You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2293 lines
102 KiB

(*
* Copyright (c) 2009 - 2013 Monoidics ltd.
* Copyright (c) 2013 - present Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*)
open! IStd
(** Functions for Propositions (i.e., Symbolic Heaps) *)
module L = Logging
module F = Format
let decrease_indent_when_exception thunk =
try (thunk ())
with exn when SymOp.exn_not_failure exn -> (L.d_decrease_indent 1; raise exn)
let compute_max_from_nonempty_int_list l =
uw (List.max_elt ~cmp:IntLit.compare_value l)
let compute_min_from_nonempty_int_list l =
uw (List.min_elt ~cmp:IntLit.compare_value l)
let rec list_rev_acc acc = function
| [] -> acc
| x:: l -> list_rev_acc (x:: acc) l
let rec remove_redundancy have_same_key acc = function
| [] -> List.rev acc
| [x] -> List.rev (x:: acc)
| x:: ((y:: l') as l) ->
if have_same_key x y then remove_redundancy have_same_key acc (x:: l')
else remove_redundancy have_same_key (x:: acc) l
let rec is_java_class tenv (typ: Typ.t) =
match typ.desc with
| Tstruct name -> Typ.Name.Java.is_class name
| Tarray (inner_typ, _, _) | Tptr (inner_typ, _) -> is_java_class tenv inner_typ
| _ -> false
(** Negate an atom *)
let atom_negate tenv = function
| Sil.Aeq (Exp.BinOp (Binop.Le, e1, e2), Exp.Const (Const.Cint i)) when IntLit.isone i ->
Prop.mk_inequality tenv (Exp.lt e2 e1)
| Sil.Aeq (Exp.BinOp (Binop.Lt, e1, e2), Exp.Const (Const.Cint i)) when IntLit.isone i ->
Prop.mk_inequality tenv (Exp.le e2 e1)
| Sil.Aeq (e1, e2) -> Sil.Aneq (e1, e2)
| Sil.Aneq (e1, e2) -> Sil.Aeq (e1, e2)
| Sil.Apred (a, es) -> Sil.Anpred (a, es)
| Sil.Anpred (a, es) -> Sil.Apred (a, es)
(** {2 Ordinary Theorem Proving} *)
let (++) = IntLit.add
let (--) = IntLit.sub
(** Reasoning about constraints of the form x-y <= n *)
module DiffConstr : sig
type t
val to_leq : t -> Exp.t * Exp.t
val to_lt : t -> Exp.t * Exp.t
val to_triple : t -> Exp.t * Exp.t * IntLit.t
val from_leq : t list -> Exp.t * Exp.t -> t list
val from_lt : t list -> Exp.t * Exp.t -> t list
val saturate : t list -> bool * t list
end = struct
type t = Exp.t * Exp.t * IntLit.t [@@deriving compare]
let equal = [%compare.equal : t]
let to_leq (e1, e2, n) =
Exp.BinOp(Binop.MinusA, e1, e2), Exp.int n
let to_lt (e1, e2, n) =
Exp.int (IntLit.zero -- n -- IntLit.one), Exp.BinOp(Binop.MinusA, e2, e1)
let to_triple entry = entry
let from_leq acc (e1, e2) =
match e1, e2 with
| Exp.BinOp (Binop.MinusA, (Exp.Var id11 as e11), (Exp.Var id12 as e12)),
Exp.Const (Const.Cint n)
when not (Ident.equal id11 id12) ->
(match IntLit.to_signed n with
| None -> acc (* ignore: constraint algorithm only terminates on signed integers *)
| Some n' ->
(e11, e12, n') :: acc)
| _ -> acc
let from_lt acc (e1, e2) =
match e1, e2 with
| Exp.Const (Const.Cint n),
Exp.BinOp (Binop.MinusA, (Exp.Var id21 as e21), (Exp.Var id22 as e22))
when not (Ident.equal id21 id22) ->
(match IntLit.to_signed n with
| None -> acc (* ignore: constraint algorithm only terminates on signed integers *)
| Some n' ->
let m = IntLit.zero -- n' -- IntLit.one in
(e22, e21, m) :: acc)
| _ -> acc
let rec generate ((e1, e2, n) as constr) acc = function
| [] -> false, acc
| (f1, f2, m):: rest ->
let equal_e2_f1 = Exp.equal e2 f1 in
let equal_e1_f2 = Exp.equal e1 f2 in
if equal_e2_f1 && equal_e1_f2 && IntLit.lt (n ++ m) IntLit.zero then
true, [] (* constraints are inconsistent *)
else if equal_e2_f1 && equal_e1_f2 then
generate constr acc rest
else if equal_e2_f1 then
let constr_new = (e1, f2, n ++ m) in
generate constr (constr_new:: acc) rest
else if equal_e1_f2 then
let constr_new = (f1, e2, m ++ n) in
generate constr (constr_new:: acc) rest
else
generate constr acc rest
let sort_then_remove_redundancy constraints =
let constraints_sorted = List.sort ~cmp:compare constraints in
let have_same_key (e1, e2, _) (f1, f2, _) = [%compare.equal: Exp.t * Exp.t] (e1, e2) (f1, f2) in
remove_redundancy have_same_key [] constraints_sorted
let remove_redundancy constraints =
let constraints' = sort_then_remove_redundancy constraints in
List.filter ~f:(fun entry -> List.exists ~f:(equal entry) constraints') constraints
let rec combine acc_todos acc_seen constraints_new constraints_old =
match constraints_new, constraints_old with
| [], [] -> List.rev acc_todos, List.rev acc_seen
| [], _ -> List.rev acc_todos, list_rev_acc constraints_old acc_seen
| _, [] -> list_rev_acc constraints_new acc_todos, list_rev_acc constraints_new acc_seen
| constr:: rest, constr':: rest' ->
let e1, e2, n = constr in
let f1, f2, m = constr' in
let c1 = [%compare: Exp.t * Exp.t] (e1, e2) (f1, f2) in
if Int.equal c1 0 && IntLit.lt n m then
combine acc_todos acc_seen constraints_new rest'
else if Int.equal c1 0 then
combine acc_todos acc_seen rest constraints_old
else if c1 < 0 then
combine (constr:: acc_todos) (constr:: acc_seen) rest constraints_old
else
combine acc_todos (constr':: acc_seen) constraints_new rest'
let rec _saturate seen todos =
(* seen is a superset of todos. "seen" is sorted and doesn't have redundancy. *)
match todos with
| [] -> false, seen
| constr:: rest ->
let inconsistent, constraints_new = generate constr [] seen in
if inconsistent then true, []
else
let constraints_new' = sort_then_remove_redundancy constraints_new in
let todos_new, seen_new = combine [] [] constraints_new' seen in
(* Important to use queue here. Otherwise, might diverge *)
let rest_new = remove_redundancy (rest @ todos_new) in
let seen_new' = sort_then_remove_redundancy seen_new in
_saturate seen_new' rest_new
let saturate constraints =
let constraints_cleaned = sort_then_remove_redundancy constraints in
_saturate constraints_cleaned constraints_cleaned
end
(** Return true if the two types have sizes which can be compared *)
let type_size_comparable t1 t2 = match t1.Typ.desc, t2.Typ.desc with
| Typ.Tint _, Typ.Tint _ -> true
| _ -> false
(** Compare the size of comparable types *)
let type_size_compare t1 t2 =
let ik_compare ik1 ik2 =
let ik_size = function
| Typ.IChar | Typ.ISChar | Typ.IUChar | Typ.IBool -> 1
| Typ.IShort | Typ.IUShort -> 2
| Typ.IInt | Typ.IUInt -> 3
| Typ.ILong | Typ.IULong -> 4
| Typ.ILongLong | Typ.IULongLong -> 5
| Typ.I128 | Typ.IU128 -> 6 in
let n1 = ik_size ik1 in
let n2 = ik_size ik2 in
n1 - n2 in
match t1.Typ.desc, t2.Typ.desc with
| Typ.Tint ik1, Typ.Tint ik2 ->
Some (ik_compare ik1 ik2)
| _ -> None
(** Check <= on the size of comparable types *)
let check_type_size_leq t1 t2 = match type_size_compare t1 t2 with
| None -> false
| Some n -> n <= 0
(** Check < on the size of comparable types *)
let check_type_size_lt t1 t2 = match type_size_compare t1 t2 with
| None -> false
| Some n -> n < 0
(** Reasoning about inequalities *)
module Inequalities : sig
(** type for inequalities (and implied disequalities) *)
type t
(** Extract inequalities and disequalities from [prop] *)
val from_prop : Tenv.t -> Prop.normal Prop.t -> t
(** Check [t |- e1!=e2]. Result [false] means "don't know". *)
val check_ne : t -> Exp.t -> Exp.t -> bool
(** Check [t |- e1<=e2]. Result [false] means "don't know". *)
val check_le : t -> Exp.t -> Exp.t -> bool
(** Check [t |- e1<e2]. Result [false] means "don't know". *)
val check_lt : t -> Exp.t -> Exp.t -> bool
(** Find a IntLit.t n such that [t |- e<=n] if possible. *)
val compute_upper_bound : t -> Exp.t -> IntLit.t option
(** Find a IntLit.t n such that [t |- n<e] if possible. *)
val compute_lower_bound : t -> Exp.t -> IntLit.t option
(** Return [true] if a simple inconsistency is detected *)
val inconsistent : t -> bool
(*
(** Extract inequalities and disequalities from [pi] *)
val from_pi : Sil.atom list -> t
(** Extract inequalities and disequalities from [sigma] *)
val from_sigma : Sil.hpred list -> t
(** Join two sets of inequalities *)
val join : t -> t -> t
(** Pretty print inequalities and disequalities *)
val pp : printenv -> Format.formatter -> t -> unit
(** Pretty print <= *)
val d_leqs : t -> unit
(** Pretty print < *)
val d_lts : t -> unit
(** Pretty print <> *)
val d_neqs : t -> unit
*)
end = struct
type t = {
mutable leqs: (Exp.t * Exp.t) list; (** le fasts [e1 <= e2] *)
mutable lts: (Exp.t * Exp.t) list; (** lt facts [e1 < e2] *)
mutable neqs: (Exp.t * Exp.t) list; (** ne facts [e1 != e2] *)
}
let inconsistent_ineq = { leqs = [(Exp.one, Exp.zero)]; lts = []; neqs = [] }
let leq_compare (e1, e2) (f1, f2) =
let c1 = Exp.compare e1 f1 in
if c1 <> 0 then c1 else Exp.compare e2 f2
let lt_compare (e1, e2) (f1, f2) =
let c2 = Exp.compare e2 f2 in
if c2 <> 0 then c2 else - (Exp.compare e1 f1)
let leqs_sort_then_remove_redundancy leqs =
let leqs_sorted = List.sort ~cmp:leq_compare leqs in
let have_same_key leq1 leq2 =
match leq1, leq2 with
| (e1, Exp.Const (Const.Cint n1)), (e2, Exp.Const (Const.Cint n2)) ->
Exp.equal e1 e2 && IntLit.leq n1 n2
| _, _ -> false in
remove_redundancy have_same_key [] leqs_sorted
let lts_sort_then_remove_redundancy lts =
let lts_sorted = List.sort ~cmp:lt_compare lts in
let have_same_key lt1 lt2 =
match lt1, lt2 with
| (Exp.Const (Const.Cint n1), e1), (Exp.Const (Const.Cint n2), e2) ->
Exp.equal e1 e2 && IntLit.geq n1 n2
| _, _ -> false in
remove_redundancy have_same_key [] lts_sorted
let saturate { leqs = leqs; lts = lts; neqs = neqs } =
let diff_constraints1 =
List.fold
~f:DiffConstr.from_lt
~init:(List.fold ~f:DiffConstr.from_leq ~init:[] leqs)
lts in
let inconsistent, diff_constraints2 = DiffConstr.saturate diff_constraints1 in
if inconsistent then inconsistent_ineq
else begin
let umap_add umap e new_upper =
try
let old_upper = Exp.Map.find e umap in
if IntLit.leq old_upper new_upper then umap else Exp.Map.add e new_upper umap
with Not_found -> Exp.Map.add e new_upper umap in
let lmap_add lmap e new_lower =
try
let old_lower = Exp.Map.find e lmap in
if IntLit.geq old_lower new_lower then lmap else Exp.Map.add e new_lower lmap
with Not_found -> Exp.Map.add e new_lower lmap in
let rec umap_create_from_leqs umap = function
| [] -> umap
| (e1, Exp.Const (Const.Cint upper1)):: leqs_rest ->
let umap' = umap_add umap e1 upper1 in
umap_create_from_leqs umap' leqs_rest
| _:: leqs_rest -> umap_create_from_leqs umap leqs_rest in
