You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

560 lines
16 KiB

/*
* Copyright (c) 2009 - 2013 Monoidics ltd.
* Copyright (c) 2013 - present Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*/
open! IStd;
let module Hashtbl = Caml.Hashtbl;
let module L = Logging;
let module F = Format;
/* =============== START of module Node =============== */
let module Node = {
type id = int [@@deriving compare];
let equal_id = [%compare.equal : id];
type nodekind =
| Start_node Procname.t
| Exit_node Procname.t
| Stmt_node string
| Join_node
| Prune_node bool Sil.if_kind string /** (true/false branch, if_kind, comment) */
| Skip_node string
[@@deriving compare];
let equal_nodekind = [%compare.equal : nodekind];
/** a node */
type t = {
/** unique id of the node */
id: id,
/** distance to the exit node */
mutable dist_exit: option int,
/** exception nodes in the cfg */
mutable exn: list t,
/** instructions for symbolic execution */
mutable instrs: list Sil.instr,
/** kind of node */
kind: nodekind,
/** location in the source code */
loc: Location.t,
/** predecessor nodes in the cfg */
mutable preds: list t,
/** name of the procedure the node belongs to */
pname_opt: option Procname.t,
/** successor nodes in the cfg */
mutable succs: list t
};
let exn_handler_kind = Stmt_node "exception handler";
let exn_sink_kind = Stmt_node "exceptions sink";
let throw_kind = Stmt_node "throw";
let dummy pname_opt => {
id: 0,
dist_exit: None,
instrs: [],
kind: Skip_node "dummy",
loc: Location.dummy,
pname_opt,
succs: [],
preds: [],
exn: []
};
let compare node1 node2 => Int.compare node1.id node2.id;
let hash node => Hashtbl.hash node.id;
let equal = [%compare.equal : t];
/** Get the unique id of the node */
let get_id node => node.id;
let get_succs node => node.succs;
type node = t;
let module NodeSet = Caml.Set.Make {
type t = node;
let compare = compare;
};
let module IdMap = Caml.Map.Make {
type t = id;
let compare = compare_id;
};
let get_sliced_succs node f => {
let visited = ref NodeSet.empty;
let rec slice_nodes nodes :NodeSet.t => {
let do_node acc n => {
visited := NodeSet.add n !visited;
if (f n) {
NodeSet.singleton n
} else {
NodeSet.union
acc (slice_nodes (IList.filter (fun s => not (NodeSet.mem s !visited)) n.succs))
}
};
IList.fold_left do_node NodeSet.empty nodes
};
NodeSet.elements (slice_nodes node.succs)
};
let get_sliced_preds node f => {
let visited = ref NodeSet.empty;
let rec slice_nodes nodes :NodeSet.t => {
let do_node acc n => {
visited := NodeSet.add n !visited;
if (f n) {
NodeSet.singleton n
} else {
NodeSet.union
acc (slice_nodes (IList.filter (fun s => not (NodeSet.mem s !visited)) n.preds))
}
};
IList.fold_left do_node NodeSet.empty nodes
};
NodeSet.elements (slice_nodes node.preds)
};
let get_exn node => node.exn;
/** Get the name of the procedure the node belongs to */
let get_proc_name node =>
switch node.pname_opt {
| None =>
L.out "get_proc_name: at node %d@\n" node.id;
assert false
| Some pname => pname
};
/** Get the predecessors of the node */
let get_preds node => node.preds;
/** Generates a list of nodes starting at a given node
and recursively adding the results of the generator */
let get_generated_slope start_node generator => {
let visited = ref NodeSet.empty;
let rec nodes n => {
visited := NodeSet.add n !visited;
let succs = IList.filter (fun n => not (NodeSet.mem n !visited)) (generator n);
switch (IList.length succs) {
| 1 => [n, ...nodes (IList.hd succs)]
| _ => [n]
}
};
nodes start_node
};
/** Get the node kind */
let get_kind node => node.kind;
/** Get the instructions to be executed */
let get_instrs node => node.instrs;
