You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

648 lines
20 KiB

3 years ago
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
open! NS0
module type OrderedType =
sig
type t
val compare: t -> t -> int
end
module type S =
sig
type key
type +'a t
include Comparer.S1 with type 'a t := 'a t
val empty: 'a t
val is_empty: 'a t -> bool
val mem: key -> 'a t -> bool
val add: key -> 'a -> 'a t -> 'a t
val update: key -> ('a option -> 'a option) -> 'a t -> 'a t
val singleton: key -> 'a -> 'a t
val is_singleton: 'a t -> bool
val remove: key -> 'a t -> 'a t
val merge:
(key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
val union: (key -> 'a -> 'a -> 'a option) -> 'a t -> 'a t -> 'a t
val compare: ('a -> 'a -> int) -> 'a t -> 'a t -> int
module Provide_equal (_ : sig
type t = key [@@deriving equal]
end) : sig
type 'a t [@@deriving equal]
end
with type 'a t := 'a t
val iter: (key -> 'a -> unit) -> 'a t -> unit
val fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
val for_all: (key -> 'a -> bool) -> 'a t -> bool
val exists: (key -> 'a -> bool) -> 'a t -> bool
val filter: (key -> 'a -> bool) -> 'a t -> 'a t
val filter_map: (key -> 'a -> 'b option) -> 'a t -> 'b t
val partition: (key -> 'a -> bool) -> 'a t -> 'a t * 'a t
val cardinal: 'a t -> int
val bindings: 'a t -> (key * 'a) list
val only_binding: 'a t -> (key * 'a) option
val classify : 'a t -> (key, 'a) zero_one_many2
val min_binding: 'a t -> (key * 'a)
val min_binding_opt: 'a t -> (key * 'a) option
val max_binding: 'a t -> (key * 'a)
val max_binding_opt: 'a t -> (key * 'a) option
val choose: 'a t -> (key * 'a)
val choose_opt: 'a t -> (key * 'a) option
val divide : 'a t -> ('a t * key * 'a * 'a t) option
val divide_exn : 'a t -> ('a t * key * 'a * 'a t)
val split: key -> 'a t -> 'a t * 'a option * 'a t
val find: key -> 'a t -> 'a
val find_opt: key -> 'a t -> 'a option
val find_first: (key -> bool) -> 'a t -> key * 'a
val find_first_opt: (key -> bool) -> 'a t -> (key * 'a) option
val find_last: (key -> bool) -> 'a t -> key * 'a
val find_last_opt: (key -> bool) -> 'a t -> (key * 'a) option
val map: ('a -> 'b) -> 'a t -> 'b t
val mapi: (key -> 'a -> 'b) -> 'a t -> 'b t
val to_seq : 'a t -> (key * 'a) Seq.t
val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
val of_seq : (key * 'a) Seq.t -> 'a t
module Provide_sexp_of (_ : sig
type t = key [@@deriving sexp_of]
end) : sig
type 'a t [@@deriving sexp_of]
end
with type 'a t := 'a t
module Provide_of_sexp (_ : sig
type t = key [@@deriving of_sexp]
end) : sig
type 'a t [@@deriving of_sexp]
end
with type 'a t := 'a t
end
module T = struct
type ('key, 'a, 'cmp) t =
Empty
| Node of {l:('key, 'a, 'cmp) t; v:'key; d:'a; r:('key, 'a, 'cmp) t; h:int}
type ('key, 'a, 'cmp) enumeration =
End
| More of 'key * 'a * ('key, 'a, 'cmp) t * ('key, 'a, 'cmp) enumeration
let rec cons_enum m e =
match m with
Empty -> e
| Node {l; v; d; r} -> cons_enum l (More(v, d, r, e))
let compare compare_key compare_a _ m1 m2 =
let rec compare_aux e1 e2 =
match (e1, e2) with
