You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

700 lines
28 KiB

(*
* Copyright (c) 2009 - 2013 Monoidics ltd.
* Copyright (c) 2013 - present Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*)
module L = Logging
module F = Format
open Utils
(* =============== START of module Process =============== *)
module type Process_signature =
sig
type t
type val_t = (Procname.t * Cg.in_out_calls) (** type of values sent to children *)
val get_remaining_processes : unit -> t list (** return the list of remaining processes *)
val kill_remaining_processes : unit -> unit (** kill the remaining processes *)
val kill_process : t -> unit
val get_node_calls : t -> val_t option
val spawn_fun : (val_t -> Specs.summary) -> t
val send_to_child : t -> val_t -> unit
val receive_from_child : unit -> t * Specs.summary
val get_last_input : t -> val_t
end
(** Implementation of the process interface for the simulator (processes are implemented just as functions) *)
module Process_simulate : Process_signature = struct
type t = int
type val_t = (Procname.t * Cg.in_out_calls)
let count = ref 0
let funs = Hashtbl.create 17
let spawn_fun f =
incr count;
Hashtbl.add funs !count (f, None);
!count
let get_remaining_processes () =
let ids = ref [] in
Hashtbl.iter (fun id _ -> ids := id :: !ids) funs;
list_rev !ids
let kill_remaining_processes () =
Hashtbl.clear funs
let kill_process id =
Hashtbl.remove funs id
let get_node_calls p =
try
match Hashtbl.find funs p with
| (f, Some (x, res)) -> Some x
| _ -> None
with Not_found -> None
let send_to_child id (x : val_t) =
let (f, _) = Hashtbl.find funs id in
Hashtbl.replace funs id (f, Some (x, f x))
let receive_from_child () : t * Specs.summary =
let some_id = ref (- 1) in
Hashtbl.iter (fun id _ -> some_id := id) funs;
match Hashtbl.find funs !some_id with
| (f, Some (x, res)) -> (!some_id, res)
| _ -> assert false
let get_last_input id =
match Hashtbl.find funs id with
| (f, Some (x, res)) -> x
| _ -> assert false
end
(** Implementation of the process interface using fork and pipes *)
module Process_fork : Process_signature = struct
let shared_in, shared_out = (* shared channel from children to parent *)
let (read, write) = Unix.pipe ()
in Unix.in_channel_of_descr read, Unix.out_channel_of_descr write
type val_t = Procname.t * Cg.in_out_calls
type pipe_str =
{ p2c_in : in_channel;
p2c_out : out_channel;
c2p_in : in_channel;
c2p_out : out_channel;
mutable input : val_t option;
mutable pid : int }
type t = pipe_str
let processes = ref []
let get_node_calls p_str =
p_str.input
let send_to_child p_str (v : val_t) =
p_str.input <- Some v;
Marshal.to_channel p_str.p2c_out v [];
flush p_str.p2c_out
let incr_process_count p_str =
processes := p_str :: !processes
(* ; F.printf "@.Number of processes: %d@." (list_length !processes) *)
let decr_process_count pid =
processes := list_filter (fun p_str' -> pid != p_str'.pid) !processes
(* ; F.printf "@.Number of processes: %d@." (list_length !processes) *)
let kill_process p_str =
L.out "killing process %d@." p_str.pid;
Unix.kill p_str.pid Sys.sigkill;
Unix.close (Unix.descr_of_in_channel p_str.p2c_in);
Unix.close (Unix.descr_of_out_channel p_str.p2c_out);
Unix.close (Unix.descr_of_in_channel p_str.c2p_in);
Unix.close (Unix.descr_of_out_channel p_str.c2p_out);
ignore (Unix.waitpid [] p_str.pid);
decr_process_count p_str.pid
let get_remaining_processes () =
!processes
let kill_remaining_processes () =
L.out "@.%d remaining processes@." (list_length !processes);
list_iter kill_process !processes
let rec receive_from_child () : t * Specs.summary =
let sender_pid = input_binary_int shared_in in
try
let p_str = (* find which process sent its pid on the shared channel *)
list_find (fun p_str -> p_str.pid = sender_pid) !processes in
