sil.Estruct (fld_se_list2, inst2) ->
let inst = Sil.inst_partial_join inst1 inst2 in
f_fld_se_list inst mode [] fld_se_list1 fld_se_list2
| Sil.Earray (len1, idx_se_list1, inst1), Sil.Earray (len2, idx_se_list2, inst2) ->
let len = length_partial_join len1 len2 in
let inst = Sil.inst_partial_join inst1 inst2 in
f_idx_se_list inst len [] idx_se_list1 idx_se_list2
| _ -> L.d_strln "no match in strexp_partial_join"; raise IList.Fail
let rec strexp_partial_meet (strexp1: Sil.strexp) (strexp2: Sil.strexp) : Sil.strexp =
let construct side rev_list ref_list =
let construct_offset_se (off, se) = (off, strexp_construct_fresh side se) in
let acc = IList.map construct_offset_se ref_list in
IList.rev_with_acc acc rev_list in
let rec f_fld_se_list inst acc fld_se_list1 fld_se_list2 =
match fld_se_list1, fld_se_list2 with
| [], [] ->
Sil.Estruct (IList.rev acc, inst)
| [], _ ->
Sil.Estruct (construct Rhs acc fld_se_list2, inst)
| _, [] ->
Sil.Estruct (construct Lhs acc fld_se_list1, inst)
| (fld1, se1):: fld_se_list1', (fld2, se2):: fld_se_list2' ->
let comparison = Ident.fieldname_compare fld1 fld2 in
if comparison < 0 then
let se' = strexp_construct_fresh Lhs se1 in
let acc_new = (fld1, se'):: acc in
f_fld_se_list inst acc_new fld_se_list1' fld_se_list2
else if comparison > 0 then
let se' = strexp_construct_fresh Rhs se2 in
let acc_new = (fld2, se'):: acc in
f_fld_se_list inst acc_new fld_se_list1 fld_se_list2'
else
let strexp' = strexp_partial_meet se1 se2 in
let acc_new = (fld1, strexp') :: acc in
f_fld_se_list inst acc_new fld_se_list1' fld_se_list2' in
let rec f_idx_se_list inst len acc idx_se_list1 idx_se_list2 =
match idx_se_list1, idx_se_list2 with
| [],[] ->
Sil.Earray (len, IList.rev acc, inst)
| [], _ ->
Sil.Earray (len, construct Rhs acc idx_se_list2, inst)
| _, [] ->
Sil.Earray (len, construct Lhs acc idx_se_list1, inst)
| (idx1, se1):: idx_se_list1', (idx2, se2):: idx_se_list2' ->
let idx = exp_partial_meet idx1 idx2 in
let se' = strexp_partial_meet se1 se2 in
let acc_new = (idx, se') :: acc in
f_idx_se_list inst len acc_new idx_se_list1' idx_se_list2' in
match strexp1, strexp2 with
| Sil.Eexp (e1, inst1), Sil.Eexp (e2, inst2) ->
Sil.Eexp (exp_partial_meet e1 e2, Sil.inst_partial_meet inst1 inst2)
| Sil.Estruct (fld_se_list1, inst1), Sil.Estruct (fld_se_list2, inst2) ->
let inst = Sil.inst_partial_meet inst1 inst2 in
f_fld_se_list inst [] fld_se_list1 fld_se_list2
| Sil.Earray (len1, idx_se_list1, inst1), Sil.Earray (len2, idx_se_list2, inst2)
when Exp.equal len1 len2 ->
let inst = Sil.inst_partial_meet inst1 inst2 in
f_idx_se_list inst len1 [] idx_se_list1 idx_se_list2
| _ -> (L.d_strln "failure reason 52"; raise IList.Fail)
(** {2 Join and Meet for kind, hpara, hpara_dll} *)
let kind_join k1 k2 = match k1, k2 with
| Sil.Lseg_PE, _ -> Sil.Lseg_PE
| _, Sil.Lseg_PE -> Sil.Lseg_PE
| Sil.Lseg_NE, Sil.Lseg_NE -> Sil.Lseg_NE
let kind_meet k1 k2 = match k1, k2 with
| Sil.Lseg_NE, _ -> Sil.Lseg_NE
| _, Sil.Lseg_NE -> Sil.Lseg_NE
| Sil.Lseg_PE, Sil.Lseg_PE -> Sil.Lseg_PE
let hpara_partial_join (hpara1: Sil.hpara) (hpara2: Sil.hpara) : Sil.hpara =
if Match.hpara_match_with_impl true hpara2 hpara1 then
hpara1
else if Match.hpara_match_with_impl true hpara1 hpara2 then
hpara2
else
(L.d_strln "failure reason 53"; raise IList.Fail)
let hpara_partial_meet (hpara1: Sil.hpara) (hpara2: Sil.hpara) : Sil.hpara =
if Match.hpara_match_with_impl true hpara2 hpara1 then
hpara2
else if Match.hpara_match_with_impl true hpara1 hpara2 then
hpara1
else
(L.d_strln "failure reason 54"; raise IList.Fail)
let hpara_dll_partial_join (hpara1: Sil.hpara_dll) (hpara2: Sil.hpara_dll) : Sil.hpara_dll =
if Match.hpara_dll_match_with_impl true hpara2 hpara1 then
hpara1
else if Match.hpara_dll_match_with_impl true hpara1 hpara2 then
hpara2
else
(L.d_strln "failure reason 55"; raise IList.Fail)
let hpara_dll_partial_meet (hpara1: Sil.hpara_dll) (hpara2: Sil.hpara_dll) : Sil.hpara_dll =
if Match.hpara_dll_match_with_impl true hpara2 hpara1 then
hpara2
else if Match.hpara_dll_match_with_impl true hpara1 hpara2 then
hpara1
else
(L.d_strln "failure reason 56"; raise IList.Fail)
(** {2 Join and Meet for hpred} *)
let hpred_partial_join mode (todo: Exp.t * Exp.t * Exp.t) (hpred1: Sil.hpred) (hpred2: Sil.hpred)
: Sil.hpred =
let e1, e2, e = todo in
match hpred1, hpred2 with
| Sil.Hpointsto (_, se1, te1), Sil.Hpointsto (_, se2, te2) ->
let te = exp_partial_join te1 te2 in