/** Get the list of callee procnames from the node */
let get_callees node => {
let collect callees instr =>
switch instr {
| Sil.Call _ exp _ _ _ =>
switch exp {
| Exp.Const (Const.Cfun procname) => [procname, ...callees]
| _ => callees
}
| _ => callees
};
IList.fold_left collect [] (get_instrs node)
};
/** Get the location of the node */
let get_loc n => n.loc;
/** Get the source location of the last instruction in the node */
let get_last_loc n =>
switch (IList.rev (get_instrs n)) {
| [instr, ..._] => Sil.instr_get_loc instr
| [] => n.loc
};
let pp_id f id => F.fprintf f "%d" id;
let pp f node => pp_id f (get_id node);
let get_distance_to_exit node => node.dist_exit;
/** Append the instructions to the list of instructions to execute */
let append_instrs node instrs => node.instrs = node.instrs @ instrs;
/** Add the instructions at the beginning of the list of instructions to execute */
let prepend_instrs node instrs => node.instrs = instrs @ node.instrs;
/** Replace the instructions to be executed. */
let replace_instrs node instrs => node.instrs = instrs;
/** Add declarations for local variables and return variable to the node */
let add_locals_ret_declaration node (proc_attributes: ProcAttributes.t) locals => {
let loc = get_loc node;
let pname = proc_attributes.proc_name;
let ret_var = {
let ret_type = proc_attributes.ret_type;
(Pvar.get_ret_pvar pname, ret_type)
};
let construct_decl (x, typ) => (Pvar.mk x pname, typ);
let ptl = [ret_var, ...IList.map construct_decl locals];
let instr = Sil.Declare_locals ptl loc;
prepend_instrs node [instr]
};
/** Print extended instructions for the node,
highlighting the given subinstruction if present */
let pp_instrs pe0 sub_instrs::sub_instrs instro fmt node => {
let pe =
switch instro {
| None => pe0
| Some instr => Pp.extend_colormap pe0 (Obj.repr instr) Red
};
let instrs = get_instrs node;
let pp_loc fmt () => F.fprintf fmt " %a " Location.pp (get_loc node);
let print_sub_instrs () => F.fprintf fmt "%a" (Sil.pp_instr_list pe) instrs;
switch (get_kind node) {
| Stmt_node s =>
if sub_instrs {
print_sub_instrs ()
} else {
F.fprintf fmt "statements (%s) %a" s pp_loc ()
}
| Prune_node _ _ descr =>
if sub_instrs {
print_sub_instrs ()
} else {
F.fprintf fmt "assume %s %a" descr pp_loc ()
}
| Exit_node _ =>
if sub_instrs {
print_sub_instrs ()
} else {
F.fprintf fmt "exit %a" pp_loc ()
}
| Skip_node s =>
if sub_instrs {
print_sub_instrs ()
} else {
F.fprintf fmt "skip (%s) %a" s pp_loc ()
}
| Start_node _ =>
if sub_instrs {
print_sub_instrs ()
} else {
F.fprintf fmt "start %a" pp_loc ()
}
| Join_node =>
if sub_instrs {
print_sub_instrs ()
} else {
F.fprintf fmt "join %a" pp_loc ()
}
}
};
/** Dump extended instructions for the node */
let d_instrs sub_instrs::(sub_instrs: bool) (curr_instr: option Sil.instr) (node: t) => L.add_print_action (
L.PTnode_instrs,
Obj.repr (sub_instrs, curr_instr, node)
);
/** Return a description of the cfg node */
let get_description pe node => {
let str =
switch (get_kind node) {
| Stmt_node _ => "Instructions"
| Prune_node _ _ descr => "Conditional" ^ " " ^ descr
| Exit_node _ => "Exit"
| Skip_node _ => "Skip"
| Start_node _ => "Start"
| Join_node => "Join"
};
let pp fmt => F.fprintf fmt "%s\n%a@?" str (pp_instrs pe None sub_instrs::true) node;
F.asprintf "%t" pp
};
};
/* =============== END of module Node =============== */
/** Map over nodes */
let module NodeMap = Caml.Map.Make Node;
/** Hash table with nodes as keys. */
let module NodeHash = Hashtbl.Make Node;
/** Set of nodes. */
let module NodeSet = Node.NodeSet;
/** Map with node id keys. */
let module IdMap = Node.IdMap;
/** procedure description */
type t = {