let (summ : Specs.summary) = Marshal.from_channel p_str.c2p_in in
(p_str, summ)
with Not_found ->
L.err "@.ERROR: process %d was killed while trying to communicate with the parent@." sender_pid;
receive_from_child () (* wait for communication from the next process *)
let receive_from_parent p_str : val_t =
Marshal.from_channel p_str.p2c_in
let send_to_parent (p_str: t) (summ: Specs.summary) =
output_binary_int shared_out p_str.pid; (* tell parent I'm sending the result *)
flush shared_out;
Marshal.to_channel p_str.c2p_out summ [];
flush p_str.c2p_out
let get_last_input p_str =
match p_str.input with
| None -> assert false
| Some x -> x
let spawn_fun (service_f : val_t -> Specs.summary) =
let p_str =
let (p2c_read, p2c_write) = Unix.pipe () in
let (c2p_read, c2p_write) = Unix.pipe () in
(* Unix.set_nonblock c2p_read; *)
{ p2c_in = Unix.in_channel_of_descr p2c_read;
p2c_out = Unix.out_channel_of_descr p2c_write;
c2p_in = Unix.in_channel_of_descr c2p_read;
c2p_out = Unix.out_channel_of_descr c2p_write;
input = None;
pid = 0 } in
let colour = L.next_colour () in
match Unix.fork () with
| 0 ->
Config.in_child_process := true;
p_str.pid <- Unix.getpid ();
L.change_terminal_colour colour;
L.out "@.STARTING PROCESS %d@." p_str.pid;
let rec loop () =
let n = receive_from_parent p_str in
let res = service_f n in
send_to_parent p_str res;
loop () in
loop ()
| cid ->
p_str.pid <- cid;
incr_process_count p_str;
p_str
end
(* =============== END of module Process =============== *)
let parallel_mode = ref false
(* =============== START of module Timing_log =============== *)
module Timing_log : sig
val event_start : string -> unit
val event_finish : string -> unit
val print_timing : unit -> unit
end = struct
type ev_kind = START | FINISH
type event = { time : float; kind : ev_kind; name : string }
let active = ref []
let log = ref []
let bogus_time = - 1000.0
let bogus_event = { time = bogus_time; kind = START; name ="" }
let last_event = ref bogus_event
let initial_time = ref bogus_time
let total_procs_time = ref 0.0
let total_cores_time = ref 0.0
let reset () =
active := [];
log := [];
last_event := bogus_event;
initial_time := bogus_time;
total_procs_time := 0.0;
total_cores_time := 0.0
let expand_log event =
let elapsed = event.time -. !last_event.time in
let num_procs = list_length !active in
let num_cores = min num_procs !Config.num_cores in
match Pervasives.(=) !last_event bogus_event with
| true ->
last_event := event;
initial_time := event.time;
| false ->
let label =
list_fold_left (fun s name -> "\\n" ^ name ^s) "" (list_rev !active) in
if !Config.write_dotty then log := (!last_event, label, event)::!log;
total_procs_time := (float_of_int num_procs) *. elapsed +. !total_procs_time;
total_cores_time := (float_of_int num_cores) *. elapsed +. !total_cores_time;
last_event := event
let event_start s =
expand_log { time = (Unix.gettimeofday ()); kind = START; name = s };
active := s :: !active;
L.err " %d cores active@." (list_length !active)
let event_finish s =
expand_log { time = (Unix.gettimeofday ()); kind = FINISH; name = s };
active := list_filter (fun s' -> s' <> s) !active
let print_timing () =
let total_time = !last_event.time -. !initial_time in
(*
let avg_num_proc = !total_procs_time /. total_time in
let avg_num_cores = !total_cores_time /. total_time in
*)
if !Config.write_dotty then begin
let pp_event fmt event = match event.kind with
| START -> F.fprintf fmt "\"%fs START %s\"" event.time event.name
| FINISH -> F.fprintf fmt "\"%fs FINISH %s\"" event.time event.name in
let pp_edge fmt (event1, label, event2) =
let color = match event1.kind with
| START -> "green"
| FINISH -> "red" in
F.fprintf fmt "%a -> %a [label=\"{%fs}%s\",color=\"%s\"]\n" pp_event event1 pp_event event2 (event2.time -. event1.time) label color in