Prop.mk_ptsto e (strexp_partial_join mode se1 se2) te
| Sil.Hlseg (k1, hpara1, _, next1, shared1), Sil.Hlseg (k2, hpara2, _, next2, shared2) ->
let hpara' = hpara_partial_join hpara1 hpara2 in
let next' = exp_partial_join next1 next2 in
let shared' = exp_list_partial_join shared1 shared2 in
Prop.mk_lseg (kind_join k1 k2) hpara' e next' shared'
| Sil.Hdllseg (k1, para1, iF1, oB1, oF1, iB1, shared1),
Sil.Hdllseg (k2, para2, iF2, oB2, oF2, iB2, shared2) ->
let fwd1 = Exp.equal e1 iF1 in
let fwd2 = Exp.equal e2 iF2 in
let hpara' = hpara_dll_partial_join para1 para2 in
let iF', iB' =
if (fwd1 && fwd2) then (e, exp_partial_join iB1 iB2)
else if (not fwd1 && not fwd2) then (exp_partial_join iF1 iF2, e)
else (L.d_strln "failure reason 57"; raise IList.Fail) in
let oF' = exp_partial_join oF1 oF2 in
let oB' = exp_partial_join oB1 oB2 in
let shared' = exp_list_partial_join shared1 shared2 in
Prop.mk_dllseg (kind_join k1 k2) hpara' iF' oB' oF' iB' shared'
| _ ->
assert false
let hpred_partial_meet (todo: Exp.t * Exp.t * Exp.t) (hpred1: Sil.hpred) (hpred2: Sil.hpred)
: Sil.hpred =
let e1, e2, e = todo in
match hpred1, hpred2 with
| Sil.Hpointsto (_, se1, te1), Sil.Hpointsto (_, se2, te2) when Exp.equal te1 te2 ->
Prop.mk_ptsto e (strexp_partial_meet se1 se2) te1
| Sil.Hpointsto _, _ | _, Sil.Hpointsto _ ->
(L.d_strln "failure reason 58"; raise IList.Fail)
| Sil.Hlseg (k1, hpara1, _, next1, shared1), Sil.Hlseg (k2, hpara2, _, next2, shared2) ->
let hpara' = hpara_partial_meet hpara1 hpara2 in
let next' = exp_partial_meet next1 next2 in
let shared' = exp_list_partial_meet shared1 shared2 in
Prop.mk_lseg (kind_meet k1 k2) hpara' e next' shared'
| Sil.Hdllseg (k1, para1, iF1, oB1, oF1, iB1, shared1),
Sil.Hdllseg (k2, para2, iF2, oB2, oF2, iB2, shared2) ->
let fwd1 = Exp.equal e1 iF1 in
let fwd2 = Exp.equal e2 iF2 in
let hpara' = hpara_dll_partial_meet para1 para2 in
let iF', iB' =
if (fwd1 && fwd2) then (e, exp_partial_meet iB1 iB2)
else if (not fwd1 && not fwd2) then (exp_partial_meet iF1 iF2, e)
else (L.d_strln "failure reason 59"; raise IList.Fail) in
let oF' = exp_partial_meet oF1 oF2 in
let oB' = exp_partial_meet oB1 oB2 in
let shared' = exp_list_partial_meet shared1 shared2 in
Prop.mk_dllseg (kind_meet k1 k2) hpara' iF' oB' oF' iB' shared'
| _ ->
assert false
(** {2 Join and Meet for Sigma} *)
let find_hpred_by_address (e: Exp.t) (sigma: Prop.sigma) : Sil.hpred option * Prop.sigma =
let is_root_for_e e' =
match (Prover.is_root Prop.prop_emp e' e) with
| None -> false
| Some _ -> true in
let contains_e = function
| Sil.Hpointsto (e', _, _) -> is_root_for_e e'
| Sil.Hlseg (_, _, e', _, _) -> is_root_for_e e'
| Sil.Hdllseg (_, _, iF, _, _, iB, _) -> is_root_for_e iF || is_root_for_e iB in
let rec f sigma_acc = function
| [] -> None, sigma
| hpred:: sigma ->
if contains_e hpred then
Some hpred, (IList.rev sigma_acc) @ sigma
else
f (hpred:: sigma_acc) sigma in
f [] sigma
let same_pred (hpred1: Sil.hpred) (hpred2: Sil.hpred) : bool =
match hpred1, hpred2 with
| Sil.Hpointsto _, Sil.Hpointsto _ -> true
| Sil.Hlseg _, Sil.Hlseg _ -> true
| Sil.Hdllseg _, Sil.Hdllseg _ -> true
| _ -> false
(* check that applying renaming to the lhs / rhs of [sigma_new]
* gives [sigma] and that the renaming is injective *)
let sigma_renaming_check (lhs: side) (sigma: Prop.sigma) (sigma_new: Prop.sigma) =
(* apply the lhs / rhs of the renaming to sigma,
* and check that the renaming of primed vars is injective *)
let fav_sigma = Prop.sigma_fav sigma_new in
let sub = Rename.to_subst_proj lhs fav_sigma in
let sigma' = Prop.sigma_sub sub sigma_new in
sigma_equal sigma sigma'
let sigma_renaming_check_lhs = sigma_renaming_check Lhs
let sigma_renaming_check_rhs = sigma_renaming_check Rhs
let rec sigma_partial_join' mode (sigma_acc: Prop.sigma)
(sigma1_in: Prop.sigma) (sigma2_in: Prop.sigma) : (Prop.sigma * Prop.sigma * Prop.sigma) =
let lookup_and_expand side e e' =
match (Rename.get_others side e, side) with
| None, _ -> (L.d_strln "failure reason 60"; raise IList.Fail)
| Some(e_res, e_op), Lhs -> (e_res, exp_partial_join e' e_op)
| Some(e_res, e_op), Rhs -> (e_res, exp_partial_join e_op e') in
let join_list_and_non side root' hlseg e opposite =
match hlseg with
| Sil.Hlseg (_, hpara, root, next, shared) ->
let next' = do_side side exp_partial_join next opposite in
let shared' = Rename.lookup_list side shared in
CheckJoin.add side root next;
Sil.Hlseg (Sil.Lseg_PE, hpara, root', next', shared')
