[sledge] Test: Move tests from Equality to Fol

Reviewed By: ngorogiannis

Differential Revision: D23459508

fbshipit-source-id: fc900ff09
master
Josh Berdine 4 years ago committed by Facebook GitHub Bot
parent b0cd050d6f
commit 02ddb5a59f

@ -15,9 +15,9 @@ let%test_module _ =
(* let () =
* Trace.init ~margin:160
* ~config:(Result.ok_exn (Trace.parse "+Fol"))
* ()
*
* [@@@warning "-32"] *)
* () *)
[@@@warning "-32"]
let printf pp = Format.printf "@\n%a@." pp
let pp_raw = printf pp_raw
@ -25,28 +25,24 @@ let%test_module _ =
let ( ! ) i = Term.integer (Z.of_int i)
let ( + ) = Term.add
let ( - ) = Term.sub
(* let ( * ) i e = Term.mulq (Q.of_int i) e *)
let ( * ) i e = Term.mulq (Q.of_int i) e
let wrt = Var.Set.empty
let t_, wrt = Var.fresh "t" ~wrt
(* let u_, wrt = Var.fresh "u" ~wrt *)
(* let v_, wrt = Var.fresh "v" ~wrt *)
let u_, wrt = Var.fresh "u" ~wrt
let v_, wrt = Var.fresh "v" ~wrt
let w_, wrt = Var.fresh "w" ~wrt
let x_, wrt = Var.fresh "x" ~wrt
let y_, wrt = Var.fresh "y" ~wrt
let z_, wrt = Var.fresh "z" ~wrt
let t = Term.var t_
(* let u = Term.var u_ *)
(* let v = Term.var v_ *)
let u = Term.var u_
let v = Term.var v_
let w = Term.var w_
let x = Term.var x_
let y = Term.var y_
let z = Term.var z_
let f = Term.mul t
(* let g = Term.mul u *)
let f = Term.splat
let g = Term.mul
let of_eqs l =
List.fold ~init:(wrt, empty)
@ -54,42 +50,301 @@ let%test_module _ =
l
|> snd
(* let and_eq a b r = and_formula wrt (Formula.eq a b) r |> snd *)
(* let and_ r s = and_ wrt r s |> snd *)
let or_ r s = interN wrt [r; s] |> snd
let difference x e f = Term.d_int (Context.normalize x (Term.sub e f))
let add_eq a b r = add wrt (Formula.eq a b) r |> snd
let union r s = union wrt r s |> snd
let inter r s = inter wrt r s |> snd
let implies_eq r a b = implies r (Formula.eq a b)
let difference x e f = Term.d_int (normalize x (Term.sub e f))
(** tests *)
let f1 = of_eqs [(!0, !1)]
let%test _ = is_unsat f1
let%expect_test _ =
pp_raw f1 ;
[%expect {| {sat= false; rep= [[-1 ]; [0 ]]} |}]
let%test _ = is_unsat (add_eq !1 !1 f1)
let f2 = of_eqs [(x, x + !1)]
let%test _ = is_unsat f2
let%expect_test _ =
pp_raw f2 ;
[%expect {| {sat= false; rep= [[%x_5 ]; [-1 ]; [0 ]]} |}]
let f3 = of_eqs [(x + !0, x + !1)]
let%test _ = is_unsat f3
let%expect_test _ =
pp_raw f3 ;
[%expect {| {sat= false; rep= [[%x_5 ]; [-1 ]; [0 ]]} |}]