attributes: ProcAttributes.t, /** attributes of the procedure */
mutable nodes: list Node.t, /** list of nodes of this procedure */
mutable nodes_num: int, /** number of nodes */
mutable start_node: Node.t, /** start node of this procedure */
mutable exit_node: Node.t, /** exit node of ths procedure */
mutable loop_heads: option NodeSet.t /** loop head nodes of this procedure */
}
[@@deriving compare];
/** Only call from Cfg */
let from_proc_attributes called_from_cfg::called_from_cfg attributes => {
if (not called_from_cfg) {
assert false
};
let pname_opt = Some attributes.ProcAttributes.proc_name;
let start_node = Node.dummy pname_opt;
let exit_node = Node.dummy pname_opt;
{attributes, nodes: [], nodes_num: 0, start_node, exit_node, loop_heads: None}
};
/** Compute the distance of each node to the exit node, if not computed already */
let compute_distance_to_exit_node pdesc => {
let exit_node = pdesc.exit_node;
let rec mark_distance dist nodes => {
let next_nodes = ref [];
let do_node (node: Node.t) =>
switch node.dist_exit {
| Some _ => ()
| None =>
node.dist_exit = Some dist;
next_nodes := node.preds @ !next_nodes
};
IList.iter do_node nodes;
if (!next_nodes != []) {
mark_distance (dist + 1) !next_nodes
}
};
mark_distance 0 [exit_node]
};
/** check or indicate if we have performed preanalysis on the CFG */
let did_preanalysis pdesc => pdesc.attributes.did_preanalysis;
let signal_did_preanalysis pdesc => pdesc.attributes.did_preanalysis = true;
let get_attributes pdesc => pdesc.attributes;
let get_err_log pdesc => pdesc.attributes.err_log;
let get_exit_node pdesc => pdesc.exit_node;
/** Get flags for the proc desc */
let get_flags pdesc => pdesc.attributes.proc_flags;
/** Return name and type of formal parameters */
let get_formals pdesc => pdesc.attributes.formals;
let get_loc pdesc => pdesc.attributes.loc;
/** Return name and type of local variables */
let get_locals pdesc => pdesc.attributes.locals;
/** Return name and type of captured variables */
let get_captured pdesc => pdesc.attributes.captured;
/** Return the visibility attribute */
let get_access pdesc => pdesc.attributes.access;
let get_nodes pdesc => pdesc.nodes;
let get_proc_name pdesc => pdesc.attributes.proc_name;
/** Return the return type of the procedure */
let get_ret_type pdesc => pdesc.attributes.ret_type;
let get_ret_var pdesc => Pvar.mk Ident.name_return (get_proc_name pdesc);
let get_start_node pdesc => pdesc.start_node;
/** List of nodes in the procedure sliced by a predicate up to the first branching */
let get_sliced_slope pdesc f =>
Node.get_generated_slope (get_start_node pdesc) (fun n => Node.get_sliced_succs n f);
/** List of nodes in the procedure up to the first branching */
let get_slope pdesc => Node.get_generated_slope (get_start_node pdesc) Node.get_succs;
/** Return [true] iff the procedure is defined, and not just declared */
let is_defined pdesc => pdesc.attributes.is_defined;
let is_body_empty pdesc => List.is_empty (Node.get_succs (get_start_node pdesc));
let is_java_synchronized pdesc => pdesc.attributes.is_java_synchronized_method;
let iter_nodes f pdesc => IList.iter f (IList.rev (get_nodes pdesc));
let fold_calls f acc pdesc => {
let do_node a node =>
IList.fold_left
(fun b callee_pname => f b (callee_pname, Node.get_loc node)) a (Node.get_callees node);
IList.fold_left do_node acc (get_nodes pdesc)
};
/** iterate over the calls from the procedure: (callee,location) pairs */
let iter_calls f pdesc => fold_calls (fun _ call => f call) () pdesc;
let iter_instrs f pdesc => {
let do_node node => IList.iter (fun i => f node i) (Node.get_instrs node);
iter_nodes do_node pdesc
};