| Sil.Hdllseg (_, hpara, iF, oB, oF, iB, shared)
when Exp.equal iF e ->
let oF' = do_side side exp_partial_join oF opposite in
let shared' = Rename.lookup_list side shared in
let oB', iB' = lookup_and_expand side oB iB in
(*
let oB' = Rename.lookup side oB in
let iB' = Rename.lookup side iB in
*)
CheckJoin.add side iF oF;
CheckJoin.add side oB iB;
Sil.Hdllseg (Sil.Lseg_PE, hpara, root', oB', oF', iB', shared')
| Sil.Hdllseg (_, hpara, iF, oB, oF, iB, shared)
when Exp.equal iB e ->
let oB' = do_side side exp_partial_join oB opposite in
let shared' = Rename.lookup_list side shared in
let oF', iF' = lookup_and_expand side oF iF in
(*
let oF' = Rename.lookup side oF in
let iF' = Rename.lookup side iF in
*)
CheckJoin.add side iF oF;
CheckJoin.add side oB iB;
Sil.Hdllseg (Sil.Lseg_PE, hpara, iF', oB', oF', root', shared')
| _ -> assert false in
let update_list side lseg root' =
match lseg with
| Sil.Hlseg (k, hpara, _, next, shared) ->
let next' = Rename.lookup side next
and shared' = Rename.lookup_list_todo side shared in
Sil.Hlseg (k, hpara, root', next', shared')
| _ -> assert false in
let update_dllseg side dllseg iF iB =
match dllseg with
| Sil.Hdllseg (k, hpara, _, oB, oF, _, shared) ->
let oB' = Rename.lookup side oB
and oF' = Rename.lookup side oF
and shared' = Rename.lookup_list_todo side shared in
Sil.Hdllseg (k, hpara, iF, oB', oF', iB, shared')
| _ -> assert false in
(* Drop the part of 'other' sigma corresponding to 'target' sigma if possible.
'side' describes that target is Lhs or Rhs.
'todo' describes the start point. *)
let cut_sigma side todo (target: Prop.sigma) (other: Prop.sigma) =
let list_is_empty l = if l != [] then (L.d_strln "failure reason 61"; raise IList.Fail) in
let x = Todo.take () in
Todo.push todo;
let res =
match side with
| Lhs ->
let res, target', other' = sigma_partial_join' mode [] target other in
list_is_empty target';
sigma_renaming_check_lhs target res;
other'
| Rhs ->
let res, other', target' = sigma_partial_join' mode [] other target in
list_is_empty target';
sigma_renaming_check_rhs target res;
other' in
Todo.set x;
res in
let cut_lseg side todo lseg sigma =
match lseg with
| Sil.Hlseg (_, hpara, root, next, shared) ->
let _, sigma_lseg = Sil.hpara_instantiate hpara root next shared in
cut_sigma side todo sigma_lseg sigma
| _ -> assert false in
let cut_dllseg side todo root lseg sigma =
match lseg with
| Sil.Hdllseg (_, hpara, _, oB, oF, _, shared) ->
let _, sigma_dllseg = Sil.hpara_dll_instantiate hpara root oB oF shared in
cut_sigma side todo sigma_dllseg sigma
| _ -> assert false in
try
let todo_curr = Todo.pop () in
let e1, e2, e = todo_curr in
if Config.trace_join then begin
L.d_strln ".... sigma_partial_join' ....";
L.d_str "TODO: "; Sil.d_exp e1; L.d_str ","; Sil.d_exp e2; L.d_str ","; Sil.d_exp e; L.d_ln ();
L.d_strln "SIGMA1 ="; Prop.d_sigma sigma1_in; L.d_ln ();
L.d_strln "SIGMA2 ="; Prop.d_sigma sigma2_in; L.d_ln ();
L.d_ln ()
end;
let hpred_opt1, sigma1 = find_hpred_by_address e1 sigma1_in in
let hpred_opt2, sigma2 = find_hpred_by_address e2 sigma2_in in
match hpred_opt1, hpred_opt2 with
| None, None ->
sigma_partial_join' mode sigma_acc sigma1 sigma2
| Some (Sil.Hlseg (k, _, _, _, _) as lseg), None
| Some (Sil.Hdllseg (k, _, _, _, _, _, _) as lseg), None ->
if (not Config.nelseg) || (Sil.lseg_kind_equal k Sil.Lseg_PE) then
let sigma_acc' = join_list_and_non Lhs e lseg e1 e2 :: sigma_acc in
sigma_partial_join' mode sigma_acc' sigma1 sigma2
else
(L.d_strln "failure reason 62"; raise IList.Fail)
| None, Some (Sil.Hlseg (k, _, _, _, _) as lseg)
| None, Some (Sil.Hdllseg (k, _, _, _, _, _, _) as lseg) ->
if (not Config.nelseg) || (Sil.lseg_kind_equal k Sil.Lseg_PE) then
let sigma_acc' = join_list_and_non Rhs e lseg e2 e1 :: sigma_acc in
sigma_partial_join' mode sigma_acc' sigma1 sigma2
else
(L.d_strln "failure reason 63"; raise IList.Fail)
| None, _ | _, None -> (L.d_strln "failure reason 64"; raise IList.Fail)
| Some (hpred1), Some (hpred2) when same_pred hpred1 hpred2 ->
let hpred_res1 = hpred_partial_join mode todo_curr hpred1 hpred2 in
sigma_partial_join' mode (hpred_res1:: sigma_acc) sigma1 sigma2
| Some (Sil.Hlseg _ as lseg), Some (hpred2) ->
let sigma2' = cut_lseg Lhs todo_curr lseg (hpred2:: sigma2) in
let sigma_acc' = update_list Lhs lseg e :: sigma_acc in
sigma_partial_join' mode sigma_acc' sigma1 sigma2'
| Some (hpred1), Some (Sil.Hlseg _ as lseg) ->
let sigma1' = cut_lseg Rhs todo_curr lseg (hpred1:: sigma1) in
