You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

493 lines
17 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(** Iterative Breadth-First Bounded Exploration
The analysis' semantics of control flow. *)
type exec_opts =
{ bound: int
; skip_throw: bool
; function_summaries: bool
; globals: Used_globals.r }
module Make (Dom : Domain_sig.Dom) = struct
module Stack : sig
type t
type as_inlined_location = t [@@deriving compare, sexp_of]
val empty : t
val push_call :
Llair.func Llair.call -> bound:int -> Dom.from_call -> t -> t option
val pop_return : t -> (Dom.from_call * Llair.jump * t) option
val pop_throw :
t
-> init:'a
-> unwind:(Reg.t list -> Reg.Set.t -> Dom.from_call -> 'a -> 'a)
-> (Dom.from_call * Llair.jump * t * 'a) option
end = struct
type t =
| Return of
{ recursive: bool (** return from a possibly-recursive call *)
; dst: Llair.Jump.t
; formals: Reg.t list
; locals: Reg.Set.t
; from_call: Dom.from_call
; stk: t }
| Throw of Llair.Jump.t * t
| Empty
[@@deriving sexp_of]
type as_inlined_location = t [@@deriving sexp_of]
(* Treat a stack as a code location in a hypothetical expansion of the
program where all non-recursive functions have been completely
inlined. In particular, this means to compare stacks as if all Return
frames for recursive calls had been removed. Additionally, the
from_call info in Return frames is ignored. *)
let rec compare_as_inlined_location x y =
if x == y then 0
else
match (x, y) with
| Return {recursive= true; stk= x}, y
|x, Return {recursive= true; stk= y} ->
compare_as_inlined_location x y
| Return {dst= j; stk= x}, Return {dst= k; stk= y} -> (
match Llair.Jump.compare j k with
| 0 -> compare_as_inlined_location x y
| n -> n )
| Return _, _ -> -1
| _, Return _ -> 1
| Throw (j, x), Throw (k, y) -> (
match Llair.Jump.compare j k with
| 0 -> compare_as_inlined_location x y
| n -> n )
| Throw _, _ -> -1
| _, Throw _ -> 1
| Empty, Empty -> 0
let rec print_abbrev fs = function
| Return {recursive= false; stk= s} ->
print_abbrev fs s ;
Format.pp_print_char fs 'R'
| Return {recursive= true; stk= s} ->
print_abbrev fs s ;
Format.pp_print_string fs "R↑"
| Throw (_, s) ->
print_abbrev fs s ;
Format.pp_print_char fs 'T'
| Empty -> ()
let invariant s =
Invariant.invariant [%here] s [%sexp_of: t]
@@ fun () ->
match s with
| Return _ | Throw (_, Return _) | Empty -> ()
| Throw _ -> fail "malformed stack: %a" print_abbrev s ()
let empty = Empty |> check invariant
let push_return Llair.{callee= {formals; locals}; return; recursive}
from_call stk =
Return {recursive; dst= return; formals; locals; from_call; stk}
|> check invariant
let push_throw jmp stk =
(match jmp with None -> stk | Some jmp -> Throw (jmp, stk))
|> check invariant
let push_call (Llair.{return; throw} as call) ~bound from_call stk =
[%Trace.call fun {pf} -> pf "%a" print_abbrev stk]
;
let rec count_f_in_stack acc f = function
| Return {stk= next_frame; dst= dest_block} ->
count_f_in_stack
(if Llair.Jump.equal dest_block f then acc + 1 else acc)
f next_frame
| _ -> acc
in
let n = count_f_in_stack 0 return stk in
( if n > bound then None
else Some (push_throw throw (push_return call from_call stk)) )
|>
[%Trace.retn fun {pf} _ ->
pf "%d of %a on stack" n Llair.Jump.pp return]
let rec pop_return = function
| Throw (_, stk) -> pop_return stk
| Return {from_call; dst; stk} -> Some (from_call, dst, stk)
| Empty -> None
let pop_throw stk ~init ~unwind =
let rec pop_throw_ state = function
| Return {formals; locals; from_call; stk} ->