(End, End) -> 0
| (End, _) -> -1
| (_, End) -> 1
| (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) ->
let c = compare_key v1 v2 in
if c <> 0 then c else
let c = compare_a d1 d2 in
if c <> 0 then c else
compare_aux (cons_enum r1 e1) (cons_enum r2 e2)
in compare_aux (cons_enum m1 End) (cons_enum m2 End)
type ('compare_key, 'compare_a) compare [@@deriving compare, equal, sexp]
end
include T
let equal equal_key equal_a _ m1 m2 =
let rec equal_aux e1 e2 =
match (e1, e2) with
(End, End) -> true
| (End, _) -> false
| (_, End) -> false
| (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) ->
equal_key v1 v2 && equal_a d1 d2 &&
equal_aux (cons_enum r1 e1) (cons_enum r2 e2)
in equal_aux (cons_enum m1 End) (cons_enum m2 End)
let rec bindings_aux accu = function
Empty -> accu
| Node {l; v; d; r} -> bindings_aux ((v, d) :: bindings_aux accu r) l
let bindings s =
bindings_aux [] s
let sexp_of_t sexp_of_key sexp_of_data _ m =
m
|> bindings
|> Sexplib.Conv.sexp_of_list
(Sexplib.Conv.sexp_of_pair sexp_of_key sexp_of_data)
let height = function
Empty -> 0
| Node {h} -> h
let create l x d r =
let hl = height l and hr = height r in
Node{l; v=x; d; r; h=(if hl >= hr then hl + 1 else hr + 1)}
let of_sorted_list l =
let rec sub n l =
match n, l with
| 0, l -> Empty, l
| 1, (v0,d0) :: l -> Node {l=Empty; v=v0; d=d0; r=Empty; h=1}, l
| 2, (v0,d0) :: (v1,d1) :: l ->
Node{l=Node{l=Empty; v=v0; d=d0; r=Empty; h=1}; v=v1; d=d1;
r=Empty; h=2}, l
| 3, (v0,d0) :: (v1,d1) :: (v2,d2) :: l ->
Node{l=Node{l=Empty; v=v0; d=d0; r=Empty; h=1}; v=v1; d=d1;
r=Node{l=Empty; v=v2; d=d2; r=Empty; h=1}; h=2}, l
| n, l ->
let nl = n / 2 in
let left, l = sub nl l in
match l with
| [] -> assert false
| (v,d) :: l ->
let right, l = sub (n - nl - 1) l in
create left v d right, l
in
fst (sub (List.length l) l)
let t_of_sexp key_of_sexp data_of_sexp _ m =
m
|> Sexplib.Conv.list_of_sexp
(Sexplib.Conv.pair_of_sexp key_of_sexp data_of_sexp)
|> of_sorted_list
module Make (Ord : Comparer.S) = struct
module Ord = struct
include Ord
let compare = (comparer :> t -> t -> int)
end
type key = Ord.t
include (Comparer.Apply1 (T) (Ord))
module Provide_equal (Key : sig
type t = Ord.t [@@deriving equal]
end) = struct
let equal equal_data =
equal Key.equal equal_data Ord.equal_compare
end
module Provide_sexp_of (Key : sig
type t = Ord.t [@@deriving sexp_of]
end) = struct
let sexp_of_t sexp_of_data m =
sexp_of_t Key.sexp_of_t sexp_of_data Ord.sexp_of_compare m
end
module Provide_of_sexp (Key : sig
type t = Ord.t [@@deriving of_sexp]
end) = struct
let t_of_sexp data_of_sexp s =
t_of_sexp Key.t_of_sexp data_of_sexp Ord.compare_of_sexp s
end
let empty = Empty
let is_empty = function Empty -> true | _ -> false
let singleton x d = Node{l=Empty; v=x; d; r=Empty; h=1}
let is_singleton = function Node {l=Empty; r=Empty} -> true | _ -> false
let bal l x d r =
let hl = match l with Empty -> 0 | Node {h} -> h in
let hr = match r with Empty -> 0 | Node {h} -> h in
if hl > hr + 2 then begin
match l with
Empty -> invalid_arg "Map.bal"