let rec lmap_create_from_lts lmap = function
| [] -> lmap
| (Exp.Const (Const.Cint lower1), e1):: lts_rest ->
let lmap' = lmap_add lmap e1 lower1 in
lmap_create_from_lts lmap' lts_rest
| _:: lts_rest -> lmap_create_from_lts lmap lts_rest in
let rec umap_improve_by_difference_constraints umap = function
| [] -> umap
| constr:: constrs_rest ->
try
let e1, e2, n = DiffConstr.to_triple constr (* e1 - e2 <= n *) in
let upper2 = Exp.Map.find e2 umap in
let new_upper1 = upper2 ++ n in
let new_umap = umap_add umap e1 new_upper1 in
umap_improve_by_difference_constraints new_umap constrs_rest
with Not_found ->
umap_improve_by_difference_constraints umap constrs_rest in
let rec lmap_improve_by_difference_constraints lmap = function
| [] -> lmap
| constr:: constrs_rest -> (* e2 - e1 > -n-1 *)
try
let e1, e2, n = DiffConstr.to_triple constr (* e2 - e1 > -n-1 *) in
let lower1 = Exp.Map.find e1 lmap in
let new_lower2 = lower1 -- n -- IntLit.one in
let new_lmap = lmap_add lmap e2 new_lower2 in
lmap_improve_by_difference_constraints new_lmap constrs_rest
with Not_found ->
lmap_improve_by_difference_constraints lmap constrs_rest in
let leqs_res =
let umap = umap_create_from_leqs Exp.Map.empty leqs in
let umap' = umap_improve_by_difference_constraints umap diff_constraints2 in
let leqs' = Exp.Map.fold
(fun e upper acc_leqs -> (e, Exp.int upper):: acc_leqs)
umap' [] in
let leqs'' = (List.map ~f:DiffConstr.to_leq diff_constraints2) @ leqs' in
leqs_sort_then_remove_redundancy leqs'' in
let lts_res =
let lmap = lmap_create_from_lts Exp.Map.empty lts in
let lmap' = lmap_improve_by_difference_constraints lmap diff_constraints2 in
let lts' = Exp.Map.fold
(fun e lower acc_lts -> (Exp.int lower, e):: acc_lts)
lmap' [] in
let lts'' = (List.map ~f:DiffConstr.to_lt diff_constraints2) @ lts' in
lts_sort_then_remove_redundancy lts'' in
{ leqs = leqs_res; lts = lts_res; neqs = neqs }
end
(** Extract inequalities and disequalities from [pi] *)
let from_pi pi =
let leqs = ref [] in (* <= facts *)
let lts = ref [] in (* < facts *)
let neqs = ref [] in (* != facts *)
let process_atom = function
| Sil.Aneq (e1, e2) -> (* != *)
neqs := (e1, e2) :: !neqs
| Sil.Aeq (Exp.BinOp (Binop.Le, e1, e2), Exp.Const (Const.Cint i)) when IntLit.isone i ->
leqs := (e1, e2) :: !leqs (* <= *)
| Sil.Aeq (Exp.BinOp (Binop.Lt, e1, e2), Exp.Const (Const.Cint i)) when IntLit.isone i ->
lts := (e1, e2) :: !lts (* < *)
| Sil.Aeq _
| Sil.Apred _ | Anpred _ -> () in
List.iter ~f:process_atom pi;
saturate { leqs = !leqs; lts = !lts; neqs = !neqs }
let from_sigma tenv sigma =
let lookup = Tenv.lookup tenv in
let leqs = ref [] in
let lts = ref [] in
let add_lt_minus1_e e =
lts := (Exp.minus_one, e)::!lts in
let type_opt_is_unsigned = function
| Some {Typ.desc=Tint ik} -> Typ.ikind_is_unsigned ik
| _ -> false in
let type_of_texp = function
| Exp.Sizeof {typ} -> Some typ
| _ -> None in
let texp_is_unsigned texp = type_opt_is_unsigned @@ type_of_texp texp in
let strexp_lt_minus1 = function
| Sil.Eexp (e, _) -> add_lt_minus1_e e
| _ -> () in
let rec strexp_extract = function
| Sil.Eexp (e, _), t ->
if type_opt_is_unsigned t then add_lt_minus1_e e
| Sil.Estruct (fsel, _), t ->
let get_field_type f =
Option.bind t (fun t' ->
Option.map ~f:fst @@ Typ.Struct.get_field_type_and_annotation ~lookup f t'
) in
List.iter ~f:(fun (f, se) -> strexp_extract (se, get_field_type f)) fsel
| Sil.Earray (len, isel, _), t ->
let elt_t = match t with
| Some {Typ.desc=Tarray (t, _, _)} -> Some t
| _ -> None in
add_lt_minus1_e len;
List.iter ~f:(fun (idx, se) ->
add_lt_minus1_e idx;
strexp_extract (se, elt_t)) isel in
let hpred_extract = function
| Sil.Hpointsto(_, se, texp) ->
if texp_is_unsigned texp then strexp_lt_minus1 se;
strexp_extract (se, type_of_texp texp)
| Sil.Hlseg _ | Sil.Hdllseg _ -> () in
List.iter ~f:hpred_extract sigma;
saturate { leqs = !leqs; lts = !lts; neqs = [] }
let join ineq1 ineq2 =
let leqs_new = ineq1.leqs @ ineq2.leqs in
let lts_new = ineq1.lts @ ineq2.lts in
let neqs_new = ineq1.neqs @ ineq2.neqs in
saturate { leqs = leqs_new; lts = lts_new; neqs = neqs_new }
let from_prop tenv prop =
let sigma = prop.Prop.sigma in
let pi = prop.Prop.pi in
let ineq_sigma = from_sigma tenv sigma in
let ineq_pi = from_pi pi in
saturate (join ineq_sigma ineq_pi)
(** Return true if the two pairs of expressions are equal *)
let exp_pair_eq (e1, e2) (f1, f2) =
Exp.equal e1 f1 && Exp.equal e2 f2
(** Check [t |- e1<=e2]. Result [false] means "don't know". *)
let check_le { leqs = leqs; lts = lts; neqs = _ } e1 e2 =
(* L.d_str "check_le "; Sil.d_exp e1; L.d_str " "; Sil.d_exp e2; L.d_ln (); *)
match e1, e2 with
| Exp.Const (Const.Cint n1), Exp.Const (Const.Cint n2) -> IntLit.leq n1 n2
| Exp.BinOp (Binop.MinusA,
Exp.Sizeof {typ=t1; dynamic_length=None},
Exp.Sizeof {typ=t2; dynamic_length=None}),
Exp.Const(Const.Cint n2)
when IntLit.isminusone n2 && type_size_comparable t1 t2 ->
(* [ sizeof(t1) - sizeof(t2) <= -1 ] *)
check_type_size_lt t1 t2
| e, Exp.Const (Const.Cint n) -> (* [e <= n' <= n |- e <= n] *)
List.exists ~f:(function
| e', Exp.Const (Const.Cint n') -> Exp.equal e e' && IntLit.leq n' n
| _, _ -> false) leqs
| Exp.Const (Const.Cint n), e -> (* [ n-1 <= n' < e |- n <= e] *)
List.exists ~f:(function
| Exp.Const (Const.Cint n'), e' -> Exp.equal e e' && IntLit.leq (n -- IntLit.one) n'
| _, _ -> false) lts
| _ -> Exp.equal e1 e2
(** Check [prop |- e1<e2]. Result [false] means "don't know". *)
let check_lt { leqs = leqs; lts = lts; neqs = _ } e1 e2 =
(* L.d_str "check_lt "; Sil.d_exp e1; L.d_str " "; Sil.d_exp e2; L.d_ln (); *)
match e1, e2 with
| Exp.Const (Const.Cint n1), Exp.Const (Const.Cint n2) -> IntLit.lt n1 n2
| Exp.Const (Const.Cint n), e -> (* [n <= n' < e |- n < e] *)
List.exists ~f:(function
| Exp.Const (Const.Cint n'), e' -> Exp.equal e e' && IntLit.leq n n'
| _, _ -> false) lts
| e, Exp.Const (Const.Cint n) -> (* [e <= n' <= n-1 |- e < n] *)
List.exists ~f:(function
| e', Exp.Const (Const.Cint n') -> Exp.equal e e' && IntLit.leq n' (n -- IntLit.one)
| _, _ -> false) leqs
| _ -> false
(** Check [prop |- e1!=e2]. Result [false] means "don't know". *)
let check_ne ineq _e1 _e2 =
let e1, e2 = if Exp.compare _e1 _e2 <= 0 then _e1, _e2 else _e2, _e1 in
List.exists ~f:(exp_pair_eq (e1, e2)) ineq.neqs || check_lt ineq e1 e2 || check_lt ineq e2 e1
(** Find a IntLit.t n such that [t |- e<=n] if possible. *)
let compute_upper_bound { leqs = leqs; lts = _; neqs = _ } e1 =
match e1 with
| Exp.Const (Const.Cint n1) -> Some n1
| _ ->
let e_upper_list =
List.filter ~f:(function
| e', Exp.Const (Const.Cint _) -> Exp.equal e1 e'
| _, _ -> false) leqs in
let upper_list =
List.map ~f:(function
| _, Exp.Const (Const.Cint n) -> n
| _ -> assert false) e_upper_list in
if List.is_empty upper_list then None
else Some (compute_min_from_nonempty_int_list upper_list)
(** Find a IntLit.t n such that [t |- n < e] if possible. *)
let compute_lower_bound { leqs = _; lts = lts; neqs = _ } e1 =
match e1 with
| Exp.Const (Const.Cint n1) -> Some (n1 -- IntLit.one)
| Exp.Sizeof _ -> Some IntLit.zero
| _ ->
let e_lower_list =
List.filter ~f:(function
| Exp.Const (Const.Cint _), e' -> Exp.equal e1 e'
| _, _ -> false) lts in
let lower_list =
List.map ~f:(function
| Exp.Const (Const.Cint n), _ -> n
| _ -> assert false) e_lower_list in
if List.is_empty lower_list then None
else Some (compute_max_from_nonempty_int_list lower_list)
(** Return [true] if a simple inconsistency is detected *)
let inconsistent ({ leqs = leqs; lts = lts; neqs = neqs } as ineq) =
let inconsistent_neq (e1, e2) =
check_le ineq e1 e2 && check_le ineq e2 e1 in
let inconsistent_leq (e1, e2) = check_lt ineq e2 e1 in
let inconsistent_lt (e1, e2) = check_le ineq e2 e1 in
List.exists ~f:inconsistent_neq neqs ||
List.exists ~f:inconsistent_leq leqs ||
List.exists ~f:inconsistent_lt lts
(*
(** Pretty print inequalities and disequalities *)
let pp pe fmt { leqs = leqs; lts = lts; neqs = neqs } =
let pp_leq fmt (e1, e2) = F.fprintf fmt "%a<=%a" (Sil.pp_exp pe) e1 (Sil.pp_exp pe) e2 in
let pp_lt fmt (e1, e2) = F.fprintf fmt "%a<%a" (Sil.pp_exp pe) e1 (Sil.pp_exp pe) e2 in
let pp_neq fmt (e1, e2) = F.fprintf fmt "%a!=%a" (Sil.pp_exp pe) e1 (Sil.pp_exp pe) e2 in
Format.fprintf fmt "%a %a %a" (pp_seq pp_leq) leqs (pp_seq pp_lt) lts (pp_seq pp_neq) neqs
let d_leqs { leqs = leqs; lts = lts; neqs = neqs } =
let elist = List.map ~f:(fun (e1, e2) -> Exp.BinOp(Binop.Le, e1, e2)) leqs in
Sil.d_exp_list elist
let d_lts { leqs = leqs; lts = lts; neqs = neqs } =
let elist = List.map ~f:(fun (e1, e2) -> Exp.BinOp(Binop.Lt, e1, e2)) lts in
Sil.d_exp_list elist
let d_neqs { leqs = leqs; lts = lts; neqs = neqs } =
let elist = List.map ~f:(fun (e1, e2) -> Exp.BinOp(Binop.Ne, e1, e2)) lts in
Sil.d_exp_list elist
*)
end
(* End of module Inequalities *)
(** Check [prop |- e1=e2]. Result [false] means "don't know". *)
let check_equal tenv prop e1 e2 =
let n_e1 = Prop.exp_normalize_prop tenv prop e1 in
let n_e2 = Prop.exp_normalize_prop tenv prop e2 in
let check_equal () =
Exp.equal n_e1 n_e2 in
let check_equal_const () =
match n_e1, n_e2 with
| Exp.BinOp (Binop.PlusA, e1, Exp.Const (Const.Cint d)), e2
| e2, Exp.BinOp (Binop.PlusA, e1, Exp.Const (Const.Cint d)) ->
if Exp.equal e1 e2 then IntLit.iszero d
else false
| Exp.Const c1, Exp.Lindex(Exp.Const c2, Exp.Const (Const.Cint i)) when IntLit.iszero i ->
Const.equal c1 c2
| Exp.Lindex(Exp.Const c1, Exp.Const (Const.Cint i)), Exp.Const c2 when IntLit.iszero i ->
Const.equal c1 c2
| _, _ -> false in
let check_equal_pi () =
let eq = Sil.Aeq(n_e1, n_e2) in
let n_eq = Prop.atom_normalize_prop tenv prop eq in
let pi = prop.Prop.pi in
List.exists ~f:(Sil.equal_atom n_eq) pi in
check_equal () || check_equal_const () || check_equal_pi ()
(** Check [ |- e=0]. Result [false] means "don't know". *)
let check_zero tenv e =
check_equal tenv Prop.prop_emp e Exp.zero
(** [is_root prop base_exp exp] checks whether [base_exp =
exp.offlist] for some list of offsets [offlist]. If so, it returns
[Some(offlist)]. Otherwise, it returns [None]. Assumes that
[base_exp] points to the beginning of a structure, not the middle.