let sigma_acc' = update_list Rhs lseg e :: sigma_acc in
sigma_partial_join' mode sigma_acc' sigma1' sigma2
| Some (Sil.Hdllseg (_, _, iF1, _, _, iB1, _) as dllseg), Some (hpred2)
when Exp.equal e1 iF1 ->
let iB_res = exp_partial_join iB1 e2 in
let sigma2' = cut_dllseg Lhs todo_curr iF1 dllseg (hpred2:: sigma2) in
let sigma_acc' = update_dllseg Lhs dllseg e iB_res :: sigma_acc in
CheckJoin.add Lhs iF1 iB1; (* add equality iF1=iB1 *)
sigma_partial_join' mode sigma_acc' sigma1 sigma2'
| Some (Sil.Hdllseg (_, _, iF1, _, _, iB1, _) as dllseg), Some (hpred2)
(* when Exp.equal e1 iB1 *) ->
let iF_res = exp_partial_join iF1 e2 in
let sigma2' = cut_dllseg Lhs todo_curr iB1 dllseg (hpred2:: sigma2) in
let sigma_acc' = update_dllseg Lhs dllseg iF_res e :: sigma_acc in
CheckJoin.add Lhs iF1 iB1; (* add equality iF1=iB1 *)
sigma_partial_join' mode sigma_acc' sigma1 sigma2'
| Some (hpred1), Some (Sil.Hdllseg (_, _, iF2, _, _, iB2, _) as dllseg)
when Exp.equal e2 iF2 ->
let iB_res = exp_partial_join e1 iB2 in
let sigma1' = cut_dllseg Rhs todo_curr iF2 dllseg (hpred1:: sigma1) in
let sigma_acc' = update_dllseg Rhs dllseg e iB_res :: sigma_acc in
CheckJoin.add Rhs iF2 iB2; (* add equality iF2=iB2 *)
sigma_partial_join' mode sigma_acc' sigma1' sigma2
| Some (hpred1), Some (Sil.Hdllseg (_, _, iF2, _, _, iB2, _) as dllseg) ->
let iF_res = exp_partial_join e1 iF2 in
let sigma1' = cut_dllseg Rhs todo_curr iB2 dllseg (hpred1:: sigma1) in
let sigma_acc' = update_dllseg Rhs dllseg iF_res e :: sigma_acc in
CheckJoin.add Rhs iF2 iB2; (* add equality iF2=iB2 *)
sigma_partial_join' mode sigma_acc' sigma1' sigma2
| Some (Sil.Hpointsto _), Some (Sil.Hpointsto _) ->
assert false (* Should be handled by a guarded case *)
with Todo.Empty ->
match sigma1_in, sigma2_in with
| _:: _, _:: _ -> L.d_strln "todo is empty, but the sigmas are not"; raise IList.Fail
| _ -> sigma_acc, sigma1_in, sigma2_in
let sigma_partial_join mode (sigma1: Prop.sigma) (sigma2: Prop.sigma)
: (Prop.sigma * Prop.sigma * Prop.sigma) =
CheckJoin.init mode sigma1 sigma2;
let lost_little = CheckJoin.lost_little in
let s1, s2, s3 = sigma_partial_join' mode [] sigma1 sigma2 in
try
if Rename.check lost_little then
(CheckJoin.final (); (s1, s2, s3))
else begin
L.d_strln "failed Rename.check";
CheckJoin.final ();
raise IList.Fail
end
with
| exn -> (CheckJoin.final (); raise exn)
let rec sigma_partial_meet' (sigma_acc: Prop.sigma) (sigma1_in: Prop.sigma) (sigma2_in: Prop.sigma)
: Prop.sigma =
try
let todo_curr = Todo.pop () in
let e1, e2, e = todo_curr in
L.d_strln ".... sigma_partial_meet' ....";
L.d_str "TODO: "; Sil.d_exp e1; L.d_str ","; Sil.d_exp e2; L.d_str ","; Sil.d_exp e; L.d_ln ();
L.d_str "PROP1="; Prop.d_sigma sigma1_in; L.d_ln ();
L.d_str "PROP2="; Prop.d_sigma sigma2_in; L.d_ln ();
L.d_ln ();
let hpred_opt1, sigma1 = find_hpred_by_address e1 sigma1_in in
let hpred_opt2, sigma2 = find_hpred_by_address e2 sigma2_in in
match hpred_opt1, hpred_opt2 with
| None, None ->
sigma_partial_meet' sigma_acc sigma1 sigma2
| Some hpred, None ->
let hpred' = hpred_construct_fresh Lhs hpred in
let sigma_acc' = hpred' :: sigma_acc in
sigma_partial_meet' sigma_acc' sigma1 sigma2
| None, Some hpred ->
let hpred' = hpred_construct_fresh Rhs hpred in
let sigma_acc' = hpred' :: sigma_acc in
sigma_partial_meet' sigma_acc' sigma1 sigma2
| Some (hpred1), Some (hpred2) when same_pred hpred1 hpred2 ->
let hpred' = hpred_partial_meet todo_curr hpred1 hpred2 in
sigma_partial_meet' (hpred':: sigma_acc) sigma1 sigma2
| Some _, Some _ ->
(L.d_strln "failure reason 65"; raise IList.Fail)
with Todo.Empty ->
match sigma1_in, sigma2_in with
| [], [] -> sigma_acc
| _, _ -> L.d_strln "todo is empty, but the sigmas are not"; raise IList.Fail
let sigma_partial_meet (sigma1: Prop.sigma) (sigma2: Prop.sigma) : Prop.sigma =
sigma_partial_meet' [] sigma1 sigma2
let widening_top =
(* nearly max_int but not so close to overflow *)
IntLit.of_int64 Int64.max_int -- IntLit.of_int 1000
let widening_bottom =
(* nearly min_int but not so close to underflow *)
IntLit.of_int64 Int64.min_int ++ IntLit.of_int 1000
(** {2 Join and Meet for Pi} *)
let pi_partial_join mode
(ep1: Prop.exposed Prop.t) (ep2: Prop.exposed Prop.t)
(pi1: Prop.pi) (pi2: Prop.pi) : Prop.pi
=
let exp_is_const = function
(* | Exp.Var id -> is_normal id *)
| Exp.Const _ -> true
(* | Exp.Lvar _ -> true *)
| _ -> false in
let get_array_len prop =