let f4 = of_eqs [(x, y); (x + !0, y + !1)]
let%test _ = is_unsat f4
let%expect_test _ =
pp_raw f4 ;
[%expect
{| {sat= false; rep= [[%x_5 ]; [%y_6 %x_5]; [-1 ]; [0 ]]} |}]
let t1 = of_eqs [(!1, !1)]
let%test _ = is_empty t1
let t2 = of_eqs [(x, x)]
let%test _ = is_empty t2
let%test _ = is_unsat (union f3 t2)
let%test _ = is_unsat (union t2 f3)
let r0 = empty
let%expect_test _ =
pp_raw r0 ;
[%expect {| {sat= true; rep= [[-1 ]; [0 ]]} |}]
let%expect_test _ =
pp r0 ;
[%expect {||}]
let%test _ = difference r0 (f x) (f x) |> Poly.equal (Some (Z.of_int 0))
let%test _ = difference r0 !4 !3 |> Poly.equal (Some (Z.of_int 1))
let r1 = of_eqs [(x, y)]
let%expect_test _ =
pp r1 ;
pp_raw r1 ;
[%expect
{|
%x_5 = %y_6
{sat= true; rep= [[%x_5 ]; [%y_6 %x_5]; [-1 ]; [0 ]]} |}]
let%test _ = implies_eq r1 x y
let r2 = of_eqs [(x, y); (f x, y); (f y, z)]
let%test _ = difference (or_ r1 r2) x z |> Poly.equal None
let%expect_test _ =
pp r2 ;
pp_raw r2 ;
[%expect
{|
%x_5 = %y_6 = %z_7 = %x_5^
{sat= true;
rep= [[%x_5 ];
[%y_6 %x_5];
[%z_7 %x_5];
[%x_5^ %x_5];
[-1 ];
[0 ]]} |}]
let%test _ = implies_eq r2 x z
let%test _ = implies_eq (inter r1 r2) x y
let%test _ = not (implies_eq (inter r1 r2) x z)
let%test _ = difference (inter r1 r2) x z |> Poly.equal None
let%test _ = implies_eq (inter f1 r2) x z
let%test _ = implies_eq (inter r2 f3) x z
let%test _ = implies_eq r2 (f y) y
let%test _ = implies_eq r2 (f x) (f z)
let%test _ = implies_eq r2 (g x y) (g z y)
let%expect_test _ =
let r = of_eqs [(w, y); (y, z)] in
let s = of_eqs [(x, y); (y, z)] in
let rs = inter r s in
pp_raw r ;
pp_raw s ;
pp_raw rs ;
[%expect
{|
{sat= true;
rep= [[%w_4 ]; [%y_6 %w_4]; [%z_7 %w_4]; [-1 ]; [0 ]]}
{sat= true;
rep= [[%x_5 ]; [%y_6 %x_5]; [%z_7 %x_5]; [-1 ]; [0 ]]}
{sat= true; rep= [[%y_6 ]; [%z_7 %y_6]; [-1 ]; [0 ]]} |}]
let%test _ =
let r = of_eqs [(w, y); (y, z)] in
let s = of_eqs [(x, y); (y, z)] in
let rs = inter r s in
implies_eq rs y z
let r3 = of_eqs [(g y z, w); (v, w); (g y w, t); (x, v); (x, u); (u, z)]
let%expect_test _ =
pp r3 ;
pp_raw r3 ;
[%expect
{|
%z_7 = %u_2 = %v_3 = %w_4 = %x_5 = (%z_7 × %y_6)
(%z_7 × (%y_6 × %y_6)) = %t_1
{sat= true;
rep= [[%t_1 (%y_6^2 × %z_7)];
[%u_2 %z_7];
[%v_3 %z_7];
[%w_4 %z_7];
[%x_5 %z_7];
[%y_6 ];
[%z_7 ];
[(%y_6 × %z_7) %z_7];
[(%y_6^2 × %z_7) ];
[-1 ];