*)
let is_root tenv prop base_exp exp =
let rec f offlist_past e = match e with
| Exp.Var _ | Exp.Const _ | Exp.UnOp _ | Exp.BinOp _ | Exp.Exn _ | Exp.Closure _ | Exp.Lvar _
| Exp.Sizeof _ ->
if check_equal tenv prop base_exp e
then Some offlist_past
else None
| Exp.Cast(_, sub_exp) -> f offlist_past sub_exp
| Exp.Lfield(sub_exp, fldname, typ) -> f (Sil.Off_fld (fldname, typ) :: offlist_past) sub_exp
| Exp.Lindex(sub_exp, e) -> f (Sil.Off_index e :: offlist_past) sub_exp
in f [] exp
(** Get upper and lower bounds of an expression, if any *)
let get_bounds tenv prop _e =
let e_norm = Prop.exp_normalize_prop tenv prop _e in
let e_root, off = match e_norm with
| Exp.BinOp (Binop.PlusA, e, Exp.Const (Const.Cint n1)) ->
e, IntLit.neg n1
| Exp.BinOp (Binop.MinusA, e, Exp.Const (Const.Cint n1)) ->
e, n1
| _ ->
e_norm, IntLit.zero in
let ineq = Inequalities.from_prop tenv prop in
let upper_opt = Inequalities.compute_upper_bound ineq e_root in
let lower_opt = Inequalities.compute_lower_bound ineq e_root in
let (+++) n_opt k = match n_opt with
| None -> None
| Some n -> Some (n ++ k) in
upper_opt +++ off, lower_opt +++ off
(** Check whether [prop |- e1!=e2]. *)
let check_disequal tenv prop e1 e2 =
let spatial_part = prop.Prop.sigma in
let n_e1 = Prop.exp_normalize_prop tenv prop e1 in
let n_e2 = Prop.exp_normalize_prop tenv prop e2 in
let check_disequal_const () =
match n_e1, n_e2 with
| Exp.Const c1, Exp.Const c2 ->
(Const.kind_equal c1 c2) && not (Const.equal c1 c2)
| Exp.Const c1, Exp.Lindex(Exp.Const c2, Exp.Const (Const.Cint d)) ->
if IntLit.iszero d
then not (Const.equal c1 c2) (* offset=0 is no offset *)
else Const.equal c1 c2 (* same base, different offsets *)
| Exp.BinOp (Binop.PlusA, e1, Exp.Const (Const.Cint d1)),
Exp.BinOp (Binop.PlusA, e2, Exp.Const (Const.Cint d2)) ->
if Exp.equal e1 e2 then IntLit.neq d1 d2
else false
| Exp.BinOp (Binop.PlusA, e1, Exp.Const (Const.Cint d)), e2
| e2, Exp.BinOp (Binop.PlusA, e1, Exp.Const (Const.Cint d)) ->
if Exp.equal e1 e2 then not (IntLit.iszero d)
else false
| Exp.Lindex(Exp.Const c1, Exp.Const (Const.Cint d)), Exp.Const c2 ->
if IntLit.iszero d then not (Const.equal c1 c2) else Const.equal c1 c2
| Exp.Lindex(Exp.Const c1, Exp.Const d1), Exp.Lindex (Exp.Const c2, Exp.Const d2) ->
Const.equal c1 c2 && not (Const.equal d1 d2)
| Exp.Const (Const.Cint n), Exp.BinOp (Binop.Mult, Exp.Sizeof _, e21)
| Exp.Const (Const.Cint n), Exp.BinOp (Binop.Mult, e21, Sizeof _)
| Exp.BinOp (Binop.Mult, Exp.Sizeof _, e21), Exp.Const (Const.Cint n)
| Exp.BinOp (Binop.Mult, e21, Exp.Sizeof _), Exp.Const (Const.Cint n) ->
IntLit.iszero n && not (Exp.is_zero e21)
| _, _ -> false in
let ineq = lazy (Inequalities.from_prop tenv prop) in
let check_pi_implies_disequal e1 e2 =
Inequalities.check_ne (Lazy.force ineq) e1 e2 in
let neq_spatial_part () =
let rec f sigma_irrelevant e = function
| [] -> None
| Sil.Hpointsto (base, _, _) as hpred :: sigma_rest ->
(match is_root tenv prop base e with
| None ->
let sigma_irrelevant' = hpred :: sigma_irrelevant
in f sigma_irrelevant' e sigma_rest
| Some _ ->
let sigma_irrelevant' = List.rev_append sigma_irrelevant sigma_rest
in Some (true, sigma_irrelevant'))
| Sil.Hlseg (k, _, e1, e2, _) as hpred :: sigma_rest ->
(match is_root tenv prop e1 e with
| None ->
let sigma_irrelevant' = hpred :: sigma_irrelevant
in f sigma_irrelevant' e sigma_rest
| Some _ ->
if (Sil.equal_lseg_kind k Sil.Lseg_NE || check_pi_implies_disequal e1 e2) then
let sigma_irrelevant' = List.rev_append sigma_irrelevant sigma_rest
in Some (true, sigma_irrelevant')
else if (Exp.equal e2 Exp.zero) then
let sigma_irrelevant' = List.rev_append sigma_irrelevant sigma_rest
in Some (false, sigma_irrelevant')
else
let sigma_rest' = List.rev_append sigma_irrelevant sigma_rest
in f [] e2 sigma_rest')
| Sil.Hdllseg (Sil.Lseg_NE, _, iF, _, _, iB, _) :: sigma_rest ->
if is_root tenv prop iF e <> None || is_root tenv prop iB e <> None then
let sigma_irrelevant' = List.rev_append sigma_irrelevant sigma_rest
in Some (true, sigma_irrelevant')
else
let sigma_irrelevant' = List.rev_append sigma_irrelevant sigma_rest
in Some (false, sigma_irrelevant')
| Sil.Hdllseg (Sil.Lseg_PE, _, iF, _, oF, _, _) as hpred :: sigma_rest ->
(match is_root tenv prop iF e with
| None ->
let sigma_irrelevant' = hpred :: sigma_irrelevant
in f sigma_irrelevant' e sigma_rest
| Some _ ->
if (check_pi_implies_disequal iF oF) then
let sigma_irrelevant' = List.rev_append sigma_irrelevant sigma_rest
in Some (true, sigma_irrelevant')
else if (Exp.equal oF Exp.zero) then
let sigma_irrelevant' = List.rev_append sigma_irrelevant sigma_rest
in Some (false, sigma_irrelevant')
else
let sigma_rest' = List.rev_append sigma_irrelevant sigma_rest
in f [] oF sigma_rest') in
let f_null_check sigma_irrelevant e sigma_rest =
if not (Exp.equal e Exp.zero) then f sigma_irrelevant e sigma_rest
else
let sigma_irrelevant' = List.rev_append sigma_irrelevant sigma_rest
in Some (false, sigma_irrelevant')
in match f_null_check [] n_e1 spatial_part with
| None -> false
| Some (e1_allocated, spatial_part_leftover) ->
(match f_null_check [] n_e2 spatial_part_leftover with
| None -> false
| Some ((e2_allocated : bool), _) -> e1_allocated || e2_allocated) in
let neq_pure_part () =
check_pi_implies_disequal n_e1 n_e2 in
check_disequal_const () || neq_pure_part () || neq_spatial_part ()
(** Check [prop |- e1<=e2], to be called from normalized atom *)
let check_le_normalized tenv prop e1 e2 =
(* L.d_str "check_le_normalized "; Sil.d_exp e1; L.d_str " "; Sil.d_exp e2; L.d_ln (); *)
let eL, eR, off = match e1, e2 with
| Exp.BinOp(Binop.MinusA, f1, f2), Exp.Const (Const.Cint n) ->
if Exp.equal f1 f2
then Exp.zero, Exp.zero, n
else f1, f2, n
| _ ->
e1, e2, IntLit.zero in
let ineq = Inequalities.from_prop tenv prop in
let upper_lower_check () =
let upperL_opt = Inequalities.compute_upper_bound ineq eL in
let lowerR_opt = Inequalities.compute_lower_bound ineq eR in
match upperL_opt, lowerR_opt with
| None, _ | _, None -> false
| Some upper1, Some lower2 -> IntLit.leq upper1 (lower2 ++ IntLit.one ++ off) in
(upper_lower_check ())
|| (Inequalities.check_le ineq e1 e2)
|| (check_equal tenv prop e1 e2)
(** Check [prop |- e1<e2], to be called from normalized atom *)
let check_lt_normalized tenv prop e1 e2 =
(* L.d_str "check_lt_normalized "; Sil.d_exp e1; L.d_str " "; Sil.d_exp e2; L.d_ln (); *)
let ineq = Inequalities.from_prop tenv prop in
let upper_lower_check () =
let upper1_opt = Inequalities.compute_upper_bound ineq e1 in
let lower2_opt = Inequalities.compute_lower_bound ineq e2 in
match upper1_opt, lower2_opt with
| None, _ | _, None -> false
| Some upper1, Some lower2 -> IntLit.leq upper1 lower2 in
(upper_lower_check ()) || (Inequalities.check_lt ineq e1 e2)
(** Given an atom and a proposition returns a unique identifier.
We use this to distinguish among different queries. *)
let get_smt_key a p =
let tmp_filename = Filename.temp_file "smt_query" ".cns" in
let outc_tmp = open_out tmp_filename in
let fmt_tmp = F.formatter_of_out_channel outc_tmp in
let () = F.fprintf fmt_tmp "%a%a" (Sil.pp_atom Pp.text) a (Prop.pp_prop Pp.text) p in
Out_channel.close outc_tmp;
Digest.to_hex (Digest.file tmp_filename)
(** Check whether [prop |- a]. False means dont know. *)
let check_atom tenv prop a0 =
let a = Prop.atom_normalize_prop tenv prop a0 in
let prop_no_fp = Prop.set prop ~pi_fp:[] ~sigma_fp:[] in
if Config.smt_output then begin
let key = get_smt_key a prop_no_fp in
let key_filename =
let source = (State.get_loc ()).file in
DB.Results_dir.path_to_filename
(DB.Results_dir.Abs_source_dir source)
[(key ^ ".cns")] in
let outc = open_out (DB.filename_to_string key_filename) in
let fmt = F.formatter_of_out_channel outc in
L.d_str ("ID: "^key); L.d_ln ();
L.d_str "CHECK_ATOM_BOUND: "; Sil.d_atom a; L.d_ln ();
L.d_str "WHERE:"; L.d_ln(); Prop.d_prop prop_no_fp; L.d_ln (); L.d_ln ();
F.fprintf fmt "ID: %s @\nCHECK_ATOM_BOUND: %a@\nWHERE:@\n%a"
key (Sil.pp_atom Pp.text) a (Prop.pp_prop Pp.text) prop_no_fp;
Out_channel.close outc;
end;
match a with
| Sil.Aeq (Exp.BinOp (Binop.Le, e1, e2), Exp.Const (Const.Cint i))
when IntLit.isone i -> check_le_normalized tenv prop e1 e2
| Sil.Aeq (Exp.BinOp (Binop.Lt, e1, e2), Exp.Const (Const.Cint i))
when IntLit.isone i -> check_lt_normalized tenv prop e1 e2
| Sil.Aeq (e1, e2) -> check_equal tenv prop e1 e2
| Sil.Aneq (e1, e2) -> check_disequal tenv prop e1 e2
| Sil.Apred _ | Anpred _ -> List.exists ~f:(Sil.equal_atom a) prop.Prop.pi
(** Check [prop |- e1<=e2]. Result [false] means "don't know". *)
let check_le tenv prop e1 e2 =
let e1_le_e2 = Exp.BinOp (Binop.Le, e1, e2) in
check_atom tenv prop (Prop.mk_inequality tenv e1_le_e2)
(** Check whether [prop |- allocated(e)]. *)
let check_allocatedness tenv prop e =
let n_e = Prop.exp_normalize_prop tenv prop e in
let spatial_part = prop.Prop.sigma in
let f = function
| Sil.Hpointsto (base, _, _) ->
is_root tenv prop base n_e <> None
| Sil.Hlseg (k, _, e1, e2, _) ->
if Sil.equal_lseg_kind k Sil.Lseg_NE || check_disequal tenv prop e1 e2 then
is_root tenv prop e1 n_e <> None
else
false
| Sil.Hdllseg (k, _, iF, oB, oF, iB, _) ->
if Sil.equal_lseg_kind k Sil.Lseg_NE ||
check_disequal tenv prop iF oF ||
check_disequal tenv prop iB oB
then
is_root tenv prop iF n_e <> None || is_root tenv prop iB n_e <> None
else
false
in List.exists ~f spatial_part
(** Compute an upper bound of an expression *)
let compute_upper_bound_of_exp tenv p e =
let ineq = Inequalities.from_prop tenv p in
Inequalities.compute_upper_bound ineq e
(** Check if two hpreds have the same allocated lhs *)
let check_inconsistency_two_hpreds tenv prop =
let sigma = prop.Prop.sigma in
let rec f e sigma_seen = function
| [] -> false
| (Sil.Hpointsto (e1, _, _) as hpred) :: sigma_rest
| (Sil.Hlseg (Sil.Lseg_NE, _, e1, _, _) as hpred) :: sigma_rest ->
if Exp.equal e1 e then true
else f e (hpred:: sigma_seen) sigma_rest
| (Sil.Hdllseg (Sil.Lseg_NE, _, iF, _, _, iB, _) as hpred) :: sigma_rest ->
if Exp.equal iF e || Exp.equal iB e then true
else f e (hpred:: sigma_seen) sigma_rest
| Sil.Hlseg (Sil.Lseg_PE, _, e1, Exp.Const (Const.Cint i), _) as hpred :: sigma_rest
when IntLit.iszero i ->
if Exp.equal e1 e then true
else f e (hpred:: sigma_seen) sigma_rest
| Sil.Hlseg (Sil.Lseg_PE, _, e1, e2, _) as hpred :: sigma_rest ->
if Exp.equal e1 e
then
let prop' = Prop.normalize tenv (Prop.from_sigma (sigma_seen@sigma_rest)) in
let prop_new = Prop.conjoin_eq tenv e1 e2 prop' in
let sigma_new = prop_new.Prop.sigma in
let e_new = Prop.exp_normalize_prop tenv prop_new e
in f e_new [] sigma_new
else f e (hpred:: sigma_seen) sigma_rest
| Sil.Hdllseg (Sil.Lseg_PE, _, e1, _, Exp.Const (Const.Cint i), _, _) as hpred :: sigma_rest
when IntLit.iszero i ->
if Exp.equal e1 e then true
else f e (hpred:: sigma_seen) sigma_rest
| Sil.Hdllseg (Sil.Lseg_PE, _, e1, _, e3, _, _) as hpred :: sigma_rest ->
if Exp.equal e1 e
then
let prop' = Prop.normalize tenv (Prop.from_sigma (sigma_seen@sigma_rest)) in
let prop_new = Prop.conjoin_eq tenv e1 e3 prop' in
let sigma_new = prop_new.Prop.sigma in
let e_new = Prop.exp_normalize_prop tenv prop_new e
in f e_new [] sigma_new
else f e (hpred:: sigma_seen) sigma_rest in
let rec check sigma_seen = function
| [] -> false
| (Sil.Hpointsto (e1, _, _) as hpred) :: sigma_rest
| (Sil.Hlseg (Sil.Lseg_NE, _, e1, _, _) as hpred) :: sigma_rest ->
if (f e1 [] (sigma_seen@sigma_rest)) then true
else check (hpred:: sigma_seen) sigma_rest
| Sil.Hdllseg (Sil.Lseg_NE, _, iF, _, _, iB, _) as hpred :: sigma_rest ->
if f iF [] (sigma_seen@sigma_rest) || f iB [] (sigma_seen@sigma_rest) then true
else check (hpred:: sigma_seen) sigma_rest
| (Sil.Hlseg (Sil.Lseg_PE, _, _, _, _) as hpred) :: sigma_rest
| (Sil.Hdllseg (Sil.Lseg_PE, _, _, _, _, _, _) as hpred) :: sigma_rest ->
check (hpred:: sigma_seen) sigma_rest in
check [] sigma
(** Inconsistency checking ignoring footprint. *)
let check_inconsistency_base tenv prop =
let pi = prop.Prop.pi in
let sigma = prop.Prop.sigma in
let inconsistent_ptsto _ =
check_allocatedness tenv prop Exp.zero in
let inconsistent_this_self_var () =
match State.get_prop_tenv_pdesc () with
| None -> false
| Some (_, _, pdesc) ->
let procedure_attr =
Procdesc.get_attributes pdesc in
let is_java_this pvar =