pop_throw_ (unwind formals locals from_call state) stk
| Throw (dst, Return {from_call; stk}) ->
Some (from_call, dst, stk, state)
| Empty -> None
| Throw _ as stk -> violates invariant stk
in
pop_throw_ init stk
end
module Work : sig
type t
val init : Dom.t -> Llair.block -> int -> t
type x
val skip : x
val seq : x -> x -> x
val add :
?prev:Llair.block
-> retreating:bool
-> Stack.t
-> Dom.t
-> Llair.block
-> x
val run : f:(Stack.t -> Dom.t -> Llair.block -> x) -> t -> unit
end = struct
module Edge = struct
module T = struct
type t =
{ dst: Llair.Block.t
; src: Llair.Block.t option
; stk: Stack.as_inlined_location }
[@@deriving compare, sexp_of]
end
include T
include Comparator.Make (T)
let pp fs {dst; src} =
Format.fprintf fs "#%i %s <--%a" dst.sort_index dst.lbl
(Option.pp "%a" (fun fs (src : Llair.Block.t) ->
Format.fprintf fs " #%i %s" src.sort_index src.lbl ))
src
end
module Depths = struct
type t = int Map.M(Edge).t
let empty = Map.empty (module Edge)
let find = Map.find
let set = Map.set
let join x y =
Map.merge x y ~f:(fun ~key:_ -> function
| `Left d | `Right d -> Some d
| `Both (d1, d2) -> Some (Int.max d1 d2) )
end
type priority = int * Edge.t [@@deriving compare]
type priority_queue = priority Fheap.t
type waiting_states = (Dom.t * Depths.t) list Map.M(Llair.Block).t
type t = priority_queue * waiting_states * int
type x = Depths.t -> t -> t
let empty_waiting_states : waiting_states =
Map.empty (module Llair.Block)
let pp_priority fs (n, e) = Format.fprintf fs "%i: %a" n Edge.pp e
let pp fs pq =
Format.fprintf fs "@[%a@]"
(List.pp " ::@ " pp_priority)
(Sequence.to_list (Fheap.to_sequence pq))
let skip _ w = w
let seq x y d w = y d (x d w)
let add ?prev ~retreating stk state curr depths ((pq, ws, bound) as work)
=
let edge = {Edge.dst= curr; src= prev; stk} in
let depth = Option.value (Depths.find depths edge) ~default:0 in
let depth = if retreating then depth + 1 else depth in
if depth > bound then (
[%Trace.info "prune: %i: %a" depth Edge.pp edge] ;
work )
else
let pq = Fheap.add pq (depth, edge) in
[%Trace.info "@[<6>enqueue %i: %a@ | %a@]" depth Edge.pp edge pp pq] ;
let depths = Depths.set depths ~key:edge ~data:depth in
let ws = Map.add_multi ws ~key:curr ~data:(state, depths) in
(pq, ws, bound)
let init state curr bound =
add ~retreating:false Stack.empty state curr Depths.empty
(Fheap.create ~cmp:compare_priority, empty_waiting_states, bound)
let rec run ~f (pq0, ws, bnd) =
match Fheap.pop pq0 with
| Some ((_, ({Edge.dst; stk} as edge)), pq) -> (
match Map.find_and_remove ws dst with
| Some (q :: qs, ws) ->
let join (qa, da) (q, d) = (Dom.join q qa, Depths.join d da) in
let skipped, (qs, depths) =
List.fold qs ~init:([], q) ~f:(fun (skipped, joined) curr ->
match join curr joined with
| Some joined, depths -> (skipped, (joined, depths))
| None, _ -> (curr :: skipped, joined) )
in
let ws = Map.add_exn ws ~key:dst ~data:skipped in
run ~f (f stk qs dst depths (pq, ws, bnd))
| _ ->
[%Trace.info "done: %a" Edge.pp edge] ;
run ~f (pq, ws, bnd) )
| None -> [%Trace.info "queue empty"] ; ()
end
let exec_jump stk state block Llair.{dst; retreating} =
Work.add ~prev:block ~retreating stk state dst
let summary_table = Hashtbl.create (module Reg)
let exec_call opts stk state block call globals =
let Llair.{callee; actuals; areturn; return; recursive} = call in
let Llair.{name; formals; freturn; locals; entry} = callee in
[%Trace.call fun {pf} ->
pf "%a from %a with state@ %a" Reg.pp name.reg Reg.pp
return.dst.parent.name.reg Dom.pp state]