[0 ]]} |}]
let%test _ = not (implies_eq r3 t z) (* incomplete *)
let%test _ = implies_eq r3 x z
let%test _ = implies_eq (union r2 r3) x z
let r4 = of_eqs [(w + !2, x - !3); (x - !5, y + !7); (y, z - !4)]
let%expect_test _ =
pp r4 ;
pp_raw r4 ;
[%expect
{|
(-4 + %z_7) = %y_6 (3 + %z_7) = %w_4 (8 + %z_7) = %x_5
{sat= true;
rep= [[%w_4 (%z_7 + 3)];
[%x_5 (%z_7 + 8)];
[%y_6 (%z_7 + -4)];
[%z_7 ];
[-1 ];
[0 ]]} |}]
let%test _ = implies_eq r4 x (w + !5)
let%test _ = difference r4 x w |> Poly.equal (Some (Z.of_int 5))
let r5 = of_eqs [(x, y); (g w x, y); (g w y, f z)]
let%test _ = Var.Set.equal (fv r5) (Var.Set.of_list [w_; x_; y_; z_])
let r6 = of_eqs [(x, !1); (!1, y)]
let%expect_test _ =
pp r6 ;
pp_raw r6 ;
[%expect
{|
1 = %x_5 = %y_6
{sat= true; rep= [[%x_5 1]; [%y_6 1]; [-1 ]; [0 ]]} |}]
let%test _ = implies_eq r6 x y
let r7 = of_eqs [(v, x); (w, z); (y, z)]
let%expect_test _ =
pp r7 ;
pp_raw r7 ;
pp_raw (add_eq x z r7) ;
pp (add_eq x z r7) ;
[%expect
{|
%v_3 = %x_5 %w_4 = %y_6 = %z_7
{sat= true;
rep= [[%v_3 ];
[%w_4 ];
[%x_5 %v_3];
[%y_6 %w_4];
[%z_7 %w_4];
[-1 ];
[0 ]]}
{sat= true;
rep= [[%v_3 ];
[%w_4 %v_3];
[%x_5 %v_3];
[%y_6 %v_3];
[%z_7 %v_3];
[-1 ];
[0 ]]}
%v_3 = %w_4 = %x_5 = %y_6 = %z_7 |}]
let%expect_test _ =
printf (List.pp " , " Term.pp) (class_of r7 t) ;
printf (List.pp " , " Term.pp) (class_of r7 x) ;
printf (List.pp " , " Term.pp) (class_of r7 z) ;
[%expect
{|
%t_1
%v_3 , %x_5
%w_4 , %z_7 , %y_6 |}]
let r7' = add_eq x z r7
let%expect_test _ =
pp r7' ;
pp_raw r7' ;
[%expect
{|
%v_3 = %w_4 = %x_5 = %y_6 = %z_7
{sat= true;
rep= [[%v_3 ];
[%w_4 %v_3];
[%x_5 %v_3];
[%y_6 %v_3];
[%z_7 %v_3];
[-1 ];
[0 ]]} |}]
let%test _ = normalize r7' w |> Term.equal v
let%test _ =
implies_eq (of_eqs [(g w x, g y z); (x, z)]) (g w x) (g w z)
let%test _ =
implies_eq (of_eqs [(g w x, g y w); (x, z)]) (g w x) (g w z)
let r8 = of_eqs [(x + !42, (3 * y) + (13 * z)); (13 * z, x)]
let%expect_test _ =
pp r8 ;
pp_raw r8 ;
[%expect
{|
14 = %y_6 (13 × %z_7) = %x_5
{sat= true;
rep= [[%x_5 (13 × %z_7)]; [%y_6 14]; [%z_7 ]; [-1 ]; [0 ]]} |}]
let%test _ = implies_eq r8 y !14
let r9 = of_eqs [(x, z - !16)]
let%expect_test _ =
pp r9 ;
pp_raw r9 ;
pp_raw r9 ;
[%expect
{|
(-16 + %z_5) = %x_3
{sat= true;
rep= [[%x_3 (%z_5 + -16)]; [%z_5 ]; [-1 ]; [0 ]]} |}]
rep= [[%x_5 (%z_7 + -16)]; [%z_7 ]; [-1 ]; [0 ]]}