(* find some array length in the prop, to be used as heuritic for upper bound in widening *)
let len_list = ref [] in
let do_hpred = function
| Sil.Hpointsto (_, Sil.Earray (Exp.Const (Const.Cint n), _, _), _) ->
(if IntLit.geq n IntLit.one then len_list := n :: !len_list)
| _ -> () in
IList.iter do_hpred (Prop.get_sigma prop);
!len_list in
let bounds =
let bounds1 = get_array_len ep1 in
let bounds2 = get_array_len ep2 in
let bounds_sorted = IList.sort IntLit.compare_value (bounds1@bounds2) in
IList.rev (IList.remove_duplicates IntLit.compare_value bounds_sorted) in
let widening_atom a =
(* widening heuristic for upper bound: take the length of some array, -2 and -1 *)
match Prop.atom_exp_le_const a, bounds with
| Some (e, n), len :: _ ->
let first_try = IntLit.sub len IntLit.one in
let second_try = IntLit.sub len IntLit.two in
let bound =
if IntLit.leq n first_try then
if IntLit.leq n second_try then second_try else first_try
else widening_top in
let a' = Prop.mk_inequality (Exp.BinOp(Binop.Le, e, Exp.int bound)) in
Some a'
| Some (e, _), [] ->
let bound = widening_top in
let a' = Prop.mk_inequality (Exp.BinOp(Binop.Le, e, Exp.int bound)) in
Some a'
| _ ->
begin
match Prop.atom_const_lt_exp a with
| None -> None
| Some (n, e) ->
let bound =
if IntLit.leq IntLit.minus_one n then IntLit.minus_one else widening_bottom in
let a' = Prop.mk_inequality (Exp.BinOp(Binop.Lt, Exp.int bound, e)) in
Some a'
end in
let is_stronger_le e n a =
match Prop.atom_exp_le_const a with
| None -> false
| Some (e', n') -> Exp.equal e e' && IntLit.lt n' n in
let is_stronger_lt n e a =
match Prop.atom_const_lt_exp a with
| None -> false
| Some (n', e') -> Exp.equal e e' && IntLit.lt n n' in
let join_atom_check_pre p a =
(* check for atoms in pre mode: fail if the negation is implied by the other side *)
let not_a = Prop.atom_negate a in
if (Prover.check_atom p not_a) then
(L.d_str "join_atom_check failed on "; Sil.d_atom a; L.d_ln (); raise IList.Fail) in
let join_atom_check_attribute p a =
(* check for attribute: fail if the attribute is not in the other side *)
if not (Prover.check_atom p a) then
(L.d_str "join_atom_check_attribute failed on "; Sil.d_atom a; L.d_ln (); raise IList.Fail) in
let join_atom side p_op pi_op a =
(* try to find the atom corresponding to a on the other side, and check if it is implied *)
match Rename.get_other_atoms side a with
| None -> None
| Some (a_res, a_op) ->
if mode = JoinState.Pre then join_atom_check_pre p_op a_op;
if Prop.atom_is_attribute a then join_atom_check_attribute p_op a_op;
if not (Prover.check_atom p_op a_op) then None
else begin
match Prop.atom_exp_le_const a_op with
| None ->
begin
match Prop.atom_const_lt_exp a_op with
| None -> Some a_res
| Some (n, e) -> if IList.exists (is_stronger_lt n e) pi_op then (widening_atom a_res) else Some a_res
end
| Some (e, n) ->
if IList.exists (is_stronger_le e n) pi_op then (widening_atom a_res) else Some a_res
end in
let handle_atom_with_widening len p_op pi_op atom_list a =
(* find a join for the atom, if it fails apply widening heuristing and try again *)
match join_atom len p_op pi_op a with
| None ->
(match widening_atom a with
| None -> atom_list
| Some a' ->
(match join_atom len p_op pi_op a' with
| None -> atom_list
| Some a' -> a' :: atom_list))
| Some a' -> a' :: atom_list in
let filter_atom = function
| Sil.Aneq(e, e') | Sil.Aeq(e, e')
when (exp_is_const e && exp_is_const e') ->
true
| Sil.Aneq(Exp.Var _, e') | Sil.Aneq(e', Exp.Var _)
| Sil.Aeq(Exp.Var _, e') | Sil.Aeq(e', Exp.Var _)
when (exp_is_const e') ->
true
| Sil.Aneq _ -> false
| Sil.Aeq _ as e -> Prop.atom_is_inequality e
| Sil.Apred (_, es) | Anpred (_, es) ->
IList.for_all exp_is_const es in
begin
if Config.trace_join then begin
L.d_str "pi1: "; Prop.d_pi pi1; L.d_ln ();
L.d_str "pi2: "; Prop.d_pi pi2; L.d_ln ()
end;
let atom_list1 =
let p2 = Prop.normalize ep2 in
IList.fold_left (handle_atom_with_widening Lhs p2 pi2) [] pi1 in
if Config.trace_join then (L.d_str "atom_list1: "; Prop.d_pi atom_list1; L.d_ln ());
let atom_list_combined =
let p1 = Prop.normalize ep1 in
IList.fold_left (handle_atom_with_widening Rhs p1 pi1) atom_list1 pi2 in
if Config.trace_join then
(L.d_str "atom_list_combined: "; Prop.d_pi atom_list_combined; L.d_ln ());
let atom_list_filtered =
IList.filter filter_atom atom_list_combined in
if Config.trace_join then
(L.d_str "atom_list_filtered: "; Prop.d_pi atom_list_filtered; L.d_ln ());
let atom_list_res =