let fold_nodes f acc pdesc => IList.fold_left f acc (IList.rev (get_nodes pdesc));
let fold_instrs f acc pdesc => {
let fold_node acc node =>
IList.fold_left (fun acc instr => f acc node instr) acc (Node.get_instrs node);
fold_nodes fold_node acc pdesc
};
let iter_slope f pdesc => {
let visited = ref NodeSet.empty;
let rec do_node node => {
visited := NodeSet.add node !visited;
f node;
switch (Node.get_succs node) {
| [n] =>
if (not (NodeSet.mem n !visited)) {
do_node n
}
| _ => ()
}
};
do_node (get_start_node pdesc)
};
let iter_slope_calls f pdesc => {
let do_node node => IList.iter (fun callee_pname => f callee_pname) (Node.get_callees node);
iter_slope do_node pdesc
};
/** iterate between two nodes or until we reach a branching structure */
let iter_slope_range f src_node dst_node => {
let visited = ref NodeSet.empty;
let rec do_node node => {
visited := NodeSet.add node !visited;
f node;
switch (Node.get_succs node) {
| [n] =>
if (not (NodeSet.mem n !visited) && not (Node.equal node dst_node)) {
do_node n
}
| _ => ()
}
};
do_node src_node
};
/** Set the exit node of the proc desc */
let set_exit_node pdesc node => pdesc.exit_node = node;
/** Set a flag for the proc desc */
let set_flag pdesc key value =>
ProcAttributes.proc_flags_add pdesc.attributes.proc_flags key value;
/** Set the start node of the proc desc */
let set_start_node pdesc node => pdesc.start_node = node;
/** Append the locals to the list of local variables */
let append_locals pdesc new_locals =>
pdesc.attributes.locals = pdesc.attributes.locals @ new_locals;
/** Set the successor nodes and exception nodes, and build predecessor links */
let set_succs_exn_base (node: Node.t) succs exn => {
node.succs = succs;
node.exn = exn;
IList.iter (fun (n: Node.t) => n.preds = [node, ...n.preds]) succs
};
/** Create a new cfg node */
let create_node pdesc loc kind instrs => {
pdesc.nodes_num = pdesc.nodes_num + 1;
let node_id = pdesc.nodes_num;
let node = {
Node.id: node_id,
dist_exit: None,
instrs,
kind,
loc,
preds: [],
pname_opt: Some pdesc.attributes.proc_name,
succs: [],
exn: []
};
pdesc.nodes = [node, ...pdesc.nodes];
node
};
/** Set the successor and exception nodes.
If this is a join node right before the exit node, add an extra node in the middle,
otherwise nullify and abstract instructions cannot be added after a conditional. */
let node_set_succs_exn pdesc (node: Node.t) succs exn =>
switch (node.kind, succs) {
| (Join_node, [{Node.kind: Exit_node _} as exit_node]) =>
let kind = Node.Stmt_node "between_join_and_exit";
let node' = create_node pdesc node.loc kind node.instrs;
set_succs_exn_base node [node'] exn;
set_succs_exn_base node' [exit_node] exn
| _ => set_succs_exn_base node succs exn
};
/** Get loop heads for widening.
It collects all target nodes of back-edges in a depth-first
traversal.
*/
let get_loop_heads pdesc => {
let rec set_loop_head_rec visited heads wl =>
switch wl {
| [] => heads
| [(n, ancester), ...wl'] =>
if (NodeSet.mem n visited) {
if (NodeSet.mem n ancester) {
set_loop_head_rec visited (NodeSet.add n heads) wl'
} else {
set_loop_head_rec visited heads wl'
}
} else {
let ancester = NodeSet.add n ancester;
let succs = IList.append (Node.get_succs n) (Node.get_exn n);
let works = IList.map (fun m => (m, ancester)) succs;
set_loop_head_rec (NodeSet.add n visited) heads (IList.append works wl')
}
};
let start_wl = [(get_start_node pdesc, NodeSet.empty)];
let lh = set_loop_head_rec NodeSet.empty NodeSet.empty start_wl;
pdesc.loop_heads = Some lh;
lh
};
let is_loop_head pdesc (node: Node.t) => {
let lh =
switch pdesc.loop_heads {
| Some lh => lh
| None => get_loop_heads pdesc
};
NodeSet.mem node lh
};