let outc = open_out (DB.filename_to_string (DB.Results_dir.path_to_filename DB.Results_dir.Abs_root ["timing.dot"])) in
let fmt = F.formatter_of_out_channel outc in
F.fprintf fmt "digraph {\n";
list_iter (pp_edge fmt) !log;
F.fprintf fmt "}@.";
close_out outc;
end;
reset ();
L.err "Analysis time: %fs@." total_time
end
(* =============== END of module Timing_log =============== *)
(** print the timing stats, and generate timing.dot if in dotty mode *)
let print_timing () =
Timing_log.print_timing ()
module WeightedPnameSet =
Set.Make(struct
type t = (Procname.t * Cg.in_out_calls)
let compare ((pn1: Procname.t), (calls1: Cg.in_out_calls)) ((pn2: Procname.t), (calls2: Cg.in_out_calls)) =
let n = int_compare calls1.Cg.in_calls calls2.Cg.in_calls in if n != 0 then n
else Procname.compare pn1 pn2
end)
let pp_weightedpnameset fmt set =
let f (pname, weight) = F.fprintf fmt "%a@ " Procname.pp pname in
WeightedPnameSet.iter f set
let compute_weighed_pnameset gr =
let pnameset = ref WeightedPnameSet.empty in
let add_pname_calls (pn, calls) =
pnameset := WeightedPnameSet.add (pn, calls) !pnameset in
list_iter add_pname_calls (Cg.get_nodes_and_calls gr);
!pnameset
(* Return true if there are no children of [pname] whose specs
have changed since [pname] was last analyzed. *)
let proc_is_up_to_date gr pname =
match Specs.get_summary pname with
| None -> false
| Some summary ->
let filter dependent_proc = Specs.get_timestamp summary =
Procname.Map.find dependent_proc summary.Specs.dependency_map in
let res =
Specs.is_inactive pname &&
Procname.Set.for_all filter (Cg.get_defined_children gr pname) in
res
(** Return the list of procedures which should perform a phase
transition from [FOOTPRINT] to [RE_EXECUTION] *)
let should_perform_transition gr proc_name : Procname.t list =
let recursive_dependents = Cg.get_recursive_dependents gr proc_name in
let recursive_dependents_plus_self = Procname.Set.add proc_name recursive_dependents in
let should_transition =
Specs.get_phase proc_name == Specs.FOOTPRINT &&
Procname.Set.for_all (fun pn -> Specs.is_inactive pn) recursive_dependents &&
Procname.Set.for_all (proc_is_up_to_date gr) recursive_dependents in
if should_transition then Procname.Set.elements recursive_dependents_plus_self
else []
(** Perform the transition from [FOOTPRINT] to [RE_EXECUTION] in spec table *)
let transition_footprint_re_exe proc_name joined_pres =
L.out "Transition %a from footprint to re-exe@." Procname.pp proc_name;
let summary = Specs.get_summary_unsafe proc_name in
let summary' =
if !Config.only_footprint then
{ summary with
Specs.phase = Specs.RE_EXECUTION;
}
else
{ summary with
Specs.timestamp = 0;
Specs.phase = Specs.RE_EXECUTION;
Specs.dependency_map = Specs.re_initialize_dependency_map summary.Specs.dependency_map;
Specs.payload =
let specs =
list_map
(fun jp ->
Specs.spec_normalize
{ Specs.pre = jp;
Specs.posts = [];
Specs.visited = Specs.Visitedset.empty })
joined_pres in
Specs.PrePosts specs
} in
Specs.add_summary proc_name summary'
module SpecMap = Map.Make (struct
type t = Prop.normal Specs.Jprop.t
let compare = Specs.Jprop.compare
end)
(** Update the specs of the current proc after the execution of one phase *)
let update_specs proc_name (new_specs : Specs.NormSpec.t list) : Specs.NormSpec.t list * bool =
let new_specs = Specs.normalized_specs_to_specs new_specs in
let phase = Specs.get_phase proc_name in
let old_specs = Specs.get_specs proc_name in
let changed = ref false in
let current_specs =
ref
(list_fold_left
(fun map spec ->
SpecMap.add
spec.Specs.pre
(Paths.PathSet.from_renamed_list spec.Specs.posts, spec.Specs.visited) map)
SpecMap.empty old_specs) in
let re_exe_filter old_spec = (* filter out pres which failed re-exe *)
if phase == Specs.RE_EXECUTION && not (list_exists (fun new_spec -> Specs.Jprop.equal new_spec.Specs.pre old_spec.Specs.pre) new_specs)