Config.equal_language procedure_attr.ProcAttributes.language Config.Java &&
Pvar.is_this pvar in
let is_objc_instance_self pvar =
Config.equal_language procedure_attr.ProcAttributes.language Config.Clang &&
Mangled.equal (Pvar.get_name pvar) (Mangled.from_string "self") &&
procedure_attr.ProcAttributes.is_objc_instance_method in
let is_cpp_this pvar =
Config.equal_language procedure_attr.ProcAttributes.language Config.Clang &&
Pvar.is_this pvar &&
procedure_attr.ProcAttributes.is_cpp_instance_method in
let do_hpred = function
| Sil.Hpointsto (Exp.Lvar pv, Sil.Eexp (e, _), _) ->
Exp.equal e Exp.zero &&
Pvar.is_seed pv &&
(is_java_this pv || is_cpp_this pv || is_objc_instance_self pv)
| _ -> false in
List.exists ~f:do_hpred sigma in
let inconsistent_atom = function
| Sil.Aeq (e1, e2) ->
(match e1, e2 with
| Exp.Const c1, Exp.Const c2 -> not (Const.equal c1 c2)
| _ -> check_disequal tenv prop e1 e2)
| Sil.Aneq (e1, e2) ->
(match e1, e2 with
| Exp.Const c1, Exp.Const c2 -> Const.equal c1 c2
| _ -> Exp.equal e1 e2)
| Sil.Apred _ | Anpred _ -> false in
let inconsistent_inequalities () =
let ineq = Inequalities.from_prop tenv prop in
(*
L.d_strln "Inequalities:";
L.d_strln "Prop: "; Prop.d_prop prop; L.d_ln ();
L.d_str "leqs: "; Inequalities.d_leqs ineq; L.d_ln ();
L.d_str "lts: "; Inequalities.d_lts ineq; L.d_ln ();
L.d_str "neqs: "; Inequalities.d_neqs ineq; L.d_ln ();
*)
Inequalities.inconsistent ineq in
inconsistent_ptsto ()
|| check_inconsistency_two_hpreds tenv prop
|| List.exists ~f:inconsistent_atom pi
|| inconsistent_inequalities ()
|| inconsistent_this_self_var ()
(** Inconsistency checking. *)
let check_inconsistency tenv prop =
(check_inconsistency_base tenv prop)
||
(check_inconsistency_base tenv (Prop.normalize tenv (Prop.extract_footprint prop)))
(** Inconsistency checking for the pi part ignoring footprint. *)
let check_inconsistency_pi tenv pi =
check_inconsistency_base tenv (Prop.normalize tenv (Prop.from_pi pi))
(** {2 Abduction prover} *)
type subst2 = Sil.subst * Sil.subst
type exc_body =
| EXC_FALSE
| EXC_FALSE_HPRED of Sil.hpred
| EXC_FALSE_EXPS of Exp.t * Exp.t
| EXC_FALSE_SEXPS of Sil.strexp * Sil.strexp
| EXC_FALSE_ATOM of Sil.atom
| EXC_FALSE_SIGMA of Sil.hpred list
exception IMPL_EXC of string * subst2 * exc_body
exception MISSING_EXC of string
type check =
| Bounds_check
| Class_cast_check of Exp.t * Exp.t * Exp.t
let d_typings typings =
let d_elem (exp, texp) =
Sil.d_exp exp; L.d_str ": "; Sil.d_texp_full texp; L.d_str " " in
List.iter ~f:d_elem typings
(** Module to encapsulate operations on the internal state of the prover *)
module ProverState : sig
val reset : Prop.normal Prop.t -> Prop.exposed Prop.t -> unit
val checks : check list ref
(** type for array bounds checks *)
type bounds_check =
| BClen_imply of Exp.t * Exp.t * Exp.t list (** coming from array_len_imply *)
| BCfrom_pre of Sil.atom (** coming implicitly from preconditions *)
val add_bounds_check : bounds_check -> unit
val add_frame_fld : Sil.hpred -> unit
val add_frame_typ : Exp.t * Exp.t -> unit
val add_missing_fld : Sil.hpred -> unit
val add_missing_pi : Sil.atom -> unit
val add_missing_sigma : Sil.hpred list -> unit
val add_missing_typ : Exp.t * Exp.t -> unit
val atom_is_array_bounds_check : Sil.atom -> bool (** check if atom in pre is a bounds check *)
val get_bounds_checks : unit -> bounds_check list
val get_frame_fld : unit -> Sil.hpred list
val get_frame_typ : unit -> (Exp.t * Exp.t) list
val get_missing_fld : unit -> Sil.hpred list
val get_missing_pi : unit -> Sil.atom list
val get_missing_sigma : unit -> Sil.hpred list
val get_missing_typ : unit -> (Exp.t * Exp.t) list
val d_implication : Sil.subst * Sil.subst -> 'a Prop.t * 'b Prop.t -> unit
val d_implication_error : string * (Sil.subst * Sil.subst) * exc_body -> unit
end = struct
type bounds_check =
| BClen_imply of Exp.t * Exp.t * Exp.t list
| BCfrom_pre of Sil.atom
let implication_lhs = ref Prop.prop_emp
let implication_rhs = ref (Prop.expose Prop.prop_emp)
let fav_in_array_len = ref (Sil.fav_new ()) (* free variables in array len position *)
let bounds_checks = ref [] (* delayed bounds check for arrays *)
let frame_fld = ref []
let missing_fld = ref []
let missing_pi = ref []
let missing_sigma = ref []
let frame_typ = ref []
let missing_typ = ref []
let checks = ref []
(** free vars in array len position in current strexp part of prop *)
let prop_fav_len prop =
let fav = Sil.fav_new () in
let do_hpred = function
| Sil.Hpointsto (_, Sil.Earray (Exp.Var _ as len, _, _), _) ->
Sil.exp_fav_add fav len
| _ -> () in
List.iter ~f:do_hpred prop.Prop.sigma;
fav
let reset lhs rhs =
checks := [];
implication_lhs := lhs;
implication_rhs := rhs;
fav_in_array_len := prop_fav_len rhs;
bounds_checks := [];
frame_fld := [];
frame_typ := [];
missing_fld := [];
missing_pi := [];
missing_sigma := [];
missing_typ := []
let add_bounds_check bounds_check =
bounds_checks := bounds_check :: !bounds_checks
let add_frame_fld hpred =
frame_fld := hpred :: !frame_fld
let add_missing_fld hpred =
missing_fld := hpred :: !missing_fld
let add_frame_typ typing =
frame_typ := typing :: !frame_typ
let add_missing_typ typing =
missing_typ := typing :: !missing_typ
let add_missing_pi a =
missing_pi := a :: !missing_pi
let add_missing_sigma sigma =
missing_sigma := sigma @ !missing_sigma
(** atom considered array bounds check if it contains vars present in array length position in the
pre *)
let atom_is_array_bounds_check atom =
let fav_a = Sil.atom_fav atom in
Prop.atom_is_inequality atom &&
Sil.fav_exists fav_a (fun a -> Sil.fav_mem !fav_in_array_len a)
let get_bounds_checks () = !bounds_checks
let get_frame_fld () = !frame_fld
let get_frame_typ () = !frame_typ
let get_missing_fld () = !missing_fld
let get_missing_pi () = !missing_pi
let get_missing_sigma () = !missing_sigma
let get_missing_typ () = !missing_typ
let _d_missing sub =
L.d_strln "SUB: ";
L.d_increase_indent 1; Prop.d_sub sub; L.d_decrease_indent 1;
if !missing_pi <> [] && !missing_sigma <> []
then (L.d_ln (); Prop.d_pi !missing_pi; L.d_str "*"; L.d_ln (); Prop.d_sigma !missing_sigma)
else if !missing_pi <> []
then (L.d_ln (); Prop.d_pi !missing_pi)
else if !missing_sigma <> []
then (L.d_ln (); Prop.d_sigma !missing_sigma);
if !missing_fld <> [] then
begin
L.d_ln ();
L.d_strln "MISSING FLD: "; L.d_increase_indent 1; Prop.d_sigma !missing_fld; L.d_decrease_indent 1
end;
if !missing_typ <> [] then
begin
L.d_ln ();
L.d_strln "MISSING TYPING: "; L.d_increase_indent 1; d_typings !missing_typ; L.d_decrease_indent 1
end
let d_missing sub = (* optional print of missing: if print something, prepend with newline *)
if !missing_pi <> [] || !missing_sigma <> [] || !missing_fld <> [] || !missing_typ <> [] || Sil.sub_to_list sub <> [] then
begin
L.d_ln ();
L.d_str "[";
_d_missing sub;
L.d_str "]"
end
let d_frame_fld () = (* optional print of frame fld: if print something, prepend with newline *)
if !frame_fld <> [] then
begin
L.d_ln ();
L.d_strln "[FRAME FLD:";
L.d_increase_indent 1; Prop.d_sigma !frame_fld; L.d_str "]"; L.d_decrease_indent 1
end
let d_frame_typ () = (* optional print of frame typ: if print something, prepend with newline *)
if !frame_typ <> [] then
begin
L.d_ln ();
L.d_strln "[FRAME TYPING:";
L.d_increase_indent 1; d_typings !frame_typ; L.d_str "]"; L.d_decrease_indent 1
end
(** Dump an implication *)
let d_implication (sub1, sub2) (p1, p2) =
let p1, p2 = Prop.prop_sub sub1 p1, Prop.prop_sub sub2 p2 in
L.d_strln "SUB:";
L.d_increase_indent 1; Prop.d_sub sub1; L.d_decrease_indent 1; L.d_ln ();
Prop.d_prop p1;
d_missing sub2; L.d_ln ();
L.d_strln "|-";
Prop.d_prop p2;
d_frame_fld ();
d_frame_typ ()
let d_implication_error (s, subs, body) =
let p1, p2 = !implication_lhs,!implication_rhs in
let d_inner () = match body with
| EXC_FALSE ->
()
| EXC_FALSE_HPRED hpred ->
L.d_str " on ";
Sil.d_hpred hpred;
| EXC_FALSE_EXPS (e1, e2) ->
L.d_str " on ";
Sil.d_exp e1; L.d_str ","; Sil.d_exp e2;
| EXC_FALSE_SEXPS (se1, se2) ->
L.d_str " on ";
Sil.d_sexp se1; L.d_str ","; Sil.d_sexp se2;
| EXC_FALSE_ATOM a ->
L.d_str " on ";
Sil.d_atom a;
| EXC_FALSE_SIGMA sigma ->
L.d_str " on ";
Prop.d_sigma sigma in
L.d_ln ();
L.d_strln "$$$$$$$ Implication";
d_implication subs (p1, p2); L.d_ln ();
L.d_str ("$$$$$$ error: " ^ s); d_inner ();
L.d_strln " returning FALSE";
L.d_ln ()
end
let d_impl = ProverState.d_implication
let d_impl_err = ProverState.d_implication_error
(** extend a substitution *)
let extend_sub sub v e =
let new_sub = Sil.sub_of_list [v, e] in
Sil.sub_join new_sub (Sil.sub_range_map (Sil.exp_sub new_sub) sub)
(** Extend [sub1] and [sub2] to witnesses that each instance of
[e1[sub1]] is an instance of [e2[sub2]]. Raise IMPL_FALSE if not
possible. *)
let exp_imply tenv calc_missing subs e1_in e2_in : subst2 =
let e1 = Prop.exp_normalize_noabs tenv (fst subs) e1_in in
let e2 = Prop.exp_normalize_noabs tenv (snd subs) e2_in in
let var_imply subs v1 v2 : subst2 =
match Ident.is_primed v1, Ident.is_primed v2 with
| false, false ->
if Ident.equal v1 v2 then subs
else if calc_missing && Ident.is_footprint v1 && Ident.is_footprint v2
then
let () = ProverState.add_missing_pi (Sil.Aeq (e1_in, e2_in)) in
subs
else raise (IMPL_EXC ("exps", subs, (EXC_FALSE_EXPS (e1, e2))))
| true, false -> raise (IMPL_EXC ("exps", subs, (EXC_FALSE_EXPS (e1, e2))))
| false, true ->
let sub2' = extend_sub (snd subs) v2 (Sil.exp_sub (fst subs) (Exp.Var v1)) in
(fst subs, sub2')
| true, true ->
let v1' = Ident.create_fresh Ident.knormal in
let sub1' = extend_sub (fst subs) v1 (Exp.Var v1') in
let sub2' = extend_sub (snd subs) v2 (Exp.Var v1') in
(sub1', sub2') in
let rec do_imply subs e1 e2 : subst2 =
L.d_str "do_imply "; Sil.d_exp e1; L.d_str " "; Sil.d_exp e2; L.d_ln ();
match e1, e2 with
| Exp.Var v1, Exp.Var v2 ->
var_imply subs v1 v2
| e1, Exp.Var v2 ->
let occurs_check v e = (* check whether [v] occurs in normalized [e] *)
if Sil.fav_mem (Sil.exp_fav e) v
&& Sil.fav_mem (Sil.exp_fav (Prop.exp_normalize_prop tenv Prop.prop_emp e)) v
then raise (IMPL_EXC ("occurs check", subs, (EXC_FALSE_EXPS (e1, e2)))) in
if Ident.is_primed v2 then
let () = occurs_check v2 e1 in
let sub2' = extend_sub (snd subs) v2 e1 in
(fst subs, sub2')
else
raise (IMPL_EXC ("expressions not equal", subs, (EXC_FALSE_EXPS (e1, e2))))
| e1, Exp.BinOp (Binop.PlusA, (Exp.Var v2 as e2), e2')
when Ident.is_primed v2 || Ident.is_footprint v2 ->
(* here e2' could also be a variable that we could try to substitute (as in the next match
case), but we ignore that to avoid backtracking *)
let e' = Exp.BinOp (Binop.MinusA, e1, e2') in
do_imply subs (Prop.exp_normalize_noabs tenv Sil.sub_empty e') e2
| e1, Exp.BinOp (Binop.PlusA, e2, (Exp.Var v2 as e2'))
when Ident.is_primed v2 || Ident.is_footprint v2 ->
(* symmetric of above case *)
let e' = Exp.BinOp (Binop.MinusA, e1, e2') in
do_imply subs (Prop.exp_normalize_noabs tenv Sil.sub_empty e') e2
| Exp.Var _, e2 ->
if calc_missing then
let () = ProverState.add_missing_pi (Sil.Aeq (e1_in, e2_in)) in
subs
else raise (IMPL_EXC ("expressions not equal", subs, (EXC_FALSE_EXPS (e1, e2))))
| Exp.Lvar pv1, Exp.Const _ when Pvar.is_global pv1 ->
if calc_missing then
let () = ProverState.add_missing_pi (Sil.Aeq (e1_in, e2_in)) in
subs
else raise (IMPL_EXC ("expressions not equal", subs, (EXC_FALSE_EXPS (e1, e2))))
| Exp.Lvar v1, Exp.Lvar v2 ->
if Pvar.equal v1 v2 then subs
else raise (IMPL_EXC ("expressions not equal", subs, (EXC_FALSE_EXPS (e1, e2))))
| Exp.Const c1, Exp.Const c2 ->
if (Const.equal c1 c2) then subs
else raise (IMPL_EXC ("constants not equal", subs, (EXC_FALSE_EXPS (e1, e2))))
| Exp.Const (Const.Cint _), Exp.BinOp (Binop.PlusPI, _, _) ->
raise (IMPL_EXC ("pointer+index cannot evaluate to a constant", subs, (EXC_FALSE_EXPS (e1, e2))))
| Exp.Const (Const.Cint n1), Exp.BinOp (Binop.PlusA, f1, Exp.Const (Const.Cint n2)) ->
do_imply subs (Exp.int (n1 -- n2)) f1
| Exp.BinOp(op1, e1, f1), Exp.BinOp(op2, e2, f2) when Binop.equal op1 op2 ->
do_imply (do_imply subs e1 e2) f1 f2
| Exp.BinOp (Binop.PlusA, Exp.Var v1, e1), e2 ->
do_imply subs (Exp.Var v1) (Exp.BinOp (Binop.MinusA, e2, e1))
| Exp.BinOp (Binop.PlusPI, Exp.Lvar pv1, e1), e2 ->
do_imply subs (Exp.Lvar pv1) (Exp.BinOp (Binop.MinusA, e2, e1))
| Exp.Sizeof {typ=t1; dynamic_length=None; subtype=st1},