{sat= true;
rep= [[%x_5 (%z_7 + -16)]; [%z_7 ]; [-1 ]; [0 ]]} |}]
let%test _ = difference r9 z (x + !8) |> Poly.equal (Some (Z.of_int 8))
let r10 = of_eqs [(!16, z - x)]
let%expect_test _ =
pp r10 ;
pp_raw r10 ;
pp_raw r10 ;
Format.printf "@.%a@." Term.pp (z - (x + !8)) ;
Format.printf "@.%a@." Term.pp (normalize r10 (z - (x + !8))) ;
@ -97,16 +352,17 @@ let%test_module _ =
Format.printf "@.%a@." Term.pp (normalize r10 (x + !8 - z)) ;
[%expect
{|
(-16 + %z_5) = %x_3
{sat= true;
rep= [[%x_3 (%z_5 + -16)]; [%z_5 ]; [-1 ]; [0 ]]}
rep= [[%x_5 (%z_7 + -16)]; [%z_7 ]; [-1 ]; [0 ]]}
(%z_5 - (%x_3 + 8))
{sat= true;
rep= [[%x_5 (%z_7 + -16)]; [%z_7 ]; [-1 ]; [0 ]]}
(%z_7 - (%x_5 + 8))
8
((%x_3 + 8) - %z_5)
((%x_5 + 8) - %z_7)
-8 |}]
@ -114,4 +370,129 @@ let%test_module _ =
let%test _ =
difference r10 (x + !8) z |> Poly.equal (Some (Z.of_int (-8)))
let r11 = of_eqs [(!16, z - x); (x + !8 - z, z - !16 + !8 - z)]
let%expect_test _ =
pp r11 ;
[%expect {| (-16 + %z_7) = %x_5 |}]
let r12 = of_eqs [(!16, z - x); (x + !8 - z, z + !16 + !8 - z)]
let%expect_test _ =
pp r12 ;
[%expect {| (-16 + %z_7) = %x_5 |}]
let r13 =
of_eqs
[ (Formula.inject (Formula.eq x !2), y)
; (Formula.inject (Formula.dq x !2), z)
; (y, z) ]
let%expect_test _ =
pp_raw r13 ;
[%expect
{| {sat= true; rep= [[%y_6 ]; [%z_7 %y_6]; [-1 ]; [0 ]]} |}]
let%test _ = not (is_unsat r13) (* incomplete *)
let a = Formula.inject (Formula.dq x !0)
let r14 = of_eqs [(a, a); (x, !1)]
let%expect_test _ =
pp_raw r14 ;
[%expect
{|
{sat= true; rep= [[%x_5 1]; [-1 ]; [0 ]]} |}]
let%test _ = implies_eq r14 a (Formula.inject Formula.tt)
let b = Formula.inject (Formula.dq y !0)
let r14 = of_eqs [(a, b); (x, !1)]
let%expect_test _ =
pp_raw r14 ;
[%expect
{|
{sat= true;
rep= [[%x_5 1];
[%y_6 ];
[(%x_5 0) -1];
[(%y_6 0) -1];
[-1 ];
[0 ]]} |}]
let%test _ = implies_eq r14 a (Formula.inject Formula.tt)
let%test _ = implies_eq r14 b (Formula.inject Formula.tt)
let b = Formula.inject (Formula.dq x !0)
let r15 = of_eqs [(b, b); (x, !1)]
let%expect_test _ =
pp_raw r15 ;
[%expect
{|
{sat= true; rep= [[%x_5 1]; [-1 ]; [0 ]]} |}]
(* f(x1)1=x+1, f(y)+1=y1, y+1=x ⊢ false *)
let r16 =
of_eqs [(f (x - !1) - !1, x + !1); (f y + !1, y - !1); (y + !1, x)]
let%expect_test _ =
pp_raw r16 ;
[%expect
{|
{sat= false;
rep= [[%x_5 (%y_6 + 1)];
[%y_6 ];
