|
|
|
|
(*
|
|
|
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
|
|
|
*
|
|
|
|
|
* This source code is licensed under the MIT license found in the
|
|
|
|
|
* LICENSE file in the root directory of this source tree.
|
|
|
|
|
*)
|
|
|
|
|
|
|
|
|
|
(* Proofs about a shallowly embedded concept of live variables *)
|
|
|
|
|
|
|
|
|
|
open HolKernel boolLib bossLib Parse;
|
|
|
|
|
open pred_setTheory;
|
|
|
|
|
open settingsTheory miscTheory llvmTheory llvm_propTheory;
|
|
|
|
|
|
|
|
|
|
new_theory "llvm_live";
|
|
|
|
|
|
|
|
|
|
numLib.prefer_num ();
|
|
|
|
|
|
|
|
|
|
Definition inc_pc_def:
|
|
|
|
|
inc_pc ip = ip with i := inc_bip ip.i
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* The set of program counters the given instruction and starting point can
|
|
|
|
|
* immediately reach, within a function *)
|
|
|
|
|
Definition instr_next_ips_def:
|
|
|
|
|
(instr_next_ips (Ret _) ip = {}) ∧
|
|
|
|
|
(instr_next_ips (Br _ l1 l2) ip =
|
|
|
|
|
{ <| f := ip.f; b := Some l; i := Phi_ip ip.b |> | l | l ∈ {l1; l2} }) ∧
|
|
|
|
|
(instr_next_ips (Invoke _ _ _ _ l1 l2) ip =
|
|
|
|
|
{ <| f := ip.f; b := Some l; i := Phi_ip ip.b |> | l | l ∈ {l1; l2} }) ∧
|
|
|
|
|
(instr_next_ips Unreachable ip = {}) ∧
|
|
|
|
|
(instr_next_ips (Sub _ _ _ _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Extractvalue _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Insertvalue _ _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Alloca _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Load _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Store _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Gep _ _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Ptrtoint _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Inttoptr _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Icmp _ _ _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Call _ _ _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Cxa_allocate_exn _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(* TODO: revisit throw when dealing with exceptions *)
|
|
|
|
|
(instr_next_ips (Cxa_throw _ _ _) ip = { }) ∧
|
|
|
|
|
(instr_next_ips (Cxa_begin_catch _ _) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Cxa_end_catch) ip = { inc_pc ip }) ∧
|
|
|
|
|
(instr_next_ips (Cxa_get_exception_ptr _ _) ip = { inc_pc ip })
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Inductive next_ips:
|
|
|
|
|
(∀prog ip i l.
|
|
|
|
|
get_instr prog ip (Inl i) ∧
|
|
|
|
|
l ∈ instr_next_ips i ip
|
|
|
|
|
⇒
|
|
|
|
|
next_ips prog ip l) ∧
|
|
|
|
|
(∀prog ip from_l phis.
|
|
|
|
|
get_instr prog ip (Inr (from_l, phis))
|
|
|
|
|
⇒
|
|
|
|
|
next_ips prog ip (inc_pc ip))
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* The path is a list of program counters that represent a statically feasible
|
|
|
|
|
* path through a function *)
|
|
|
|
|
Inductive good_path:
|
|
|
|
|
(∀prog. good_path prog []) ∧
|
|
|
|
|
|
|
|
|
|
(∀prog ip i.
|
|
|
|
|
get_instr prog ip i
|
|
|
|
|
⇒
|
|
|
|
|
good_path prog [ip]) ∧
|
|
|
|
|
|
|
|
|
|
(∀prog path ip1 ip2.
|
|
|
|
|
ip2 ∈ next_ips prog ip1 ∧
|
|
|
|
|
good_path prog (ip2::path)
|
|
|
|
|
⇒
|
|
|
|
|
good_path prog (ip1::ip2::path))
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition arg_to_regs_def:
|
|
|
|
|
(arg_to_regs (Constant _) = {}) ∧
|
|
|
|
|
(arg_to_regs (Variable r) = {r})
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* The registers that an instruction uses *)
|
|
|
|
|
Definition instr_uses_def:
|
|
|
|
|
(instr_uses (Ret (_, a)) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Br a _ _) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Invoke _ _ a targs _ _) =
|
|
|
|
|
arg_to_regs a ∪ BIGUNION (set (map (arg_to_regs o snd) targs))) ∧
|
|
|
|
|
(instr_uses Unreachable = {}) ∧
|
|
|
|
|
(instr_uses (Sub _ _ _ _ a1 a2) =
|
|
|
|
|
arg_to_regs a1 ∪ arg_to_regs a2) ∧
|
|
|
|
|
(instr_uses (Extractvalue _ (_, a) _) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Insertvalue _ (_, a1) (_, a2) _) =
|
|
|
|
|
arg_to_regs a1 ∪ arg_to_regs a2) ∧
|
|
|
|
|
(instr_uses (Alloca _ _ (_, a)) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Load _ _ (_, a)) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Store (_, a1) (_, a2)) =
|
|
|
|
|
arg_to_regs a1 ∪ arg_to_regs a2) ∧
|
|
|
|
|
(instr_uses (Gep _ _ (_, a) targs) =
|
|
|
|
|
arg_to_regs a ∪ BIGUNION (set (map (arg_to_regs o snd) targs))) ∧
|
|
|
|
|
(instr_uses (Ptrtoint _ (_, a) _) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Inttoptr _ (_, a) _) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Icmp _ _ _ a1 a2) =
|
|
|
|
|
arg_to_regs a1 ∪ arg_to_regs a2) ∧
|
|
|
|
|
(instr_uses (Call _ _ _ targs) =
|
|
|
|
|
BIGUNION (set (map (arg_to_regs o snd) targs))) ∧
|
|
|
|
|
(instr_uses (Cxa_allocate_exn _ a) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Cxa_throw a1 a2 a3) =
|
|
|
|
|
arg_to_regs a1 ∪ arg_to_regs a2 ∪ arg_to_regs a3) ∧
|
|
|
|
|
(instr_uses (Cxa_begin_catch _ a) = arg_to_regs a) ∧
|
|
|
|
|
(instr_uses (Cxa_end_catch) = { }) ∧
|
|
|
|
|
(instr_uses (Cxa_get_exception_ptr _ a) = arg_to_regs a)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition phi_uses_def:
|
|
|
|
|
phi_uses from_l (Phi _ _ entries) =
|
|
|
|
|
case alookup entries from_l of
|
|
|
|
|
| None => {}
|
|
|
|
|
| Some a => arg_to_regs a
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Inductive uses:
|
|
|
|
|
(∀prog ip i r.