Exp.Sizeof {typ=t2; dynamic_length=None; subtype=st2}
when Typ.equal t1 t2 && Subtype.equal_modulo_flag st1 st2 -> subs
| Exp.Sizeof {typ=t1; dynamic_length=Some d1; subtype=st1},
Exp.Sizeof {typ=t2; dynamic_length=Some d2; subtype=st2}
when Typ.equal t1 t2 && Exp.equal d1 d2 && Subtype.equal_modulo_flag st1 st2 -> subs
| e', Exp.Const (Const.Cint n)
when IntLit.iszero n && check_disequal tenv Prop.prop_emp e' Exp.zero ->
raise (IMPL_EXC ("expressions not equal", subs, (EXC_FALSE_EXPS (e1, e2))))
| Exp.Const (Const.Cint n), e'
when IntLit.iszero n && check_disequal tenv Prop.prop_emp e' Exp.zero ->
raise (IMPL_EXC ("expressions not equal", subs, (EXC_FALSE_EXPS (e1, e2))))
| e1, Exp.Const _ ->
raise (IMPL_EXC ("lhs not constant", subs, (EXC_FALSE_EXPS (e1, e2))))
| Exp.Lfield(e1, fd1, _), Exp.Lfield(e2, fd2, _) when Fieldname.equal fd1 fd2 ->
do_imply subs e1 e2
| Exp.Lindex(e1, f1), Exp.Lindex(e2, f2) ->
do_imply (do_imply subs e1 e2) f1 f2
| _ ->
d_impl_err ("exp_imply not implemented", subs, (EXC_FALSE_EXPS (e1, e2)));
raise (Exceptions.Abduction_case_not_implemented __POS__) in
do_imply subs e1 e2
(** Convert a path (from lhs of a |-> to a field name present only in
the rhs) into an id. If the lhs was a footprint var, the id is a
new footprint var. Othewise it is a var with the path in the name
and stamp - 1 *)
let path_to_id path =
let rec f = function
| Exp.Var id ->
if Ident.is_footprint id then None
else Some (Ident.name_to_string (Ident.get_name id) ^ (string_of_int (Ident.get_stamp id)))
| Exp.Lfield (e, fld, _) ->
(match f e with
| None -> None
| Some s -> Some (s ^ "_" ^ (Fieldname.to_string fld)))
| Exp.Lindex (e, ind) ->
(match f e with
| None -> None
| Some s -> Some (s ^ "_" ^ (Exp.to_string ind)))
| Exp.Lvar _ ->
Some (Exp.to_string path)
| Exp.Const (Const.Cstr s) ->
Some ("_const_str_" ^ s)
| Exp.Const (Const.Cclass c) ->
Some ("_const_class_" ^ Ident.name_to_string c)
| Exp.Const _ -> None
| _ ->
L.d_str "path_to_id undefined on "; Sil.d_exp path; L.d_ln ();
assert false (* None *) in
if !Config.footprint then Ident.create_fresh Ident.kfootprint
else match f path with
| None -> Ident.create_fresh Ident.kfootprint
| Some s -> Ident.create_path s
(** Implication for the length of arrays *)
let array_len_imply tenv calc_missing subs len1 len2 indices2 =
match len1, len2 with
| _, Exp.Var _
| _, Exp.BinOp (Binop.PlusA, Exp.Var _, _)
| _, Exp.BinOp (Binop.PlusA, _, Exp.Var _)
| Exp.BinOp (Binop.Mult, _, _), _ ->
(try exp_imply tenv calc_missing subs len1 len2 with
| IMPL_EXC (s, subs', x) ->
raise (IMPL_EXC ("array len:" ^ s, subs', x)))
| _ ->
ProverState.add_bounds_check (ProverState.BClen_imply (len1, len2, indices2));
subs
(** Extend [sub1] and [sub2] to witnesses that each instance of
[se1[sub1]] is an instance of [se2[sub2]]. Raise IMPL_FALSE if not
possible. *)
let rec sexp_imply tenv source calc_index_frame calc_missing subs se1 se2 typ2 : subst2 * (Sil.strexp option) * (Sil.strexp option) =
(* L.d_str "sexp_imply "; Sil.d_sexp se1; L.d_str " "; Sil.d_sexp se2;
L.d_str " : "; Typ.d_full typ2; L.d_ln(); *)
match se1, se2 with
| Sil.Eexp (e1, _), Sil.Eexp (e2, _) ->
(exp_imply tenv calc_missing subs e1 e2, None, None)
| Sil.Estruct (fsel1, inst1), Sil.Estruct (fsel2, _) ->
let subs', fld_frame, fld_missing = struct_imply tenv source calc_missing subs fsel1 fsel2 typ2 in
let fld_frame_opt = if fld_frame <> [] then Some (Sil.Estruct (fld_frame, inst1)) else None in
let fld_missing_opt = if fld_missing <> [] then Some (Sil.Estruct (fld_missing, inst1)) else None in
subs', fld_frame_opt, fld_missing_opt
| Sil.Estruct _, Sil.Eexp (e2, _) ->
begin
let e2' = Sil.exp_sub (snd subs) e2 in
match e2' with
| Exp.Var id2 when Ident.is_primed id2 ->
let id2' = Ident.create_fresh Ident.knormal in
let sub2' = extend_sub (snd subs) id2 (Exp.Var id2') in
(fst subs, sub2'), None, None
| _ ->
d_impl_err ("sexp_imply not implemented", subs, (EXC_FALSE_SEXPS (se1, se2)));
raise (Exceptions.Abduction_case_not_implemented __POS__)
end
| Sil.Earray (len1, esel1, inst1), Sil.Earray (len2, esel2, _) ->
let indices2 = List.map ~f:fst esel2 in
let subs' = array_len_imply tenv calc_missing subs len1 len2 indices2 in
let subs'', index_frame, index_missing =
array_imply tenv source calc_index_frame calc_missing subs' esel1 esel2 typ2 in
let index_frame_opt = if index_frame <> []
then Some (Sil.Earray (len1, index_frame, inst1))
else None in
let index_missing_opt =
if index_missing <> [] &&
(Config.allow_missing_index_in_proc_call || !Config.footprint)
then Some (Sil.Earray (len1, index_missing, inst1))
else None in
subs'', index_frame_opt, index_missing_opt
| Sil.Eexp (_, inst), Sil.Estruct (fsel, inst') ->
d_impl_err ("WARNING: function call with parameters of struct type, treating as unknown", subs, (EXC_FALSE_SEXPS (se1, se2)));
let fsel' =
let g (f, _) = (f, Sil.Eexp (Exp.Var (Ident.create_fresh Ident.knormal), inst)) in
List.map ~f:g fsel in
sexp_imply tenv source calc_index_frame calc_missing subs (Sil.Estruct (fsel', inst')) se2 typ2
| Sil.Eexp _, Sil.Earray (len, _, inst)
| Sil.Estruct _, Sil.Earray (len, _, inst) ->
let se1' = Sil.Earray (len, [(Exp.zero, se1)], inst) in
sexp_imply tenv source calc_index_frame calc_missing subs se1' se2 typ2
| Sil.Earray (len, _, _), Sil.Eexp (_, inst) ->
let se2' = Sil.Earray (len, [(Exp.zero, se2)], inst) in
let typ2' = Typ.mk (Tarray (typ2, None, None)) in
(* In the sexp_imply, struct_imply, array_imply, and sexp_imply_nolhs functions, the typ2
argument is only used by eventually passing its value to Typ.Struct.fld, Exp.Lfield,
Typ.Struct.fld, or Typ.array_elem. None of these are sensitive to the length field
of Tarray, so forgetting the length of typ2' here is not a problem. Not one of those
functions use typ.quals either *)
sexp_imply tenv source true calc_missing subs se1 se2' typ2' (* calculate index_frame because the rhs is a singleton array *)
| _ ->
d_impl_err ("sexp_imply not implemented", subs, (EXC_FALSE_SEXPS (se1, se2)));
raise (Exceptions.Abduction_case_not_implemented __POS__)
and struct_imply tenv source calc_missing subs fsel1 fsel2 typ2 : subst2 * ((Fieldname.t * Sil.strexp) list) * ((Fieldname.t * Sil.strexp) list) =
let lookup = Tenv.lookup tenv in
match fsel1, fsel2 with
| _, [] -> subs, fsel1, []
| (f1, se1) :: fsel1', (f2, se2) :: fsel2' ->
begin
match Fieldname.compare f1 f2 with
| 0 ->
let typ' = Typ.Struct.fld_typ ~lookup ~default:(Typ.mk Tvoid) f2 typ2 in
let subs', se_frame, se_missing =
sexp_imply tenv (Exp.Lfield (source, f2, typ2)) false calc_missing subs se1 se2 typ' in
let subs'', fld_frame, fld_missing = struct_imply tenv source calc_missing subs' fsel1' fsel2' typ2 in
let fld_frame' = match se_frame with
| None -> fld_frame
| Some se -> (f1, se):: fld_frame in
let fld_missing' = match se_missing with
| None -> fld_missing
| Some se -> (f1, se):: fld_missing in
subs'', fld_frame', fld_missing'
| n when n < 0 ->
let subs', fld_frame, fld_missing = struct_imply tenv source calc_missing subs fsel1' fsel2 typ2 in
subs', ((f1, se1) :: fld_frame), fld_missing
| _ ->
let typ' = Typ.Struct.fld_typ ~lookup ~default:(Typ.mk Tvoid) f2 typ2 in
let subs' =
sexp_imply_nolhs tenv (Exp.Lfield (source, f2, typ2)) calc_missing subs se2 typ' in
let subs', fld_frame, fld_missing = struct_imply tenv source calc_missing subs' fsel1 fsel2' typ2 in
let fld_missing' = (f2, se2) :: fld_missing in
subs', fld_frame, fld_missing'
end
| [], (f2, se2) :: fsel2' ->
let typ' = Typ.Struct.fld_typ ~lookup ~default:(Typ.mk Tvoid) f2 typ2 in
let subs' = sexp_imply_nolhs tenv (Exp.Lfield (source, f2, typ2)) calc_missing subs se2 typ' in
let subs'', fld_frame, fld_missing = struct_imply tenv source calc_missing subs' [] fsel2' typ2 in
subs'', fld_frame, (f2, se2):: fld_missing
and array_imply tenv source calc_index_frame calc_missing subs esel1 esel2 typ2
: subst2 * ((Exp.t * Sil.strexp) list) * ((Exp.t * Sil.strexp) list)
=
let typ_elem = Typ.array_elem (Some (Typ.mk Tvoid)) typ2 in
match esel1, esel2 with
| _,[] -> subs, esel1, []
| (e1, se1) :: esel1', (e2, se2) :: esel2' ->
let e1n = Prop.exp_normalize_noabs tenv (fst subs) e1 in
let e2n = Prop.exp_normalize_noabs tenv (snd subs) e2 in
let n = Exp.compare e1n e2n in
if n < 0 then array_imply tenv source calc_index_frame calc_missing subs esel1' esel2 typ2
else if n > 0 then array_imply tenv source calc_index_frame calc_missing subs esel1 esel2' typ2
else (* n=0 *)
let subs', _, _ =
sexp_imply tenv (Exp.Lindex (source, e1)) false calc_missing subs se1 se2 typ_elem in
array_imply tenv source calc_index_frame calc_missing subs' esel1' esel2' typ2
| [], (e2, se2) :: esel2' ->
let subs' = sexp_imply_nolhs tenv (Exp.Lindex (source, e2)) calc_missing subs se2 typ_elem in
let subs'', index_frame, index_missing = array_imply tenv source calc_index_frame calc_missing subs' [] esel2' typ2 in
let index_missing' = (e2, se2) :: index_missing in
subs'', index_frame, index_missing'
and sexp_imply_nolhs tenv source calc_missing subs se2 typ2 =
match se2 with
| Sil.Eexp (_e2, _) ->
let e2 = Sil.exp_sub (snd subs) _e2 in
begin
match e2 with
| Exp.Var v2 when Ident.is_primed v2 ->
let v2' = path_to_id source in
(* L.d_str "called path_to_id on "; Sil.d_exp e2; *)
(* L.d_str " returns "; Sil.d_exp (Exp.Var v2'); L.d_ln (); *)
let sub2' = extend_sub (snd subs) v2 (Exp.Var v2') in
(fst subs, sub2')
| Exp.Var _ ->
if calc_missing then subs
else raise (IMPL_EXC ("exp only in rhs is not a primed var", subs, EXC_FALSE))
| Exp.Const _ when calc_missing ->
let id = path_to_id source in
ProverState.add_missing_pi (Sil.Aeq (Exp.Var id, _e2));
subs
| _ ->
raise (IMPL_EXC ("exp only in rhs is not a primed var", subs, EXC_FALSE))
end
| Sil.Estruct (fsel2, _) ->
(fun (x, _, _) -> x) (struct_imply tenv source calc_missing subs [] fsel2 typ2)
| Sil.Earray (_, esel2, _) ->
(fun (x, _, _) -> x) (array_imply tenv source false calc_missing subs [] esel2 typ2)
let rec exp_list_imply tenv calc_missing subs l1 l2 = match l1, l2 with
| [],[] -> subs
| e1:: l1, e2:: l2 ->
exp_list_imply tenv calc_missing (exp_imply tenv calc_missing subs e1 e2) l1 l2
| _ -> assert false
let filter_ne_lhs sub e0 = function
| Sil.Hpointsto (e, _, _) -> if Exp.equal e0 (Sil.exp_sub sub e) then Some () else None
| Sil.Hlseg (Sil.Lseg_NE, _, e, _, _) ->
if Exp.equal e0 (Sil.exp_sub sub e) then Some () else None
| Sil.Hdllseg (Sil.Lseg_NE, _, e, _, _, e', _) ->
if Exp.equal e0 (Sil.exp_sub sub e) || Exp.equal e0 (Sil.exp_sub sub e')
then Some ()
else None
| _ -> None
let filter_hpred sub hpred2 hpred1 = match (Sil.hpred_sub sub hpred1), hpred2 with
| Sil.Hlseg(Sil.Lseg_NE, hpara1, e1, f1, el1), Sil.Hlseg(Sil.Lseg_PE, _, _, _, _) ->
if Sil.equal_hpred (Sil.Hlseg(Sil.Lseg_PE, hpara1, e1, f1, el1)) hpred2 then Some false else None
| Sil.Hlseg(Sil.Lseg_PE, hpara1, e1, f1, el1), Sil.Hlseg(Sil.Lseg_NE, _, _, _, _) ->
if Sil.equal_hpred (Sil.Hlseg(Sil.Lseg_NE, hpara1, e1, f1, el1)) hpred2 then Some true else None (* return missing disequality *)
| Sil.Hpointsto(e1, _, _), Sil.Hlseg(_, _, e2, _, _) ->
if Exp.equal e1 e2 then Some false else None
| hpred1, hpred2 -> if Sil.equal_hpred hpred1 hpred2 then Some false else None
let hpred_has_primed_lhs sub hpred =
let rec find_primed e = match e with
| Exp.Lfield (e, _, _) ->
find_primed e
| Exp.Lindex (e, _) ->
find_primed e
| Exp.BinOp (Binop.PlusPI, e1, _) ->
find_primed e1
| _ ->
Sil.fav_exists (Sil.exp_fav e) Ident.is_primed in
let exp_has_primed e = find_primed (Sil.exp_sub sub e) in
match hpred with
| Sil.Hpointsto (e, _, _) ->
exp_has_primed e
| Sil.Hlseg (_, _, e, _, _) ->
exp_has_primed e
| Sil.Hdllseg (_, _, iF, _, _, iB, _) ->
exp_has_primed iF && exp_has_primed iB
let move_primed_lhs_from_front subs sigma = match sigma with
| [] -> sigma
| hpred:: _ ->
if hpred_has_primed_lhs (snd subs) hpred then
let (sigma_primed, sigma_unprimed) =
List.partition_tf ~f:(hpred_has_primed_lhs (snd subs)) sigma
in match sigma_unprimed with
| [] -> raise (IMPL_EXC ("every hpred has primed lhs, cannot proceed", subs, (EXC_FALSE_SIGMA sigma)))
| _:: _ -> sigma_unprimed @ sigma_primed
else sigma
(** [expand_hpred_pointer calc_index_frame hpred] expands [hpred] if it is a |-> whose lhs is a Lfield or Lindex or ptr+off.