IList.rev atom_list_filtered in
atom_list_res
end
let pi_partial_meet (p: Prop.normal Prop.t) (ep1: 'a Prop.t) (ep2: 'b Prop.t) : Prop.normal Prop.t =
let sub1 = Rename.to_subst_emb Lhs in
let sub2 = Rename.to_subst_emb Rhs in
let dom1 = Ident.idlist_to_idset (Sil.sub_domain sub1) in
let dom2 = Ident.idlist_to_idset (Sil.sub_domain sub2) in
let handle_atom sub dom atom =
let fav_list = Sil.fav_to_list (Sil.atom_fav atom) in
if IList.for_all (fun id -> Ident.IdentSet.mem id dom) fav_list then
Sil.atom_sub sub atom
else (L.d_str "handle_atom failed on "; Sil.d_atom atom; L.d_ln (); raise IList.Fail) in
let f1 p' atom =
Prop.prop_atom_and p' (handle_atom sub1 dom1 atom) in
let f2 p' atom =
Prop.prop_atom_and p' (handle_atom sub2 dom2 atom) in
let pi1 = Prop.get_pi ep1 in
let pi2 = Prop.get_pi ep2 in
let p_pi1 = IList.fold_left f1 p pi1 in
let p_pi2 = IList.fold_left f2 p_pi1 pi2 in
if (Prover.check_inconsistency_base p_pi2) then (L.d_strln "check_inconsistency_base failed"; raise IList.Fail)
else p_pi2
(** {2 Join and Meet for Prop} *)
let eprop_partial_meet (ep1: 'a Prop.t) (ep2: 'b Prop.t) : 'c Prop.t =
SymOp.pay(); (* pay one symop *)
let sigma1 = Prop.get_sigma ep1 in
let sigma2 = Prop.get_sigma ep2 in
let es1 = sigma_get_start_lexps_sort sigma1 in
let es2 = sigma_get_start_lexps_sort sigma2 in
let es = IList.merge_sorted_nodup Exp.compare [] es1 es2 in
let sub_check _ =
let sub1 = Prop.get_sub ep1 in
let sub2 = Prop.get_sub ep2 in
let range1 = Sil.sub_range sub1 in
let f e = Sil.fav_for_all (Sil.exp_fav e) Ident.is_normal in
Sil.sub_equal sub1 sub2 && IList.for_all f range1 in
if not (sub_check ()) then
(L.d_strln "sub_check() failed"; raise IList.Fail)
else begin
let todos = IList.map (fun x -> (x, x, x)) es in
IList.iter Todo.push todos;
let sigma_new = sigma_partial_meet sigma1 sigma2 in
let ep = Prop.replace_sigma sigma_new ep1 in
let ep' = Prop.replace_pi [] ep in
let p' = Prop.normalize ep' in
let p'' = pi_partial_meet p' ep1 ep2 in
let res = Prop.prop_rename_primed_footprint_vars p'' in
res
end
let prop_partial_meet p1 p2 =
Rename.init (); FreshVarExp.init (); Todo.init ();
try
let res = eprop_partial_meet p1 p2 in
Rename.final (); FreshVarExp.final (); Todo.final ();
Some res
with exn ->
begin
Rename.final (); FreshVarExp.final (); Todo.final ();
match exn with
| IList.Fail -> None
| _ -> raise exn
end
let eprop_partial_join' mode (ep1: Prop.exposed Prop.t) (ep2: Prop.exposed Prop.t) : Prop.normal Prop.t =
SymOp.pay(); (* pay one symop *)
let sigma1 = Prop.get_sigma ep1 in
let sigma2 = Prop.get_sigma ep2 in
let es1 = sigma_get_start_lexps_sort sigma1 in
let es2 = sigma_get_start_lexps_sort sigma2 in
let simple_check = IList.length es1 = IList.length es2 in
let rec expensive_check es1' es2' =
match (es1', es2') with
| [], [] -> true
| [], _:: _ | _:: _, [] -> false
| e1:: es1'', e2:: es2'' ->
Exp.equal e1 e2 && expensive_check es1'' es2'' in
let sub_common, eqs_from_sub1, eqs_from_sub2 =
let sub1 = Prop.get_sub ep1 in
let sub2 = Prop.get_sub ep2 in
let sub_common, sub1_only, sub2_only = Sil.sub_symmetric_difference sub1 sub2 in
let sub_common_normal, sub_common_other =
let f e = Sil.fav_for_all (Sil.exp_fav e) Ident.is_normal in
Sil.sub_range_partition f sub_common in
let eqs1, eqs2 =
let sub_to_eqs sub =
IList.map (fun (id, e) -> Sil.Aeq (Exp.Var id, e)) (Sil.sub_to_list sub) in
let eqs1 = sub_to_eqs sub1_only @ sub_to_eqs sub_common_other in
let eqs2 = sub_to_eqs sub2_only in
(eqs1, eqs2) in
(sub_common_normal, eqs1, eqs2) in
if not (simple_check && expensive_check es1 es2) then
begin
if not simple_check then L.d_strln "simple_check failed"
else L.d_strln "expensive_check failed";
raise IList.Fail
end;
let todos = IList.map (fun x -> (x, x, x)) es1 in
IList.iter Todo.push todos;
match sigma_partial_join mode sigma1 sigma2 with
| sigma_new, [], [] ->
L.d_strln "sigma_partial_join succeeded";
let ep_sub =
let ep = Prop.replace_pi [] ep1 in
Prop.replace_sub sub_common ep in
let p_sub_sigma =
Prop.normalize (Prop.replace_sigma sigma_new ep_sub) in
let p_sub_sigma_pi =
let pi1 = (Prop.get_pi ep1) @ eqs_from_sub1 in
let pi2 = (Prop.get_pi ep2) @ eqs_from_sub2 in
let pi' = pi_partial_join mode ep1 ep2 pi1 pi2 in
L.d_strln "pi_partial_join succeeded";
let pi_from_fresh_vars = FreshVarExp.get_induced_pi () in
let pi_all = pi' @ pi_from_fresh_vars in
IList.fold_left Prop.prop_atom_and p_sub_sigma pi_all in
p_sub_sigma_pi
| _ ->
L.d_strln "leftovers not empty"; raise IList.Fail