;
let dnf_states =
if opts.function_summaries then Dom.dnf state else [state]
in
let domain_call =
Dom.call ~globals ~actuals ~areturn ~formals ~freturn ~locals
in
List.fold ~init:Work.skip dnf_states ~f:(fun acc state ->
match
if not opts.function_summaries then None
else
let maybe_summary_post =
let state = fst (domain_call ~summaries:false state) in
Hashtbl.find summary_table name.reg
>>= List.find_map ~f:(Dom.apply_summary state)
in
[%Trace.info
"Maybe summary post: %a" (Option.pp "%a" Dom.pp)
maybe_summary_post] ;
maybe_summary_post
with
| None ->
let state, from_call =
domain_call ~summaries:opts.function_summaries state
in
Work.seq acc
( match
Stack.push_call call ~bound:opts.bound from_call stk
with
| Some stk ->
Work.add stk ~prev:block ~retreating:recursive state entry
| None -> (
match Dom.recursion_beyond_bound with
| `skip -> Work.seq acc (exec_jump stk state block return)
| `prune -> Work.skip ) )
| Some post -> Work.seq acc (exec_jump stk post block return) )
|>
[%Trace.retn fun {pf} _ -> pf ""]
let pp_st () =
[%Trace.printf
"@[<v>%t@]" (fun fs ->
Hashtbl.iteri summary_table ~f:(fun ~key ~data ->
Format.fprintf fs "@[<v>%a:@ @[%a@]@]@ " Reg.pp key
(List.pp "@," Dom.pp_summary)
data ) )]
let exec_return ~opts stk pre_state (block : Llair.block) exp =
let Llair.{name; formals; freturn; locals} = block.parent in
[%Trace.call fun {pf} -> pf "from: %a" Reg.pp name.reg]
;
let summarize post_state =
if not opts.function_summaries then post_state
else
let globals = Used_globals.by_function opts.globals name.reg in
let function_summary, post_state =
Dom.create_summary ~locals post_state
~formals:(Set.union (Reg.Set.of_list formals) globals)
in
Hashtbl.add_multi summary_table ~key:name.reg ~data:function_summary ;
pp_st () ;
post_state
in
let exit_state =
match (freturn, exp) with
| Some freturn, Some return_val ->
Dom.exec_move pre_state (Vector.of_ (freturn, return_val))
| None, None -> pre_state
| _ -> violates Llair.Func.invariant block.parent
in
( match Stack.pop_return stk with
| Some (from_call, retn_site, stk) ->
let post_state = summarize (Dom.post locals from_call exit_state) in
let retn_state = Dom.retn formals freturn from_call post_state in
exec_jump stk retn_state block retn_site
| None ->
(* Create and store a function summary for main *)
if
opts.function_summaries
&& List.exists
(Config.find_list "entry-points")
~f:(String.equal (Reg.name name.reg))
then summarize exit_state |> (ignore : Dom.t -> unit) ;
Work.skip )
|>
[%Trace.retn fun {pf} _ -> pf ""]
let exec_throw stk pre_state (block : Llair.block) exc =
let func = block.parent in
[%Trace.call fun {pf} -> pf "from %a" Reg.pp func.name.reg]
;
let unwind formals scope from_call state =
Dom.retn formals (Some func.fthrow) from_call
(Dom.post scope from_call state)
in
( match Stack.pop_throw stk ~unwind ~init:pre_state with
| Some (from_call, retn_site, stk, unwind_state) ->
let fthrow = func.fthrow in
let exit_state =
Dom.exec_move unwind_state (Vector.of_ (fthrow, exc))
in
let post_state = Dom.post func.locals from_call exit_state in
let retn_state =
Dom.retn func.formals func.freturn from_call post_state
in
exec_jump stk retn_state block retn_site
| None -> Work.skip )
|>
[%Trace.retn fun {pf} _ -> pf ""]
let exec_skip_func :
Stack.t
-> Dom.t
-> Llair.block
-> Reg.t option
-> Llair.jump
-> Work.x =
fun stk state block areturn return ->
Report.unknown_call block.term ;
let state = Option.fold ~f:Dom.exec_kill ~init:state areturn in