then begin
changed:= true;
L.out "Specs changed: removing pre of spec@\n%a@." (Specs.pp_spec pe_text None) old_spec;
current_specs := SpecMap.remove old_spec.Specs.pre !current_specs end
else () in
let add_spec spec = (* add a new spec by doing union of the posts *)
try
let old_post, old_visited = SpecMap.find spec.Specs.pre !current_specs in
let new_post, new_visited =
Paths.PathSet.union
old_post
(Paths.PathSet.from_renamed_list spec.Specs.posts),
Specs.Visitedset.union old_visited spec.Specs.visited in
if not (Paths.PathSet.equal old_post new_post) then begin
changed := true;
L.out "Specs changed: added new post@\n%a@." (Propset.pp pe_text (Specs.Jprop.to_prop spec.Specs.pre)) (Paths.PathSet.to_propset new_post);
current_specs := SpecMap.add spec.Specs.pre (new_post, new_visited) (SpecMap.remove spec.Specs.pre !current_specs) end
with Not_found ->
changed := true;
L.out "Specs changed: added new pre@\n%a@." (Specs.Jprop.pp_short pe_text) spec.Specs.pre;
current_specs :=
SpecMap.add
spec.Specs.pre
((Paths.PathSet.from_renamed_list spec.Specs.posts), spec.Specs.visited)
!current_specs in
let res = ref [] in
let convert pre (post_set, visited) =
res :=
Specs.spec_normalize
{ Specs.pre = pre;
Specs.posts = Paths.PathSet.elements post_set;
Specs.visited = visited }:: !res in
list_iter re_exe_filter old_specs; (* filter out pre's which failed re-exe *)
list_iter add_spec new_specs; (* add new specs *)
SpecMap.iter convert !current_specs;
!res,!changed
let tot_procs = ref 0 (** Total number of procedures to analyze *)
let num_procs_done = ref 0 (** Number of procedures done *)
let wpnames_todo = ref WeightedPnameSet.empty (** Weighted pnames (procedure names with weight) to do *)
let tot_files = ref 1 (** Total number of files in all the clusters *)
let tot_files_done = ref 0 (** Total number of files done so far *)
let this_cluster_files = ref 1 (** Number of files in the current cluster *)
(** Return true if [pname] is done and requires no further analysis *)
let proc_is_done gr pname =
not (WeightedPnameSet.mem (pname, Cg.get_calls gr pname) !wpnames_todo)
(** flag to activate tracing of the parallel algorithm *)
let trace = ref false
(** Return true if [pname] has just become done *)
let procs_become_done gr pname : Procname.t list =
let recursive_dependents = Cg.get_recursive_dependents gr pname in
let nonrecursive_dependents = Cg.get_nonrecursive_dependents gr pname in
let summary = Specs.get_summary_unsafe pname in
let is_done = Specs.get_timestamp summary <> 0 &&
Specs.is_inactive pname &&
(!Config.only_footprint || Specs.get_phase pname == Specs.RE_EXECUTION) &&
Procname.Set.for_all (proc_is_done gr) nonrecursive_dependents &&
Procname.Set.for_all (proc_is_up_to_date gr) recursive_dependents in
if !trace then L.err "proc is%s done@." (if is_done then "" else " not");
if is_done
then
let procs_to_remove =
(* the proc itself if not recursive, otherwise all the recursive circle *)
Procname.Set.add pname recursive_dependents in
Procname.Set.elements procs_to_remove
else []
let post_process_procs exe_env procs_done =
let check_no_specs pn =
if Specs.get_specs pn = [] then begin
Errdesc.warning_err
(Specs.get_summary_unsafe pn).Specs.attributes.ProcAttributes.loc
"No specs found for %a@." Procname.pp pn
end in
let cg = Exe_env.get_cg exe_env in
list_iter (fun pn ->
let elem = (pn, Cg.get_calls cg pn) in
if WeightedPnameSet.mem elem !wpnames_todo then
begin
incr num_procs_done;
wpnames_todo := WeightedPnameSet.remove (pn, Cg.get_calls cg pn) !wpnames_todo;
let whole_seconds = false in
check_no_specs pn;
Printer.proc_write_log whole_seconds (Exe_env.get_cfg exe_env pn) pn
end
) procs_done
(** Activate a check which ensures that multi-core mode gives the same result as one-core.