| Node{l=ll; v=lv; d=ld; r=lr} ->
if height ll >= height lr then
create ll lv ld (create lr x d r)
else begin
match lr with
Empty -> invalid_arg "Map.bal"
| Node{l=lrl; v=lrv; d=lrd; r=lrr}->
create (create ll lv ld lrl) lrv lrd (create lrr x d r)
end
end else if hr > hl + 2 then begin
match r with
Empty -> invalid_arg "Map.bal"
| Node{l=rl; v=rv; d=rd; r=rr} ->
if height rr >= height rl then
create (create l x d rl) rv rd rr
else begin
match rl with
Empty -> invalid_arg "Map.bal"
| Node{l=rll; v=rlv; d=rld; r=rlr} ->
create (create l x d rll) rlv rld (create rlr rv rd rr)
end
end else
Node{l; v=x; d; r; h=(if hl >= hr then hl + 1 else hr + 1)}
let rec add x data = function
Empty ->
Node{l=Empty; v=x; d=data; r=Empty; h=1}
| Node {l; v; d; r; h} as m ->
let c = Ord.compare x v in
if c = 0 then
if d == data then m else Node{l; v=x; d=data; r; h}
else if c < 0 then
let ll = add x data l in
if l == ll then m else bal ll v d r
else
let rr = add x data r in
if r == rr then m else bal l v d rr
let rec find x = function
Empty ->
raise Not_found
| Node {l; v; d; r} ->
let c = Ord.compare x v in
if c = 0 then d
else find x (if c < 0 then l else r)
let rec find_first_aux v0 d0 f = function
Empty ->
(v0, d0)
| Node {l; v; d; r} ->
if f v then
find_first_aux v d f l
else
find_first_aux v0 d0 f r
let rec find_first f = function
Empty ->
raise Not_found
| Node {l; v; d; r} ->
if f v then
find_first_aux v d f l
else
find_first f r
let rec find_first_opt_aux v0 d0 f = function
Empty ->
Some (v0, d0)
| Node {l; v; d; r} ->
if f v then
find_first_opt_aux v d f l
else
find_first_opt_aux v0 d0 f r
let rec find_first_opt f = function
Empty ->
None
| Node {l; v; d; r} ->
if f v then
find_first_opt_aux v d f l
else
find_first_opt f r
let rec find_last_aux v0 d0 f = function
Empty ->
(v0, d0)
| Node {l; v; d; r} ->
if f v then
find_last_aux v d f r
else
find_last_aux v0 d0 f l
let rec find_last f = function
Empty ->
raise Not_found
| Node {l; v; d; r} ->
if f v then
find_last_aux v d f r
else
find_last f l
let rec find_last_opt_aux v0 d0 f = function
Empty ->
Some (v0, d0)
| Node {l; v; d; r} ->
if f v then
find_last_opt_aux v d f r
else
find_last_opt_aux v0 d0 f l
let rec find_last_opt f = function
Empty ->
None
| Node {l; v; d; r} ->
if f v then
find_last_opt_aux v d f r
else
find_last_opt f l
let rec find_opt x = function
Empty ->
None
| Node {l; v; d; r} ->
let c = Ord.compare x v in
if c = 0 then Some d
else find_opt x (if c < 0 then l else r)
let rec mem x = function
Empty ->
false
| Node {l; v; r} ->
let c = Ord.compare x v in
c = 0 || mem x (if c < 0 then l else r)
let classify = function
| Empty -> Zero2
| Node {l=Empty; v; d; r=Empty} -> One2 (v, d)
| _ -> Many2
let only_binding = function
Node {l=Empty; v; d; r=Empty} -> Some (v, d)
| _ -> None
let rec min_binding = function
Empty -> raise Not_found
| Node {l=Empty; v; d} -> (v, d)
| Node {l} -> min_binding l
let rec min_binding_opt = function
Empty -> None
| Node {l=Empty; v; d} -> Some (v, d)
| Node {l}-> min_binding_opt l