exec_jump stk state block return
let exec_term :
exec_opts -> Llair.t -> Stack.t -> Dom.t -> Llair.block -> Work.x =
fun opts pgm stk state block ->
[%Trace.info "exec %a" Llair.Term.pp block.term] ;
match block.term with
| Switch {key; tbl; els} ->
Vector.fold tbl
~f:(fun x (case, jump) ->
match Dom.exec_assume state (Exp.eq key case) with
| Some state -> exec_jump stk state block jump |> Work.seq x
| None -> x )
~init:
( match
Dom.exec_assume state
(Vector.fold tbl ~init:Exp.true_ ~f:(fun b (case, _) ->
Exp.and_ (Exp.dq key case) b ))
with
| Some state -> exec_jump stk state block els
| None -> Work.skip )
| Iswitch {ptr; tbl} ->
Vector.fold tbl ~init:Work.skip ~f:(fun x (jump : Llair.jump) ->
match
Dom.exec_assume state
(Exp.eq ptr
(Exp.label
~parent:(Reg.name jump.dst.parent.name.reg)
~name:jump.dst.lbl))
with
| Some state -> exec_jump stk state block jump |> Work.seq x
| None -> x )
| Call ({callee; actuals; areturn; return} as call) -> (
let lookup name =
Option.to_list (Llair.Func.find pgm.functions name)
in
let callees, state = Dom.resolve_callee lookup callee state in
match callees with
| [] -> exec_skip_func stk state block areturn return
| callees ->
List.fold callees ~init:Work.skip ~f:(fun x callee ->
( match
Dom.exec_intrinsic ~skip_throw:opts.skip_throw state
areturn callee.name.reg actuals
with
| Some None ->
Report.invalid_access_term
(Dom.report_fmt_thunk state)
block.term ;
Work.skip
| Some (Some state) when Dom.is_false state -> Work.skip
| Some (Some state) -> exec_jump stk state block return
| None when Llair.Func.is_undefined callee ->
exec_skip_func stk state block areturn return
| None ->
exec_call opts stk state block {call with callee}
(Used_globals.by_function opts.globals
callee.name.reg) )
|> Work.seq x ) )
| Return {exp} -> exec_return ~opts stk state block exp
| Throw {exc} ->
if opts.skip_throw then Work.skip
else exec_throw stk state block exc
| Unreachable -> Work.skip
let exec_inst : Dom.t -> Llair.inst -> (Dom.t, Dom.t * Llair.inst) result
=
fun state inst ->
Dom.exec_inst state inst |> Result.of_option ~error:(state, inst)
let exec_block :
exec_opts -> Llair.t -> Stack.t -> Dom.t -> Llair.block -> Work.x =
fun opts pgm stk state block ->
[%Trace.info "exec %a" Llair.Block.pp block] ;
match Vector.fold_result ~f:exec_inst ~init:state block.cmnd with
| Ok state -> exec_term opts pgm stk state block
| Error (state, inst) ->
Report.invalid_access_inst (Dom.report_fmt_thunk state) inst ;
Work.skip
let harness : exec_opts -> Llair.t -> (int -> Work.t) option =
fun opts pgm ->
let entry_points = Config.find_list "entry-points" in
List.find_map ~f:(Llair.Func.find pgm.functions) entry_points
|> function
| Some {name= {reg}; formals= []; freturn; locals; entry} ->
Some
(Work.init
(fst
(Dom.call ~summaries:opts.function_summaries
~globals:(Used_globals.by_function opts.globals reg)
~actuals:[] ~areturn:None ~formals:[] ~freturn ~locals
(Dom.init pgm.globals)))
entry)
| _ -> None
let exec_pgm : exec_opts -> Llair.t -> unit =
fun opts pgm ->
[%Trace.call fun {pf} -> pf "@]@,@["]
;
( match harness opts pgm with
| Some work -> Work.run ~f:(exec_block opts pgm) (work opts.bound)
| None -> fail "no applicable harness" () )
|>
[%Trace.retn fun {pf} _ -> pf ""]
let compute_summaries opts pgm : Dom.summary list Reg.Map.t =
assert opts.function_summaries ;
exec_pgm opts pgm ;
Hashtbl.fold summary_table ~init:Reg.Map.empty ~f:(fun ~key ~data map ->
match data with [] -> map | _ -> Map.set map ~key ~data )
end