If true, detect when a dependent proc is active (analyzed concurrently)
and in that case wait for a process to terminate next *)
let one_core_compatibility_mode = ref true
(** Find the max string in the [set] which satisfies [filter], and count the number of attempts.
Precedence is given to strings in [priority_set] *)
let filter_max exe_env cg filter set priority_set =
let rec find_max n filter set =
let elem = WeightedPnameSet.max_elt set in
let check_one_core_compatibility () =
if !one_core_compatibility_mode &&
Procname.Set.exists (fun child -> Specs.is_active child) (Cg.get_dependents cg (fst elem))
then raise Not_found in
check_one_core_compatibility ();
if filter elem then
begin
let proc_name = fst elem in
Config.footprint := Specs.get_phase proc_name = Specs.FOOTPRINT;
let file_name = Exe_env.get_source exe_env proc_name in
let action = if !Config.footprint then "Discovering" else "Verifying" in
let pp_cluster_info fmt () =
let files_done_previous_clusters = float_of_int !tot_files_done in
let ratio_procs_this_cluster = (float_of_int !num_procs_done) /. (float_of_int !tot_procs) in
let files_done_this_cluster = (float_of_int !this_cluster_files) *. ratio_procs_this_cluster in
let files_done = files_done_previous_clusters +. files_done_this_cluster in
let perc_total = 100. *. files_done /. (float_of_int !tot_files) in
F.fprintf fmt " (%3.2f%% total)" perc_total in
L.err "@\n**%s specs: %a file: %s@\n" action Procname.pp proc_name (DB.source_file_to_string file_name);
L.err " %d/%d procedures done%a@." !num_procs_done !tot_procs pp_cluster_info ();
elem
end
else
begin
find_max (n + 1) filter (WeightedPnameSet.remove elem set)
end in
try find_max 1 filter (WeightedPnameSet.inter set priority_set) (* try with priority elements first *)
with Not_found -> find_max 1 filter set
(** Handle timeout events *)
module Timeout : sig
val exe_timeout : int -> ('a -> 'b) -> 'a -> 'b option (* execute the function up to a given timeout given by the parameter *)
end = struct
let set_alarm nsecs =
match Config.os_type with
| Config.Unix | Config.Cygwin ->
ignore (Unix.setitimer Unix.ITIMER_REAL
{ Unix.it_interval = 3.0; (* try again after 3 seconds if the signal is lost *)
Unix.it_value = float_of_int nsecs })
| Config.Win32 ->
SymOp.set_wallclock_alarm nsecs
let unset_alarm () =
match Config.os_type with
| Config.Unix | Config.Cygwin -> set_alarm 0
| Config.Win32 -> SymOp.unset_wallclock_alarm ()
let pp_kind f = function
| TOtime ->
F.fprintf f "time"
| TOrecursion n ->
F.fprintf f "recursion %d" n
| TOsymops n ->
F.fprintf f "SymOps %d" n
let timeout_action _ =
unset_alarm ();
raise (Timeout_exe (TOtime))
let () = begin
match Config.os_type with
| Config.Unix | Config.Cygwin ->
Sys.set_signal Sys.sigvtalrm (Sys.Signal_handle timeout_action);
Sys.set_signal Sys.sigalrm (Sys.Signal_handle timeout_action)
| Config.Win32 ->
SymOp.set_wallclock_timeout_handler timeout_action;
ignore (Gc.create_alarm SymOp.check_wallclock_alarm) (* use the Gc alarm for periodic timeout checks *)
end
let exe_timeout iterations f x =
try
set_iterations iterations;
set_alarm (get_timeout_seconds ());
SymOp.set_alarm ();
let res = f x in
unset_alarm ();
SymOp.unset_alarm ();
Some res
with
| Timeout_exe kind ->
unset_alarm ();
SymOp.unset_alarm ();
Errdesc.warning_err (State.get_loc ()) "TIMEOUT: %a@." pp_kind kind;
None
| exe ->
unset_alarm ();
SymOp.unset_alarm ();
raise exe
end
module Process = Process_fork
(** Main algorithm responsible for driving the analysis of an Exe_env (set of procedures).