let footprint_partial_join' (p1: Prop.normal Prop.t) (p2: Prop.normal Prop.t) : Prop.normal Prop.t * Prop.normal Prop.t =
if not !Config.footprint then p1, p2
else begin
let fp1 = Prop.extract_footprint p1 in
let fp2 = Prop.extract_footprint p2 in
let efp = eprop_partial_join' JoinState.Pre fp1 fp2 in
let fp_pi = (* Prop.get_pure efp in *)
let fp_pi0 = Prop.get_pure efp in
let f a = Sil.fav_for_all (Sil.atom_fav a) Ident.is_footprint in
IList.filter f fp_pi0 in
let fp_sigma = (* Prop.get_sigma efp in *)
let fp_sigma0 = Prop.get_sigma efp in
let f a = Sil.fav_exists (Sil.hpred_fav a) (fun a -> not (Ident.is_footprint a)) in
if IList.exists f fp_sigma0 then (L.d_strln "failure reason 66"; raise IList.Fail);
fp_sigma0 in
let ep1' = Prop.replace_sigma_footprint fp_sigma (Prop.replace_pi_footprint fp_pi p1) in
let ep2' = Prop.replace_sigma_footprint fp_sigma (Prop.replace_pi_footprint fp_pi p2) in
Prop.normalize ep1', Prop.normalize ep2'
end
let prop_partial_join pname tenv mode p1 p2 =
let res_by_implication_only =
if !Config.footprint then None
else if Prover.check_implication pname tenv p1 (Prop.expose p2) then Some p2
else if Prover.check_implication pname tenv p2 (Prop.expose p1) then Some p1
else None in
match res_by_implication_only with
| None ->
begin
(if !Config.footprint then JoinState.set_footprint true);
Rename.init (); FreshVarExp.init (); Todo.init ();
try
let p1', p2' = footprint_partial_join' p1 p2 in
let rename_footprint = Rename.reset () in
Todo.reset rename_footprint;
let res = Some (eprop_partial_join' mode (Prop.expose p1') (Prop.expose p2')) in
(if !Config.footprint then JoinState.set_footprint false);
Rename.final (); FreshVarExp.final (); Todo.final ();
res
with exn ->
begin
Rename.final (); FreshVarExp.final (); Todo.final ();
(if !Config.footprint then JoinState.set_footprint false);
(match exn with IList.Fail -> None | _ -> raise exn)
end
end
| Some _ -> res_by_implication_only
let eprop_partial_join mode (ep1: Prop.exposed Prop.t) (ep2: Prop.exposed Prop.t) : Prop.normal Prop.t =
Rename.init (); FreshVarExp.init (); Todo.init ();
try
let res = eprop_partial_join' mode ep1 ep2 in
Rename.final (); FreshVarExp.final (); Todo.final ();
res
with exn -> (Rename.final (); FreshVarExp.final (); Todo.final (); raise exn)
(** {2 Join and Meet for Propset} *)
let list_reduce name dd f list =
let rec element_list_reduce acc (x, p1) = function
| [] -> ((x, p1), IList.rev acc)
| (y, p2):: ys -> begin
L.d_strln ("COMBINE[" ^ name ^ "] ....");
L.d_str "ENTRY1: "; L.d_ln (); dd x; L.d_ln ();
L.d_str "ENTRY2: "; L.d_ln (); dd y; L.d_ln ();
L.d_ln ();
match f x y with
| None ->
L.d_strln_color Red (".... COMBINE[" ^ name ^ "] FAILED ...");
element_list_reduce ((y, p2):: acc) (x, p1) ys
| Some x' ->
L.d_strln_color Green (".... COMBINE[" ^ name ^ "] SUCCEEDED ....");
L.d_strln "RESULT:"; dd x'; L.d_ln ();
element_list_reduce acc (x', p1) ys
end in
let rec reduce acc = function
| [] -> IList.rev acc
| x:: xs ->
let (x', xs') = element_list_reduce [] x xs in
reduce (x':: acc) xs' in
reduce [] list
let pathset_collapse_impl pname tenv pset =
let f x y =
if Prover.check_implication pname tenv x (Prop.expose y) then Some y
else if Prover.check_implication pname tenv y (Prop.expose x) then Some x
else None in
let plist = Paths.PathSet.elements pset in
let plist' = list_reduce "JOIN_IMPL" Prop.d_prop f plist in
Paths.PathSet.from_renamed_list plist'
let jprop_partial_join mode jp1 jp2 =
let p1, p2 = Prop.expose (Specs.Jprop.to_prop jp1), Prop.expose (Specs.Jprop.to_prop jp2) in
try
let p = eprop_partial_join mode p1 p2 in
let p_renamed = Prop.prop_rename_primed_footprint_vars p in
Some (Specs.Jprop.Joined (0, p_renamed, jp1, jp2))
with IList.Fail -> None
let jplist_collapse mode jplist =
let f = jprop_partial_join mode in
list_reduce "JOIN" Specs.Jprop.d_shallow f jplist
(** Add identifiers to a list of jprops *)
let jprop_list_add_ids jplist =
let seq_number = ref 0 in
let rec do_jprop = function
| Specs.Jprop.Prop (_, p) -> incr seq_number; Specs.Jprop.Prop (!seq_number, p)
| Specs.Jprop.Joined (_, p, jp1, jp2) ->
let jp1' = do_jprop jp1 in
let jp2' = do_jprop jp2 in
incr seq_number;
Specs.Jprop.Joined (!seq_number, p, jp1', jp2') in
IList.map (fun (p, path) -> (do_jprop p, path)) jplist
let proplist_collapse mode plist =
let jplist = IList.map (fun (p, path) -> (Specs.Jprop.Prop (0, p), path)) plist in