Return [(changed, calc_index_frame', hpred')] where [changed] indicates whether the predicate has changed. *)
let expand_hpred_pointer =
let count = ref 0 in
fun tenv calc_index_frame hpred ->
let rec expand changed calc_index_frame hpred = match hpred with
| Sil.Hpointsto (Lfield (adr_base, fld, adr_typ), cnt, cnt_texp) ->
let cnt_texp' =
match
match adr_typ.desc with
| Tstruct name -> (
match Tenv.lookup tenv name with
| Some _ ->
(* type of struct at adr_base is known *)
Some (Exp.Sizeof {typ=adr_typ; nbytes=None;
dynamic_length=None; subtype=Subtype.exact})
| None -> None
)
| _ -> None
with
| Some se -> se
| None ->
match cnt_texp with
| Sizeof ({typ=cnt_typ} as sizeof_data) ->
(* type of struct at adr_base is unknown (typically Tvoid), but
type of contents is known, so construct struct type for single fld:cnt_typ *)
let name = Typ.Name.C.from_string ("counterfeit" ^ string_of_int !count) in
incr count ;
let fields = [(fld, cnt_typ, Annot.Item.empty)] in
ignore (Tenv.mk_struct tenv ~fields name) ;
Exp.Sizeof {sizeof_data with typ=Typ.mk (Tstruct name)}
| _ ->
(* type of struct at adr_base and of contents are both unknown: give up *)
raise (Failure "expand_hpred_pointer: Unexpected non-sizeof type in Lfield") in
let hpred' = Sil.Hpointsto (adr_base, Estruct ([(fld, cnt)], Sil.inst_none), cnt_texp') in
expand true true hpred'
| Sil.Hpointsto (Exp.Lindex (e, ind), se, t) ->
let t' = match t with
| Exp.Sizeof ({typ=t_} as sizeof_data) ->
Exp.Sizeof {sizeof_data with typ=Typ.mk (Tarray (t_, None, None))}
| _ -> raise (Failure "expand_hpred_pointer: Unexpected non-sizeof type in Lindex") in
let len = match t' with
| Exp.Sizeof {dynamic_length=Some len} -> len
| _ -> Exp.get_undefined false in
let hpred' = Sil.Hpointsto (e, Sil.Earray (len, [(ind, se)], Sil.inst_none), t') in
expand true true hpred'
| Sil.Hpointsto (Exp.BinOp (Binop.PlusPI, e1, e2), Sil.Earray (len, esel, inst), t) ->
let shift_exp e = Exp.BinOp (Binop.PlusA, e, e2) in
let len' = shift_exp len in
let esel' = List.map ~f:(fun (e, se) -> (shift_exp e, se)) esel in
let hpred' = Sil.Hpointsto (e1, Sil.Earray (len', esel', inst), t) in
expand true calc_index_frame hpred'
| _ -> changed, calc_index_frame, hpred in
expand false calc_index_frame hpred
module Subtyping_check =
struct
(** check that t1 and t2 are the same primitive type *)
let check_subtype_basic_type t1 t2 =
match t2.Typ.desc with
| Typ.Tint Typ.IInt | Typ.Tint Typ.IBool
| Typ.Tint Typ.IChar | Typ.Tfloat Typ.FDouble
| Typ.Tfloat Typ.FFloat | Typ.Tint Typ.ILong
| Typ.Tint Typ.IShort -> Typ.equal t1 t2
| _ -> false
(** check if t1 is a subtype of t2, in Java *)
let rec check_subtype_java tenv (t1: Typ.t) (t2: Typ.t) =
match t1.Typ.desc, t2.Typ.desc with
| Tstruct (JavaClass _ as cn1), Tstruct (JavaClass _ as cn2) ->
Subtype.is_known_subtype tenv cn1 cn2
| Tarray (dom_type1, _, _), Tarray (dom_type2, _, _) ->
check_subtype_java tenv dom_type1 dom_type2
| Tptr (dom_type1, _), Tptr (dom_type2, _) ->
check_subtype_java tenv dom_type1 dom_type2
| Tarray _, Tstruct (JavaClass _ as cn2) ->
Typ.Name.equal cn2 Typ.Name.Java.java_io_serializable
|| Typ.Name.equal cn2 Typ.Name.Java.java_lang_cloneable
|| Typ.Name.equal cn2 Typ.Name.Java.java_lang_object
| _ -> check_subtype_basic_type t1 t2
(** check if t1 is a subtype of t2 *)
let check_subtype tenv t1 t2 =
if is_java_class tenv t1
then
check_subtype_java tenv t1 t2
else
match Typ.name t1, Typ.name t2 with
| Some cn1, Some cn2 -> Subtype.is_known_subtype tenv cn1 cn2
| _ -> false
let rec case_analysis_type tenv ((t1: Typ.t), st1) ((t2: Typ.t), st2) =
match t1.desc, t2.desc with
| Tstruct (JavaClass _ as cn1), Tstruct (JavaClass _ as cn2) ->
Subtype.case_analysis tenv (cn1, st1) (cn2, st2)
| Tstruct (JavaClass _ as cn1), Tarray _
when (Typ.Name.equal cn1 Typ.Name.Java.java_io_serializable
|| Typ.Name.equal cn1 Typ.Name.Java.java_lang_cloneable
|| Typ.Name.equal cn1 Typ.Name.Java.java_lang_object) &&
st1 <> Subtype.exact ->
Some st1, None
| Tstruct cn1, Tstruct cn2
(* cn1 <: cn2 or cn2 <: cn1 is implied in Java when we get two types compared *)
(* that get through the type system, but not in C++ because of multiple inheritance, *)
(* and not in ObjC because of being weakly typed, *)
(* and the algorithm will only work correctly if this is the case *)
when Subtype.is_known_subtype tenv cn1 cn2 || Subtype.is_known_subtype tenv cn2 cn1 ->
Subtype.case_analysis tenv (cn1, st1) (cn2, st2)
| Tarray (dom_type1, _, _), Tarray (dom_type2, _, _) ->
case_analysis_type tenv (dom_type1, st1) (dom_type2, st2)
| Tptr (dom_type1, _), Tptr (dom_type2, _) ->
case_analysis_type tenv (dom_type1, st1) (dom_type2, st2)
| _ when check_subtype_basic_type t1 t2 ->
Some st1, None
| _ ->
(* The case analysis did not succeed *)
None, Some st1
(** perform case analysis on [texp1 <: texp2], and return the updated types in the true and false
case, if they are possible *)
let subtype_case_analysis tenv texp1 texp2 =
match texp1, texp2 with
| Exp.Sizeof sizeof1, Exp.Sizeof sizeof2 ->
let pos_opt, neg_opt = case_analysis_type tenv
(sizeof1.typ, sizeof1.subtype) (sizeof2.typ, sizeof2.subtype) in
let pos_type_opt = match pos_opt with
| None -> None
| Some subtype ->
if check_subtype tenv sizeof1.typ sizeof2.typ then
Some (Exp.Sizeof {sizeof1 with subtype})
else
Some (Exp.Sizeof {sizeof2 with subtype}) in
let neg_type_opt = match neg_opt with
| None -> None
| Some subtype -> Some (Exp.Sizeof {sizeof1 with subtype}) in
pos_type_opt, neg_type_opt
| _ -> (* don't know, consider both possibilities *)
Some texp1, Some texp1
end
let cast_exception tenv texp1 texp2 e1 subs =
let _ = match texp1, texp2 with
| Exp.Sizeof {typ=t1}, Exp.Sizeof {typ=t2; subtype=st2} ->
if Config.developer_mode ||
(Subtype.is_cast st2 &&
not (Subtyping_check.check_subtype tenv t1 t2)) then
ProverState.checks := Class_cast_check (texp1, texp2, e1) :: !ProverState.checks
| _ -> () in
raise (IMPL_EXC ("class cast exception", subs, EXC_FALSE))
(** get all methods that override [supertype].[pname] in [tenv].
Note: supertype should be a type T rather than a pointer to type T
Note: [pname] wil never be included in the returned result *)
let get_overrides_of tenv supertype pname =
let typ_has_method pname (typ: Typ.t) =
match typ.desc with
| Tstruct name -> (
match Tenv.lookup tenv name with
| Some { methods } ->
List.exists ~f:(fun m -> Typ.Procname.equal pname m) methods
| None ->
false
)
| _ -> false in
let gather_overrides tname _ overrides_acc =
let typ = Typ.mk (Tstruct tname) in (* TODO shouldn't really create type here...*)
(* get all types in the type environment that are non-reflexive subtypes of [supertype] *)
if not (Typ.equal typ supertype) && Subtyping_check.check_subtype tenv typ supertype then
(* only select the ones that implement [pname] as overrides *)
let resolved_pname =
Typ.Procname.replace_class pname tname in
if typ_has_method resolved_pname typ then (typ, resolved_pname) :: overrides_acc
else overrides_acc
else overrides_acc in
Tenv.fold gather_overrides tenv []
(** Check the equality of two types ignoring flags in the subtyping components *)
let texp_equal_modulo_subtype_flag texp1 texp2 = match texp1, texp2 with
| Exp.Sizeof {typ=t1; dynamic_length=len1; subtype=st1},
Exp.Sizeof {typ=t2; dynamic_length=len2; subtype=st2} ->
[%compare.equal: Typ.t * Exp.t option] (t1, len1) (t2, len2)
&& Subtype.equal_modulo_flag st1 st2
| _ -> Exp.equal texp1 texp2
(** check implication between type expressions *)
let texp_imply tenv subs texp1 texp2 e1 calc_missing =
(* check whether the types could be subject to dynamic cast: *)
(* classes and arrays in Java, and just classes in C++ and ObjC *)
let types_subject_to_dynamic_cast =
match texp1, texp2 with
| Exp.Sizeof {typ=typ1}, Exp.Sizeof {typ=typ2} -> (
match typ1.desc, typ2.desc with
| (Tstruct _ | Tarray _), (Tstruct _ | Tarray _) ->
is_java_class tenv typ1
|| (Typ.is_cpp_class typ1 && Typ.is_cpp_class typ2)
|| (Typ.is_objc_class typ1 && Typ.is_objc_class typ2)
| _ ->
false
)
| _ -> false in
if types_subject_to_dynamic_cast then
begin
let pos_type_opt, neg_type_opt = Subtyping_check.subtype_case_analysis tenv texp1 texp2 in
let has_changed = match pos_type_opt with
| Some texp1' ->
not (texp_equal_modulo_subtype_flag texp1' texp1)
| None -> false in
if calc_missing then (* footprint *)
begin
match pos_type_opt with
| None -> cast_exception tenv texp1 texp2 e1 subs
| Some _ ->
if has_changed then None, pos_type_opt (* missing *)
else pos_type_opt, None (* frame *)
end
else (* re-execution *)
begin
match neg_type_opt with
| Some _ -> cast_exception tenv texp1 texp2 e1 subs
| None ->
if has_changed then cast_exception tenv texp1 texp2 e1 subs (* missing *)
else pos_type_opt, None (* frame *)
end
end
else
None, None
(** pre-process implication between a non-array and an array: the non-array is turned into an array
of length given by its type only active in type_size mode *)
let sexp_imply_preprocess se1 texp1 se2 = match se1, texp1, se2 with
| Sil.Eexp (_, inst), Exp.Sizeof _, Sil.Earray _ when Config.type_size ->
let se1' = Sil.Earray (texp1, [(Exp.zero, se1)], inst) in
L.d_strln_color Orange "sexp_imply_preprocess"; L.d_str " se1: "; Sil.d_sexp se1; L.d_ln (); L.d_str " se1': "; Sil.d_sexp se1'; L.d_ln ();
se1'
| _ -> se1
(** handle parameter subtype: when the type of a callee variable in the caller is a strict subtype
of the one in the callee, add a type frame and type missing *)
let handle_parameter_subtype tenv prop1 sigma2 subs (e1, se1, texp1) (se2, texp2) =
let is_callee = match e1 with
| Exp.Lvar pv -> Pvar.is_callee pv
| _ -> false in
let is_allocated_lhs e =
let filter = function
| Sil.Hpointsto(e', _, _) -> Exp.equal e' e
| _ -> false in
List.exists ~f:filter prop1.Prop.sigma in
let type_rhs e =
let sub_opt = ref None in
let filter = function
| Sil.Hpointsto(e', _, Exp.Sizeof sizeof_data) when Exp.equal e' e ->
sub_opt := Some sizeof_data;
true
| _ -> false in
if List.exists ~f:filter sigma2 then !sub_opt else None in
let add_subtype () = match texp1, texp2, se1, se2 with
| Exp.Sizeof {typ={desc=Tptr (t1, _)}; dynamic_length=None},
Exp.Sizeof {typ={desc=Tptr (t2, _)}; dynamic_length=None},
Sil.Eexp (e1', _), Sil.Eexp (e2', _)
when not (is_allocated_lhs e1') ->
begin
match type_rhs e2' with
| Some sizeof_data2 ->
if not (Typ.equal t1 t2) && Subtyping_check.check_subtype tenv t1 t2
then begin
let pos_type_opt, _ =
Subtyping_check.subtype_case_analysis tenv
(Exp.Sizeof {typ=t1; nbytes=None;
dynamic_length=None; subtype=Subtype.subtypes})
(Exp.Sizeof sizeof_data2) in
match pos_type_opt with
| Some t1_noptr ->
ProverState.add_frame_typ (e1', t1_noptr);
ProverState.add_missing_typ (e2', t1_noptr)
| None -> cast_exception tenv texp1 texp2 e1 subs
end
| None -> ()
end
| _ -> () in
if is_callee && !Config.footprint then add_subtype ()
let rec hpred_imply tenv calc_index_frame calc_missing subs prop1 sigma2 hpred2 : subst2 * Prop.normal Prop.t = match hpred2 with