The algorithm computes dependencies between procedures, spawns processes if required,
propagates results, and handles fixpoints in the call graph. *)
let parallel_execution exe_env num_processes analyze_proc filter_out process_result : unit =
parallel_mode := num_processes > 1 || !Config.max_num_proc > 0;
let call_graph = Exe_env.get_cg exe_env in
let filter_initial (pname, w) =
let summary = Specs.get_summary_unsafe pname in
Specs.get_timestamp summary = 0 in
wpnames_todo := WeightedPnameSet.filter filter_initial (compute_weighed_pnameset call_graph);
let wpnames_address_of = (* subset of the procedures whose address is taken *)
let address_taken_of n =
Procname.Set.mem n (Cfg.get_priority_procnames (Exe_env.get_cfg exe_env n)) in
WeightedPnameSet.filter (fun (n, _) -> address_taken_of n) !wpnames_todo in
tot_procs := WeightedPnameSet.cardinal !wpnames_todo;
num_procs_done := 0;
let avail_num = ref num_processes (* number of processors available *) in
let max_timeout = ref 1 in
let wpname_can_be_analyzed (pname, weight) : bool = (* Return true if [pname] is not up to date and it can be analyzed right now *)
Specs.is_inactive pname &&
Procname.Set.for_all
(proc_is_done call_graph) (Cg.get_nonrecursive_dependents call_graph pname) &&
Procname.Set.for_all
(fun child -> Specs.is_inactive child) (Cg.get_defined_children call_graph pname) &&
(Specs.get_timestamp (Specs.get_summary_unsafe pname) = 0
|| not (proc_is_up_to_date call_graph pname)) in
let process_one_proc pname (calls: Cg.in_out_calls) =
DB.current_source :=
(Specs.get_summary_unsafe pname).Specs.attributes.ProcAttributes.loc.Location.file;
if !trace then
begin
let whole_seconds = false in
L.err "@[<v 3> *********** Summary of %a ***********@," Procname.pp pname;
L.err "%a@]@\n" (Specs.pp_summary pe_text whole_seconds) (Specs.get_summary_unsafe pname)
end;
if filter_out call_graph pname
then
post_process_procs exe_env [pname]
else
begin
Specs.set_status pname Specs.ACTIVE;
max_timeout := max (Specs.get_iterations pname) !max_timeout;
Specs.update_dependency_map pname;
if !parallel_mode then
let p_str = Process.spawn_fun (analyze_proc exe_env) in
Timing_log.event_start (Procname.to_string pname);
Process.send_to_child p_str (pname, calls);
decr avail_num
else
begin
Timing_log.event_start (Procname.to_string pname);
process_result exe_env (pname, calls) (analyze_proc exe_env (pname, calls));
Timing_log.event_finish (Procname.to_string pname)
end
end in
let wait_for_next_result () =
try
match Timeout.exe_timeout (2 * !max_timeout) Process.receive_from_child () with
| None ->
let remaining_procedures =
let procs = list_map Process.get_node_calls (Process.get_remaining_processes ()) in
list_map (function None -> assert false | Some x -> x) procs in
L.err "No process is responding: killing %d pending processes@." (list_length remaining_procedures);
Process.kill_remaining_processes ();
let do_proc (pname, calls) =
let prev_summary = Specs.get_summary_unsafe pname in
let timestamp = max 1 (prev_summary.Specs.timestamp) in
let stats = { prev_summary.Specs.stats with Specs.stats_timeout = true } in
let summ =
{ prev_summary with
Specs.stats = stats;
Specs.payload = Specs.PrePosts [];