|
|
|
|
|
get_instr prog ip (Inl i) ∧
|
|
|
|
|
r ∈ instr_uses i
|
|
|
|
|
⇒
|
|
|
|
|
uses prog ip r) ∧
|
|
|
|
|
(∀prog ip from_l phis r.
|
|
|
|
|
get_instr prog ip (Inr (from_l, phis)) ∧
|
|
|
|
|
r ∈ BIGUNION (set (map (phi_uses from_l) phis))
|
|
|
|
|
⇒
|
|
|
|
|
uses prog ip r)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(* The registers that an instruction assigns *)
|
|
|
|
|
Definition instr_assigns_def:
|
|
|
|
|
(instr_assigns (Invoke r _ _ _ _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Sub r _ _ _ _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Extractvalue r _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Insertvalue r _ _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Alloca r _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Load r _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Gep r _ _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Ptrtoint r _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Inttoptr r _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Icmp r _ _ _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Call r _ _ _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Cxa_allocate_exn r _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Cxa_begin_catch r _) = {r}) ∧
|
|
|
|
|
(instr_assigns (Cxa_get_exception_ptr r _) = {r}) ∧
|
|
|
|
|
(instr_assigns _ = {})
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition phi_assigns_def:
|
|
|
|
|
phi_assigns (Phi r _ _) = {r}
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Inductive assigns:
|
|
|
|
|
(∀prog ip i r.
|
|
|
|
|
get_instr prog ip (Inl i) ∧
|
|
|
|
|
r ∈ instr_assigns i
|
|
|
|
|
⇒
|
|
|
|
|
assigns prog ip r) ∧
|
|
|
|
|
(∀prog ip from_l phis r.
|
|
|
|
|
get_instr prog ip (Inr (from_l, phis)) ∧
|
|
|
|
|
r ∈ BIGUNION (set (map phi_assigns phis))
|
|
|
|
|
⇒
|
|
|
|
|
assigns prog ip r)
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
Definition live_def:
|
|
|
|
|
live prog ip =
|
|
|
|
|
{ r | ∃path.
|
|
|
|
|
good_path prog (ip::path) ∧
|
|
|
|
|
r ∈ uses prog (last (ip::path)) ∧
|
|
|
|
|
∀ip2. ip2 ∈ set (front (ip::path)) ⇒ r ∉ assigns prog ip2 }
|
|
|
|
|
End
|
|
|
|
|
|
|
|
|
|
(*
|
|
|
|
|
Theorem get_instr_live:
|
|
|
|
|
∀prog ip instr.
|
|
|
|
|
get_instr prog ip instr
|
|
|
|
|
⇒
|
|
|
|
|
uses instr ⊆ live prog ip
|
|
|
|
|
Proof
|
|
|
|
|
rw [live_def, SUBSET_DEF] >>
|
|
|
|
|
qexists_tac `[]` >> rw [Once good_path_cases] >>
|
|
|
|
|
qexists_tac `instr` >> simp [] >> metis_tac [IN_DEF]
|
|
|
|
|
QED
|
|
|
|
|
*)
|
|
|
|
|
|
|
|
|
|
Triviality set_rw:
|
|
|
|
|
!s P. (!x. x ∈ s ⇔ P x) ⇔ s = P
|
|
|
|
|
Proof
|
|
|
|
|
rw [] >> eq_tac >> rw [IN_DEF] >> metis_tac []
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
Theorem live_gen_kill:
|
|
|
|
|
∀prog ip ip'.
|
|
|
|
|
live prog ip =
|
|
|
|
|
BIGUNION {live prog ip' | ip' | ip' ∈ next_ips prog ip} DIFF assigns prog ip ∪ uses prog ip
|
|
|
|
|
Proof
|
|
|
|
|
rw [live_def, EXTENSION] >> eq_tac >> rw []
|
|
|
|
|
>- (
|
|
|
|
|
Cases_on `path` >> fs [] >>
|
|
|
|
|
rename1 `ip::ip2::path` >>
|
|
|
|
|
qpat_x_assum `good_path _ _` mp_tac >> simp [Once good_path_cases] >> rw [] >>
|
|
|
|
|
Cases_on `x ∈ uses prog ip` >> fs [] >> simp [set_rw, PULL_EXISTS] >>
|
|
|
|
|
qexists_tac `ip2` >> qexists_tac `path` >> rw [])
|
|
|
|
|
>- (
|
|
|
|
|
fs [] >>
|
|
|
|
|
qexists_tac `ip'::path` >> rw [] >>
|
|
|
|
|
simp [Once good_path_cases])
|
|
|
|
|
>- (
|
|
|
|
|
qexists_tac `[]` >> rw [] >>
|
|
|
|
|
fs [Once good_path_cases, uses_cases, IN_DEF] >>
|
|
|
|
|
metis_tac [])
|
|
|
|
|
QED
|
|
|
|
|
|
|
|
|
|
export_theory ();
|