| Sil.Hpointsto (_e2, se2, texp2) ->
let e2 = Sil.exp_sub (snd subs) _e2 in
let _ = match e2 with
| Exp.Lvar _ -> ()
| Exp.Var v -> if Ident.is_primed v then
(d_impl_err ("rhs |-> not implemented", subs, (EXC_FALSE_HPRED hpred2));
raise (Exceptions.Abduction_case_not_implemented __POS__))
| _ -> () in
(match Prop.prop_iter_create prop1 with
| None -> raise (IMPL_EXC ("lhs is empty", subs, EXC_FALSE))
| Some iter1 ->
(match Prop.prop_iter_find iter1 (filter_ne_lhs (fst subs) e2) with
| None -> raise (IMPL_EXC ("lhs does not have e|->", subs, (EXC_FALSE_HPRED hpred2)))
| Some iter1' ->
(match Prop.prop_iter_current tenv iter1' with
| Sil.Hpointsto (e1, se1, texp1), _ ->
(try
let typ2 = Exp.texp_to_typ (Some (Typ.mk Tvoid)) texp2 in
let typing_frame, typing_missing = texp_imply tenv subs texp1 texp2 e1 calc_missing in
let se1' = sexp_imply_preprocess se1 texp1 se2 in
let subs', fld_frame, fld_missing = sexp_imply tenv e1 calc_index_frame calc_missing subs se1' se2 typ2 in
if calc_missing then
begin
handle_parameter_subtype tenv prop1 sigma2 subs (e1, se1, texp1) (se2, texp2);
(match fld_missing with
| Some fld_missing ->
ProverState.add_missing_fld (Sil.Hpointsto(_e2, fld_missing, texp1))
| None -> ());
(match fld_frame with
| Some fld_frame ->
ProverState.add_frame_fld (Sil.Hpointsto(e1, fld_frame, texp1))
| None -> ());
(match typing_missing with
| Some t_missing ->
ProverState.add_missing_typ (_e2, t_missing)
| None -> ());
(match typing_frame with
| Some t_frame ->
ProverState.add_frame_typ (e1, t_frame)
| None -> ())
end;
let prop1' = Prop.prop_iter_remove_curr_then_to_prop tenv iter1'
in (subs', prop1')
with
| IMPL_EXC (s, _, _) when calc_missing ->
raise (MISSING_EXC s))
| Sil.Hlseg (Sil.Lseg_NE, para1, e1, f1, elist1), _ -> (* Unroll lseg *)
let n' = Exp.Var (Ident.create_fresh Ident.kprimed) in
let (_, para_inst1) = Sil.hpara_instantiate para1 e1 n' elist1 in
let hpred_list1 = para_inst1@[Prop.mk_lseg tenv Sil.Lseg_PE para1 n' f1 elist1] in
let iter1'' = Prop.prop_iter_update_current_by_list iter1' hpred_list1 in
L.d_increase_indent 1;
let res =
decrease_indent_when_exception
(fun () -> hpred_imply tenv calc_index_frame calc_missing subs (Prop.prop_iter_to_prop tenv iter1'') sigma2 hpred2) in
L.d_decrease_indent 1;
res
| Sil.Hdllseg (Sil.Lseg_NE, para1, iF1, oB1, oF1, iB1, elist1), _
when Exp.equal (Sil.exp_sub (fst subs) iF1) e2 -> (* Unroll dllseg forward *)
let n' = Exp.Var (Ident.create_fresh Ident.kprimed) in
let (_, para_inst1) = Sil.hpara_dll_instantiate para1 iF1 oB1 n' elist1 in
let hpred_list1 = para_inst1@[Prop.mk_dllseg tenv Sil.Lseg_PE para1 n' iF1 oF1 iB1 elist1] in
let iter1'' = Prop.prop_iter_update_current_by_list iter1' hpred_list1 in
L.d_increase_indent 1;
let res =
decrease_indent_when_exception
(fun () -> hpred_imply tenv calc_index_frame calc_missing subs (Prop.prop_iter_to_prop tenv iter1'') sigma2 hpred2) in
L.d_decrease_indent 1;
res
| Sil.Hdllseg (Sil.Lseg_NE, para1, iF1, oB1, oF1, iB1, elist1), _
when Exp.equal (Sil.exp_sub (fst subs) iB1) e2 -> (* Unroll dllseg backward *)
let n' = Exp.Var (Ident.create_fresh Ident.kprimed) in
let (_, para_inst1) = Sil.hpara_dll_instantiate para1 iB1 n' oF1 elist1 in
let hpred_list1 = para_inst1@[Prop.mk_dllseg tenv Sil.Lseg_PE para1 iF1 oB1 iB1 n' elist1] in
let iter1'' = Prop.prop_iter_update_current_by_list iter1' hpred_list1 in
L.d_increase_indent 1;
let res =
decrease_indent_when_exception
(fun () -> hpred_imply tenv calc_index_frame calc_missing subs (Prop.prop_iter_to_prop tenv iter1'') sigma2 hpred2) in
L.d_decrease_indent 1;
res
| _ -> assert false
)
)
)
| Sil.Hlseg (k, para2, _e2, _f2, _elist2) -> (* for now ignore implications between PE and NE *)
let e2, f2 = Sil.exp_sub (snd subs) _e2, Sil.exp_sub (snd subs) _f2 in
let _ = match e2 with
| Exp.Lvar _ -> ()
| Exp.Var v -> if Ident.is_primed v then
(d_impl_err ("rhs |-> not implemented", subs, (EXC_FALSE_HPRED hpred2));
raise (Exceptions.Abduction_case_not_implemented __POS__))
| _ -> ()
in
if Exp.equal e2 f2 && Sil.equal_lseg_kind k Sil.Lseg_PE then (subs, prop1)
else
(match Prop.prop_iter_create prop1 with
| None -> raise (IMPL_EXC ("lhs is empty", subs, EXC_FALSE))
| Some iter1 ->
(match Prop.prop_iter_find iter1 (filter_hpred (fst subs) (Sil.hpred_sub (snd subs) hpred2)) with
| None ->
let elist2 = List.map ~f:(fun e -> Sil.exp_sub (snd subs) e) _elist2 in
let _, para_inst2 = Sil.hpara_instantiate para2 e2 f2 elist2 in
L.d_increase_indent 1;
let res =
decrease_indent_when_exception
(fun () -> sigma_imply tenv calc_index_frame false subs prop1 para_inst2) in
(* calc_missing is false as we're checking an instantiation of the original list *)
L.d_decrease_indent 1;
res
| Some iter1' ->
let elist2 = List.map ~f:(fun e -> Sil.exp_sub (snd subs) e) _elist2 in
(* force instantiation of existentials *)
let subs' = exp_list_imply tenv calc_missing subs (f2:: elist2) (f2:: elist2) in
let prop1' = Prop.prop_iter_remove_curr_then_to_prop tenv iter1' in
let hpred1 = match Prop.prop_iter_current tenv iter1' with
| hpred1, b ->
if b then ProverState.add_missing_pi (Sil.Aneq(_e2, _f2)); (* for PE |- NE *)
hpred1
in match hpred1 with
| Sil.Hlseg _ -> (subs', prop1')
| Sil.Hpointsto _ -> (* unroll rhs list and try again *)
let n' = Exp.Var (Ident.create_fresh Ident.kprimed) in
let (_, para_inst2) = Sil.hpara_instantiate para2 _e2 n' elist2 in
let hpred_list2 = para_inst2@[Prop.mk_lseg tenv Sil.Lseg_PE para2 n' _f2 _elist2] in
L.d_increase_indent 1;
let res =
decrease_indent_when_exception
(fun () ->
try sigma_imply tenv calc_index_frame calc_missing subs prop1 hpred_list2
with exn when SymOp.exn_not_failure exn ->
begin
(L.d_strln_color Red) "backtracking lseg: trying rhs of length exactly 1";
let (_, para_inst3) = Sil.hpara_instantiate para2 _e2 _f2 elist2 in
sigma_imply tenv calc_index_frame calc_missing subs prop1 para_inst3
end) in
L.d_decrease_indent 1;
res
| Sil.Hdllseg _ -> assert false
)
)
| Sil.Hdllseg (Sil.Lseg_PE, _, _, _, _, _, _) ->
(d_impl_err ("rhs dllsegPE not implemented", subs, (EXC_FALSE_HPRED hpred2));
raise (Exceptions.Abduction_case_not_implemented __POS__))
| Sil.Hdllseg (_, para2, iF2, oB2, oF2, iB2, elist2) ->
(* for now ignore implications between PE and NE *)
let iF2, oF2 = Sil.exp_sub (snd subs) iF2, Sil.exp_sub (snd subs) oF2 in
let iB2, oB2 = Sil.exp_sub (snd subs) iB2, Sil.exp_sub (snd subs) oB2 in
let _ = match oF2 with
| Exp.Lvar _ -> ()
| Exp.Var v -> if Ident.is_primed v then
(d_impl_err ("rhs dllseg not implemented", subs, (EXC_FALSE_HPRED hpred2));
raise (Exceptions.Abduction_case_not_implemented __POS__))
| _ -> ()
in
let _ = match oB2 with
| Exp.Lvar _ -> ()
| Exp.Var v -> if Ident.is_primed v then
(d_impl_err ("rhs dllseg not implemented", subs, (EXC_FALSE_HPRED hpred2));
raise (Exceptions.Abduction_case_not_implemented __POS__))
| _ -> ()
in
(match Prop.prop_iter_create prop1 with
| None -> raise (IMPL_EXC ("lhs is empty", subs, EXC_FALSE))
| Some iter1 ->
(match Prop.prop_iter_find iter1 (filter_hpred (fst subs) (Sil.hpred_sub (snd subs) hpred2)) with
| None ->
let elist2 = List.map ~f:(fun e -> Sil.exp_sub (snd subs) e) elist2 in
let _, para_inst2 =
if Exp.equal iF2 iB2 then
Sil.hpara_dll_instantiate para2 iF2 oB2 oF2 elist2
else assert false (* Only base case of rhs list considered for now *) in
L.d_increase_indent 1;
let res =
decrease_indent_when_exception
(fun () -> sigma_imply tenv calc_index_frame false subs prop1 para_inst2) in
(* calc_missing is false as we're checking an instantiation of the original list *)
L.d_decrease_indent 1;
res
| Some iter1' -> (* Only consider implications between identical listsegs for now *)
let elist2 = List.map ~f:(fun e -> Sil.exp_sub (snd subs) e) elist2 in
(* force instantiation of existentials *)
let subs' =
exp_list_imply tenv calc_missing subs
(iF2:: oB2:: oF2:: iB2:: elist2) (iF2:: oB2:: oF2:: iB2:: elist2) in
let prop1' = Prop.prop_iter_remove_curr_then_to_prop tenv iter1'
in (subs', prop1')
)
)
(** Check that [sigma1] implies [sigma2] and return two substitution
instantiations for the primed variables of [sigma1] and [sigma2]
and a frame. Raise IMPL_FALSE if the implication cannot be
proven. *)
and sigma_imply tenv calc_index_frame calc_missing subs prop1 sigma2 : (subst2 * Prop.normal Prop.t) =
let is_constant_string_class subs = function (* if the hpred represents a constant string, return the string *)
| Sil.Hpointsto (_e2, _, _) ->
let e2 = Sil.exp_sub (snd subs) _e2 in
(match e2 with
| Exp.Const (Const.Cstr s) -> Some (s, true)
| Exp.Const (Const.Cclass c) -> Some (Ident.name_to_string c, false)
| _ -> None)
| _ -> None in
let mk_constant_string_hpred s = (* create an hpred from a constant string *)
let len = IntLit.of_int (1 + String.length s) in
let root = Exp.Const (Const.Cstr s) in
let sexp =
let index = Exp.int (IntLit.of_int (String.length s)) in
match !Config.curr_language with
| Config.Clang ->
Sil.Earray
(Exp.int len, [(index, Sil.Eexp (Exp.zero, Sil.inst_none))], Sil.inst_none)
| Config.Java ->
let mk_fld_sexp s =
let fld = Fieldname.Java.from_string s in
let se = Sil.Eexp (Exp.Var (Ident.create_fresh Ident.kprimed), Sil.Inone) in
(fld, se) in
let fields = ["java.lang.String.count"; "java.lang.String.hash";
"java.lang.String.offset"; "java.lang.String.value"] in
Sil.Estruct (List.map ~f:mk_fld_sexp fields, Sil.inst_none) in
let const_string_texp =
match !Config.curr_language with
| Config.Clang ->
Exp.Sizeof {typ=Typ.mk (Tarray (Typ.mk (Tint Typ.IChar),
Some len, Some (IntLit.of_int 1)));
nbytes=None; dynamic_length=None; subtype=Subtype.exact}
| Config.Java ->
let object_type = Typ.Name.Java.from_string "java.lang.String" in
Exp.Sizeof {typ=Typ.mk (Tstruct object_type);
nbytes=None; dynamic_length=None; subtype=Subtype.exact} in
Sil.Hpointsto (root, sexp, const_string_texp) in
let mk_constant_class_hpred s = (* creat an hpred from a constant class *)
let root = Exp.Const (Const.Cclass (Ident.string_to_name s)) in
let sexp = (* TODO: add appropriate fields *)
Sil.Estruct
([(Fieldname.Java.from_string "java.lang.Class.name",
Sil.Eexp ((Exp.Const (Const.Cstr s), Sil.Inone)))], Sil.inst_none) in
let class_texp =
let class_type = Typ.Name.Java.from_string "java.lang.Class" in
Exp.Sizeof {typ=Typ.mk (Tstruct class_type);
nbytes=None; dynamic_length=None; subtype=Subtype.exact} in
Sil.Hpointsto (root, sexp, class_texp) in
try
(match move_primed_lhs_from_front subs sigma2 with
| [] ->
L.d_strln "Final Implication";
d_impl subs (prop1, Prop.prop_emp);
(subs, prop1)
| hpred2 :: sigma2' ->
L.d_strln "Current Implication";
d_impl subs (prop1, Prop.normalize tenv (Prop.from_sigma (hpred2 :: sigma2')));
L.d_ln ();
L.d_ln ();
let normal_case hpred2' =
let (subs', prop1') =
try
L.d_increase_indent 1;
let res =
decrease_indent_when_exception
(fun () -> hpred_imply tenv calc_index_frame calc_missing subs prop1 sigma2 hpred2') in
L.d_decrease_indent 1;
res