Specs.timestamp = timestamp;
Specs.status = Specs.INACTIVE } in
process_result exe_env (pname, calls) summ;
Timing_log.event_finish (Procname.to_string pname);
incr avail_num in
list_iter do_proc remaining_procedures
| Some (p_str, summ) ->
let (pname, weight) = Process.get_last_input p_str in
(try
DB.current_source :=
(Specs.get_summary_unsafe pname).Specs.attributes.ProcAttributes.loc.Location.file;
process_result exe_env (pname, weight) summ
with exn -> assert false);
Timing_log.event_finish (Procname.to_string pname);
Process.kill_process p_str;
incr avail_num
with
| Sys_blocked_io -> () in
while not (WeightedPnameSet.is_empty !wpnames_todo) do
if !avail_num > 0 then
begin
if !trace then begin
let analyzable_pnames = WeightedPnameSet.filter wpname_can_be_analyzed !wpnames_todo in
L.err "Nodes todo: %a@\n" pp_weightedpnameset !wpnames_todo;
L.err "Analyzable procs: %a@\n" pp_weightedpnameset analyzable_pnames
end;
try
let pname, calls = filter_max exe_env call_graph wpname_can_be_analyzed !wpnames_todo wpnames_address_of in (** find max analyzable proc *)
process_one_proc pname calls
with Not_found -> (* no analyzable procs *)
if !avail_num < num_processes (* some other process is doing work *)
then wait_for_next_result ()
else
(L.err "Error: can't analyze any procs. Printing current spec table@\n@[<v>%a@]@." (Specs.pp_spec_table pe_text false) ();
raise (Failure "Stopping"))
end
else
wait_for_next_result ()
done
(** [parallel_iter_nodes cfg call_graph analyze_proc process_result filter_out]
executes [analyze_proc] in parallel as much as possible as allowed
by the call graph, and applies [process_result] to the result as
soon as it is returned by a child process. If [filter_out] returns
true, no execution. *)
let parallel_iter_nodes (exe_env: Exe_env.t) (_analyze_proc: Exe_env.t -> Procname.t -> 'a) (_process_result: Exe_env.t -> (Procname.t * Cg.in_out_calls) -> 'a -> unit) (filter_out: Cg.t -> Procname.t -> bool) : unit =
let analyze_proc exe_env pname = (* wrap _analyze_proc and handle exceptions *)
try _analyze_proc exe_env pname with
| exn ->
Reporting.log_error pname exn;
let prev_summary = Specs.get_summary_unsafe pname in
let timestamp = max 1 (prev_summary.Specs.timestamp) in
let stats = { prev_summary.Specs.stats with Specs.stats_timeout = true } in
let summ =
{ prev_summary with
Specs.stats = stats;
Specs.payload = Specs.PrePosts [];
Specs.timestamp = timestamp } in
summ in
let process_result exe_env (pname, calls) summary = (* wrap _process_result and handle exceptions *)
try _process_result exe_env (pname, calls) summary with
| exn ->
let err_name, _, mloco, _, _, _, _ = Exceptions.recognize_exception exn in
let err_str = "process_result raised " ^ (Localise.to_string err_name) in
L.err "Error: %s@." err_str;
let exn' = Exceptions.Internal_error (Localise.verbatim_desc err_str) in
Reporting.log_error pname exn';
post_process_procs exe_env [pname] in
let num_processes = if !Config.max_num_proc = 0 then !Config.num_cores else !Config.max_num_proc in
Unix.handle_unix_error (parallel_execution exe_env num_processes (fun exe_env (n, w) -> analyze_proc exe_env n) filter_out) process_result