let rec max_binding = function
Empty -> raise Not_found
| Node {v; d; r=Empty} -> (v, d)
| Node {r} -> max_binding r
let rec max_binding_opt = function
Empty -> None
| Node {v; d; r=Empty} -> Some (v, d)
| Node {r} -> max_binding_opt r
let rec remove_min_binding = function
Empty -> invalid_arg "Map.remove_min_elt"
| Node {l=Empty; r} -> r
| Node {l; v; d; r} -> bal (remove_min_binding l) v d r
let merge t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) ->
let (x, d) = min_binding t2 in
bal t1 x d (remove_min_binding t2)
let rec remove x = function
Empty ->
Empty
| (Node {l; v; d; r} as m) ->
let c = Ord.compare x v in
if c = 0 then merge l r
else if c < 0 then
let ll = remove x l in if l == ll then m else bal ll v d r
else
let rr = remove x r in if r == rr then m else bal l v d rr
let rec update x f = function
Empty ->
begin match f None with
| None -> Empty
| Some data -> Node{l=Empty; v=x; d=data; r=Empty; h=1}
end
| Node {l; v; d; r; h} as m ->
let c = Ord.compare x v in
if c = 0 then begin
match f (Some d) with
| None -> merge l r
| Some data ->
if d == data then m else Node{l; v=x; d=data; r; h}
end else if c < 0 then
let ll = update x f l in
if l == ll then m else bal ll v d r
else
let rr = update x f r in
if r == rr then m else bal l v d rr
let rec iter f = function
Empty -> ()
| Node {l; v; d; r} ->
iter f l; f v d; iter f r
let rec map f = function
Empty ->
Empty
| Node {l; v; d; r; h} ->
let l' = map f l in
let d' = f d in
let r' = map f r in
Node{l=l'; v; d=d'; r=r'; h}
let rec mapi f = function
Empty ->
Empty
| Node {l; v; d; r; h} ->
let l' = mapi f l in
let d' = f v d in
let r' = mapi f r in
Node{l=l'; v; d=d'; r=r'; h}
let rec fold f m accu =
match m with
Empty -> accu
| Node {l; v; d; r} ->
fold f r (f v d (fold f l accu))
let rec for_all p = function
Empty -> true
| Node {l; v; d; r} -> p v d && for_all p l && for_all p r
let rec exists p = function
Empty -> false
| Node {l; v; d; r} -> p v d || exists p l || exists p r
(* Beware: those two functions assume that the added k is *strictly*
smaller (or bigger) than all the present keys in the tree; it
does not test for equality with the current min (or max) key.
Indeed, they are only used during the "join" operation which
respects this precondition.
*)
let rec add_min_binding k x = function
| Empty -> singleton k x
| Node {l; v; d; r} ->
bal (add_min_binding k x l) v d r
let rec add_max_binding k x = function
| Empty -> singleton k x
| Node {l; v; d; r} ->
bal l v d (add_max_binding k x r)
(* Same as create and bal, but no assumptions are made on the
relative heights of l and r. *)
let rec join l v d r =
match (l, r) with
(Empty, _) -> add_min_binding v d r
| (_, Empty) -> add_max_binding v d l
| (Node{l=ll; v=lv; d=ld; r=lr; h=lh},
Node{l=rl; v=rv; d=rd; r=rr; h=rh}) ->
if lh > rh + 2 then bal ll lv ld (join lr v d r) else
if rh > lh + 2 then bal (join l v d rl) rv rd rr else
create l v d r
(* Merge two trees l and r into one.
All elements of l must precede the elements of r.