with IMPL_EXC _ when calc_missing ->
begin
match is_constant_string_class subs hpred2' with
| Some (s, is_string) -> (* allocate constant string hpred1', do implication, then add hpred1' as missing *)
let hpred1' = if is_string then mk_constant_string_hpred s else mk_constant_class_hpred s in
let prop1' =
Prop.normalize tenv (Prop.set prop1 ~sigma:(hpred1' :: prop1.Prop.sigma)) in
let subs', frame_prop = hpred_imply tenv calc_index_frame calc_missing subs prop1' sigma2 hpred2' in
(* ProverState.add_missing_sigma [hpred1']; *)
subs', frame_prop
| None ->
let subs' = match hpred2' with
| Sil.Hpointsto (e2, se2, te2) ->
let typ2 = Exp.texp_to_typ (Some (Typ.mk Tvoid)) te2 in
sexp_imply_nolhs tenv e2 calc_missing subs se2 typ2
| _ -> subs in
ProverState.add_missing_sigma [hpred2'];
subs', prop1
end in
L.d_increase_indent 1;
let res =
decrease_indent_when_exception
(fun () -> sigma_imply tenv calc_index_frame calc_missing subs' prop1' sigma2') in
L.d_decrease_indent 1;
res in
(match hpred2 with
| Sil.Hpointsto(_e2, se2, t) ->
let changed, calc_index_frame', hpred2' = expand_hpred_pointer tenv calc_index_frame (Sil.Hpointsto (Prop.exp_normalize_noabs tenv (snd subs) _e2, se2, t)) in
if changed
then sigma_imply tenv calc_index_frame' calc_missing subs prop1 (hpred2' :: sigma2') (* calc_index_frame=true *)
else normal_case hpred2'
| _ -> normal_case hpred2)
)
with IMPL_EXC (s, _, _) when calc_missing ->
L.d_strln ("Adding rhs as missing: " ^ s);
ProverState.add_missing_sigma sigma2;
subs, prop1
let prepare_prop_for_implication tenv (_, sub2) pi1 sigma1 =
let pi1' = (Prop.pi_sub sub2 (ProverState.get_missing_pi ())) @ pi1 in
let sigma1' = (Prop.sigma_sub sub2 (ProverState.get_missing_sigma ())) @ sigma1 in
let ep = Prop.set Prop.prop_emp ~sub:sub2 ~sigma:sigma1' ~pi:pi1' in
Prop.normalize tenv ep
let imply_pi tenv calc_missing (sub1, sub2) prop pi2 =
let do_atom a =
let a' = Sil.atom_sub sub2 a in
try
if not (check_atom tenv prop a')
then raise (IMPL_EXC ("rhs atom missing in lhs", (sub1, sub2), (EXC_FALSE_ATOM a')))
with
| IMPL_EXC _ when calc_missing ->
L.d_str "imply_pi: adding missing atom "; Sil.d_atom a; L.d_ln ();
ProverState.add_missing_pi a in
List.iter ~f:do_atom pi2
let imply_atom tenv calc_missing (sub1, sub2) prop a =
imply_pi tenv calc_missing (sub1, sub2) prop [a]
(** Check pure implications before looking at the spatial part. Add
necessary instantiations for equalities and check that instantiations
are possible for disequalities. *)
let rec pre_check_pure_implication tenv calc_missing subs pi1 pi2 =
match pi2 with
| [] -> subs
| (Sil.Aeq (e2_in, f2_in) as a) :: pi2' when not (Prop.atom_is_inequality a) ->
let e2, f2 = Sil.exp_sub (snd subs) e2_in, Sil.exp_sub (snd subs) f2_in in
if Exp.equal e2 f2 then pre_check_pure_implication tenv calc_missing subs pi1 pi2'
else
(match e2, f2 with
| Exp.Var v2, f2
when Ident.is_primed v2 (* && not (Sil.mem_sub v2 (snd subs)) *) ->
(* The commented-out condition should always hold. *)
let sub2' = extend_sub (snd subs) v2 f2 in
pre_check_pure_implication tenv calc_missing (fst subs, sub2') pi1 pi2'
| e2, Exp.Var v2
when Ident.is_primed v2 (* && not (Sil.mem_sub v2 (snd subs)) *) ->
(* The commented-out condition should always hold. *)
let sub2' = extend_sub (snd subs) v2 e2 in
pre_check_pure_implication tenv calc_missing (fst subs, sub2') pi1 pi2'
| _ ->
let pi1' = Prop.pi_sub (fst subs) pi1 in
let prop_for_impl = prepare_prop_for_implication tenv subs pi1' [] in
imply_atom tenv calc_missing subs prop_for_impl (Sil.Aeq (e2_in, f2_in));
pre_check_pure_implication tenv calc_missing subs pi1 pi2'
)
| (Sil.Aneq (e, _) | Apred (_, e :: _) | Anpred (_, e :: _)) :: _
when not calc_missing && (match e with Var v -> not (Ident.is_primed v) | _ -> true) ->
raise (IMPL_EXC ("ineq e2=f2 in rhs with e2 not primed var",
(Sil.sub_empty, Sil.sub_empty), EXC_FALSE))
| (Sil.Aeq _ | Aneq _ | Apred _ | Anpred _) :: pi2' ->
pre_check_pure_implication tenv calc_missing subs pi1 pi2'
(** Perform the array bound checks delayed (to instantiate variables) by the prover.
If there is a provable violation of the array bounds, set the prover status to Bounds_check
and make the proof fail. *)
let check_array_bounds tenv (sub1, sub2) prop =
let check_failed atom =
ProverState.checks := Bounds_check :: !ProverState.checks;
L.d_str_color Red "bounds_check failed: provable atom: "; Sil.d_atom atom; L.d_ln();
if (not Config.bound_error_allowed_in_procedure_call) then
raise (IMPL_EXC ("bounds check", (sub1, sub2), EXC_FALSE)) in
let fail_if_le e' e'' =
let lt_ineq = Prop.mk_inequality tenv (Exp.BinOp(Binop.Le, e', e'')) in
if check_atom tenv prop lt_ineq then check_failed lt_ineq in
let check_bound = function
| ProverState.BClen_imply (len1_, len2_, _indices2) ->
let len1 = Sil.exp_sub sub1 len1_ in
let len2 = Sil.exp_sub sub2 len2_ in
(* L.d_strln_color Orange "check_bound ";
Sil.d_exp len1; L.d_str " "; Sil.d_exp len2; L.d_ln(); *)
let indices_to_check = match len2 with
| _ -> [Exp.BinOp(Binop.PlusA, len2, Exp.minus_one)] (* only check len *) in
List.iter ~f:(fail_if_le len1) indices_to_check
| ProverState.BCfrom_pre _atom ->
let atom_neg = atom_negate tenv (Sil.atom_sub sub2 _atom) in
(* L.d_strln_color Orange "BCFrom_pre"; Sil.d_atom atom_neg; L.d_ln (); *)
if check_atom tenv prop atom_neg then check_failed atom_neg in
List.iter ~f:check_bound (ProverState.get_bounds_checks ())
(** [check_implication_base] returns true if [prop1|-prop2],
ignoring the footprint part of the props *)
let check_implication_base pname tenv check_frame_empty calc_missing prop1 prop2 =
try
ProverState.reset prop1 prop2;
let filter (id, e) =
Ident.is_normal id && Sil.fav_for_all (Sil.exp_fav e) Ident.is_normal in
let sub1_base =
Sil.sub_filter_pair ~f:filter prop1.Prop.sub in
let pi1, pi2 = Prop.get_pure prop1, Prop.get_pure prop2 in
let sigma1, sigma2 = prop1.Prop.sigma, prop2.Prop.sigma in
let subs = pre_check_pure_implication tenv calc_missing (prop1.Prop.sub, sub1_base) pi1 pi2 in
let pi2_bcheck, pi2_nobcheck = (* find bounds checks implicit in pi2 *)
List.partition_tf ~f:ProverState.atom_is_array_bounds_check pi2 in
List.iter ~f:(fun a -> ProverState.add_bounds_check (ProverState.BCfrom_pre a)) pi2_bcheck;
L.d_strln "pre_check_pure_implication";
L.d_strln "pi1:";
L.d_increase_indent 1; Prop.d_pi pi1; L.d_decrease_indent 1; L.d_ln ();
L.d_strln "pi2:";
L.d_increase_indent 1; Prop.d_pi pi2; L.d_decrease_indent 1; L.d_ln ();
if pi2_bcheck <> []
then (L.d_str "pi2 bounds checks: "; Prop.d_pi pi2_bcheck; L.d_ln ());
L.d_strln "returns";
L.d_strln "sub1: ";
L.d_increase_indent 1; Prop.d_sub (fst subs); L.d_decrease_indent 1; L.d_ln ();
L.d_strln "sub2: ";
L.d_increase_indent 1; Prop.d_sub (snd subs); L.d_decrease_indent 1; L.d_ln ();
let (sub1, sub2), frame_prop = sigma_imply tenv false calc_missing subs prop1 sigma2 in
let pi1' = Prop.pi_sub sub1 pi1 in
let sigma1' = Prop.sigma_sub sub1 sigma1 in
L.d_ln ();
let prop_for_impl = prepare_prop_for_implication tenv (sub1, sub2) pi1' sigma1' in
(* only deal with pi2 without bound checks *)
imply_pi tenv calc_missing (sub1, sub2) prop_for_impl pi2_nobcheck;
(* handle implicit bound checks, plus those from array_len_imply *)
check_array_bounds tenv (sub1, sub2) prop_for_impl;
L.d_strln "Result of Abduction";
L.d_increase_indent 1; d_impl (sub1, sub2) (prop1, prop2); L.d_decrease_indent 1; L.d_ln ();
L.d_strln"returning TRUE";
let frame = frame_prop.Prop.sigma in
if check_frame_empty && frame <> [] then raise (IMPL_EXC("frame not empty", subs, EXC_FALSE));
Some ((sub1, sub2), frame)
with
| IMPL_EXC (s, subs, body) ->
d_impl_err (s, subs, body);
None
| MISSING_EXC s ->
L.d_strln ("WARNING: footprint failed to find MISSING because: " ^ s);
None
| (Exceptions.Abduction_case_not_implemented _ as exn) ->
Reporting.log_error_deprecated pname exn;
None
type implication_result =
| ImplOK of
(check list * Sil.subst * Sil.subst * Sil.hpred list * (Sil.atom list) * (Sil.hpred list) *
(Sil.hpred list) * (Sil.hpred list) * ((Exp.t * Exp.t) list) * ((Exp.t * Exp.t) list))
| ImplFail of check list
(** [check_implication_for_footprint p1 p2] returns
[Some(sub, frame, missing)] if [sub(p1 * missing) |- sub(p2 * frame)]
where [sub] is a substitution which instantiates the
primed vars of [p1] and [p2], which are assumed to be disjoint. *)
let check_implication_for_footprint pname tenv p1 (p2: Prop.exposed Prop.t) =
let check_frame_empty = false in
let calc_missing = true in
match check_implication_base pname tenv check_frame_empty calc_missing p1 p2 with
| Some ((sub1, sub2), frame) ->
ImplOK (!ProverState.checks, sub1, sub2, frame, ProverState.get_missing_pi (), ProverState.get_missing_sigma (), ProverState.get_frame_fld (), ProverState.get_missing_fld (), ProverState.get_frame_typ (), ProverState.get_missing_typ ())
| None -> ImplFail !ProverState.checks
(** [check_implication p1 p2] returns true if [p1|-p2] *)
let check_implication pname tenv p1 p2 =
let check p1 p2 =
let check_frame_empty = true in
let calc_missing = false in
match check_implication_base pname tenv check_frame_empty calc_missing p1 p2 with
| Some _ -> true
| None -> false in
check p1 p2 &&
(if !Config.footprint then check (Prop.normalize tenv (Prop.extract_footprint p1)) (Prop.extract_footprint p2) else true)
(** {2 Cover: miminum set of pi's whose disjunction is equivalent to true} *)
(** check if the pi's in [cases] cover true *)
let is_cover tenv cases =
let cnt = ref 0 in (* counter for timeout checks, as this function can take exponential time *)
let check () =
incr cnt;
if Int.equal (!cnt mod 100) 0 then SymOp.check_wallclock_alarm () in
let rec _is_cover acc_pi cases =
check ();
match cases with
| [] -> check_inconsistency_pi tenv acc_pi
| (pi, _):: cases' ->
List.for_all ~f:(fun a -> _is_cover ((atom_negate tenv a) :: acc_pi) cases') pi in
_is_cover [] cases
exception NO_COVER
(** Find miminum set of pi's in [cases] whose disjunction covers true *)
let find_minimum_pure_cover tenv cases =
let cases =
let compare (pi1, _) (pi2, _) = Int.compare (List.length pi1) (List.length pi2)
in List.sort ~cmp:compare cases in
let rec grow seen todo = match todo with
| [] -> raise NO_COVER
| (pi, x):: todo' ->
if is_cover tenv ((pi, x):: seen) then (pi, x):: seen
else grow ((pi, x):: seen) todo' in
let rec _shrink seen todo = match todo with
| [] -> seen
| (pi, x):: todo' ->
if is_cover tenv (seen @ todo') then _shrink seen todo'
else _shrink ((pi, x):: seen) todo' in
let shrink cases =
if List.length cases > 2 then _shrink [] cases
else cases
in try Some (shrink (grow [] cases))
with NO_COVER -> None
(*
(** Check [prop |- e1<e2]. Result [false] means "don't know". *)
let check_lt prop e1 e2 =
let e1_lt_e2 = Exp.BinOp (Binop.Lt, e1, e2) in
check_atom prop (Prop.mk_inequality e1_lt_e2)
let filter_ptsto_lhs sub e0 = function
| Sil.Hpointsto (e, _, _) -> if Exp.equal e0 (Sil.exp_sub sub e) then Some () else None
| _ -> None
*)