let jplist_joined = jplist_collapse mode (jplist_collapse mode jplist) in
jprop_list_add_ids jplist_joined
let proplist_collapse_pre plist =
let plist' = IList.map (fun p -> (p, ())) plist in
IList.map fst (proplist_collapse JoinState.Pre plist')
let pathset_collapse pset =
let plist = Paths.PathSet.elements pset in
let plist' = proplist_collapse JoinState.Post plist in
Paths.PathSet.from_renamed_list (IList.map (fun (p, path) -> (Specs.Jprop.to_prop p, path)) plist')
let join_time = ref 0.0
let pathset_join
pname tenv (pset1: Paths.PathSet.t) (pset2: Paths.PathSet.t)
: Paths.PathSet.t * Paths.PathSet.t =
let mode = JoinState.Post in
let initial_time = Unix.gettimeofday () in
let pset_to_plist pset =
let f_list p pa acc = (p, pa) :: acc in
Paths.PathSet.fold f_list pset [] in
let ppalist1 = pset_to_plist pset1 in
let ppalist2 = pset_to_plist pset2 in
let rec join_proppath_plist ppalist2_acc ((p2, pa2) as ppa2) = function
| [] -> (ppa2, IList.rev ppalist2_acc)
| ((p2', pa2') as ppa2') :: ppalist2_rest -> begin
L.d_strln ".... JOIN ....";
L.d_strln "JOIN SYM HEAP1: "; Prop.d_prop p2; L.d_ln ();
L.d_strln "JOIN SYM HEAP2: "; Prop.d_prop p2'; L.d_ln (); L.d_ln ();
match prop_partial_join pname tenv mode p2 p2' with
| None ->
L.d_strln_color Red ".... JOIN FAILED ...."; L.d_ln ();
join_proppath_plist (ppa2':: ppalist2_acc) ppa2 ppalist2_rest
| Some p2'' ->
L.d_strln_color Green ".... JOIN SUCCEEDED ....";
L.d_strln "RESULT SYM HEAP:"; Prop.d_prop p2''; L.d_ln (); L.d_ln ();
join_proppath_plist ppalist2_acc (p2'', Paths.Path.join pa2 pa2') ppalist2_rest
end in
let rec join ppalist1_cur ppalist2_acc = function
| [] -> (ppalist1_cur, ppalist2_acc)
| ppa2:: ppalist2_rest ->
let (ppa2', ppalist2_acc') = join_proppath_plist [] ppa2 ppalist2_acc in
let (ppa2'', ppalist2_rest') = join_proppath_plist [] ppa2' ppalist2_rest in
let (ppa2_new, ppalist1_cur') = join_proppath_plist [] ppa2'' ppalist1_cur in
join ppalist1_cur' (ppa2_new:: ppalist2_acc') ppalist2_rest' in
let _ppalist1_res, _ppalist2_res = join ppalist1 [] ppalist2 in
let ren l = IList.map (fun (p, x) -> (Prop.prop_rename_primed_footprint_vars p, x)) l in
let ppalist1_res, ppalist2_res = ren _ppalist1_res, ren _ppalist2_res in
let res = (Paths.PathSet.from_renamed_list ppalist1_res, Paths.PathSet.from_renamed_list ppalist2_res) in
join_time := !join_time +. (Unix.gettimeofday () -. initial_time);
res
(**
The meet operator does two things:
1) makes the result logically stronger (just like additive conjunction)
2) makes the result spatially larger (just like multiplicative conjunction).
Assuming that the meet operator forms a partial commutative monoid (soft assumption: it means
that the results are more predictable), try to combine every element of plist with any other element.
Return a list of the same lenght, with each element maximally combined. The algorithm is quadratic.
The operation is dependent on the order in which elements are combined; there is a straightforward
order - independent algorithm but it is exponential.
*)
let proplist_meet_generate plist =
let props_done = ref Propset.empty in
let combine p (porig, pcombined) =
SymOp.pay (); (* pay one symop *)
L.d_strln ".... MEET ....";
L.d_strln "MEET SYM HEAP1: "; Prop.d_prop p; L.d_ln ();
L.d_strln "MEET SYM HEAP2: "; Prop.d_prop pcombined; L.d_ln ();
match prop_partial_meet p pcombined with
| None ->
L.d_strln_color Red ".... MEET FAILED ...."; L.d_ln ();
(porig, pcombined)
| Some pcombined' ->
L.d_strln_color Green ".... MEET SUCCEEDED ....";
L.d_strln "RESULT SYM HEAP:"; Prop.d_prop pcombined'; L.d_ln (); L.d_ln ();
(porig, pcombined') in
let rec proplist_meet = function
| [] -> ()
| (porig, pcombined) :: pplist ->
(* use porig instead of pcombined because it might be combinable with more othe props *)
(* e.g. porig might contain a global var to add to the ture branch of a conditional *)
(* but pcombined might have been combined with the false branch already *)
let pplist' = IList.map (combine porig) pplist in
props_done := Propset.add pcombined !props_done;
proplist_meet pplist' in
proplist_meet (IList.map (fun p -> (p, p)) plist);
!props_done
let propset_meet_generate_pre pset =
let plist = Propset.to_proplist pset in
if Config.meet_level = 0 then plist
else
let pset1 = proplist_meet_generate plist in
let pset_new = Propset.diff pset1 pset in
let plist_old = Propset.to_proplist pset in
let plist_new = Propset.to_proplist pset_new in
plist_new @ plist_old