No assumption on the heights of l and r. *)
let concat t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) ->
let (x, d) = min_binding t2 in
join t1 x d (remove_min_binding t2)
let concat_or_join t1 v d t2 =
match d with
| Some d -> join t1 v d t2
| None -> concat t1 t2
let divide_exn = function
| Node {l; v; d; r} -> (l, v, d, r)
| Empty -> raise Not_found
let divide = function
| Node {l; v; d; r} -> Some (l, v, d, r)
| Empty -> None
let rec split x = function
Empty ->
(Empty, None, Empty)
| Node {l; v; d; r} ->
let c = Ord.compare x v in
if c = 0 then (l, Some d, r)
else if c < 0 then
let (ll, pres, rl) = split x l in (ll, pres, join rl v d r)
else
let (lr, pres, rr) = split x r in (join l v d lr, pres, rr)
let rec merge f s1 s2 =
match (s1, s2) with
(Empty, Empty) -> Empty
| (Node {l=l1; v=v1; d=d1; r=r1; h=h1}, _) when h1 >= height s2 ->
let (l2, d2, r2) = split v1 s2 in
concat_or_join (merge f l1 l2) v1 (f v1 (Some d1) d2) (merge f r1 r2)
| (_, Node {l=l2; v=v2; d=d2; r=r2}) ->
let (l1, d1, r1) = split v2 s1 in
concat_or_join (merge f l1 l2) v2 (f v2 d1 (Some d2)) (merge f r1 r2)
| _ ->
assert false
let rec union f s1 s2 =
match (s1, s2) with
| (Empty, s) | (s, Empty) -> s
| (Node {l=l1; v=v1; d=d1; r=r1; h=h1},
Node {l=l2; v=v2; d=d2; r=r2; h=h2}) ->
if h1 >= h2 then
let (l2, d2, r2) = split v1 s2 in
let l = union f l1 l2 and r = union f r1 r2 in
match d2 with
| None -> join l v1 d1 r
| Some d2 -> concat_or_join l v1 (f v1 d1 d2) r
else
let (l1, d1, r1) = split v2 s1 in
let l = union f l1 l2 and r = union f r1 r2 in
match d1 with
| None -> join l v2 d2 r
| Some d1 -> concat_or_join l v2 (f v2 d1 d2) r
let rec filter p = function
Empty -> Empty
| Node {l; v; d; r} as m ->
(* call [p] in the expected left-to-right order *)
let l' = filter p l in
let pvd = p v d in
let r' = filter p r in
if pvd then if l==l' && r==r' then m else join l' v d r'
else concat l' r'
let rec filter_map f = function
Empty -> Empty
| Node {l; v; d; r} ->
(* call [f] in the expected left-to-right order *)
let l' = filter_map f l in
let fvd = f v d in
let r' = filter_map f r in
begin match fvd with
| Some d' -> join l' v d' r'
| None -> concat l' r'
end
let rec partition p = function
Empty -> (Empty, Empty)
| Node {l; v; d; r} ->
(* call [p] in the expected left-to-right order *)
let (lt, lf) = partition p l in
let pvd = p v d in
let (rt, rf) = partition p r in
if pvd
then (join lt v d rt, concat lf rf)
else (concat lt rt, join lf v d rf)
let rec cardinal = function
Empty -> 0
| Node {l; r} -> cardinal l + 1 + cardinal r
let bindings = bindings
let choose = function
Empty -> raise Not_found
| Node {v; d} -> (v, d)
let choose_opt = function
Empty -> None
| Node {v; d} -> Some (v, d)
let add_seq i m =
Seq.fold_left (fun m (k,v) -> add k v m) m i
let of_seq i = add_seq i empty
let rec seq_of_enum_ c () = match c with
| End -> Seq.Nil
| More (k,v,t,rest) -> Seq.Cons ((k,v), seq_of_enum_ (cons_enum t rest))
let to_seq m =
seq_of_enum_ (cons_enum m End)
let to_seq_from low m =
let rec aux low m c = match m with
| Empty -> c
| Node {l; v; d; r; _} ->
begin match Ord.compare v low with
| 0 -> More (v, d, r, c)
| n when n<0 -> aux low r c
| _ -> aux low l (More (v, d, r, c))
end
in
seq_of_enum_ (aux low m End)
end