[%y_6^ (%y_6 + -2)];
[(%x_5 + -1)^ (%y_6 + 3)];
[-1 ];
[0 ]]} |}]
let%test _ = is_unsat r16
(* f(x) = x, f(y) = y 1, y = x ⊢ false *)
let r17 = of_eqs [(f x, x); (f y, y - !1); (y, x)]
let%expect_test _ =
pp_raw r17 ;
[%expect
{|
{sat= false;
rep= [[%x_5 ];
[%y_6 %x_5];
[%x_5^ %x_5];
[%y_6^ (%x_5 + -1)];
[-1 ];
[0 ]]} |}]
let%test _ = is_unsat r17
let%expect_test _ =
let r18 = of_eqs [(f x, x); (f y, y - !1)] in
pp_raw r18 ;
pp r18 ;
[%expect
{|
{sat= true;
rep= [[%x_5 ];
[%y_6 ];
[%x_5^ %x_5];
[%y_6^ (%y_6 + -1)];
[-1 ];
[0 ]]}
%x_5 = %x_5^ (-1 + %y_6) = %y_6^ |}]
let r19 = of_eqs [(x, y + z); (x, !0); (y, !0)]
let%expect_test _ =
pp_raw r19 ;
[%expect
{|
{sat= true;
rep= [[%x_5 0]; [%y_6 0]; [%z_7 0]; [-1 ]; [0 ]]} |}]
let%test _ = implies_eq r19 z !0
end )

@ -22,10 +22,6 @@ let%test_module _ =
let pp = printf pp
let pp_classes = Format.printf "@\n@[<hv> %a@]@." pp_classes
let ( ! ) i = Term.integer (Z.of_int i)
let ( + ) = Term.add
let ( - ) = Term.sub
let ( * ) i e = Term.mulq (Q.of_int i) e
let f = Term.unsigned 8
let g = Term.rem
let wrt = Var.Set.empty
let t_, wrt = Var.fresh "t" ~wrt
@ -50,131 +46,9 @@ let%test_module _ =
|> snd
let implies_eq r a b = implies r (Term.eq a b)
let and_eq a b r = and_eq wrt a b r |> snd
let and_ r s = and_ wrt r s |> snd
let or_ r s = or_ wrt r s |> snd
let fv e = fold_vars e ~f:Var.Set.add ~init:Var.Set.empty
(* tests *)
let f1 = of_eqs [(!0, !1)]
let%test _ = is_false f1
let%expect_test _ =
pp f1 ;
[%expect {| {sat= false; rep= [[-1 ]; [0 ]]} |}]
let%test _ = is_false (and_eq !1 !1 f1)
let f2 = of_eqs [(x, x + !1)]
let%test _ = is_false f2
let%expect_test _ =
pp f2 ;
[%expect {| {sat= false; rep= [[%x_5 ]; [-1 ]; [0 ]]} |}]
let f3 = of_eqs [(x + !0, x + !1)]
let%test _ = is_false f3
let%expect_test _ =
pp f3 ;
[%expect {| {sat= false; rep= [[%x_5 ]; [-1 ]; [0 ]]} |}]
let f4 = of_eqs [(x, y); (x + !0, y + !1)]
let%test _ = is_false f4
let%expect_test _ =
pp f4 ;
[%expect
{|
{sat= false; rep= [[%x_5 ]; [%y_6 %x_5]; [-1 ]; [0 ]]} |}]
let t1 = of_eqs [(!1, !1)]
let%test _ = is_true t1
let t2 = of_eqs [(x, x)]
let%test _ = is_true t2
let%test _ = is_false (and_ f3 t2)
let%test _ = is_false (and_ t2 f3)
let r0 = true_
let%expect_test _ =
pp r0 ;
[%expect {| {sat= true; rep= [[-1 ]; [0 ]]} |}]
let%expect_test _ =
pp_classes r0 ;
[%expect {||}]
let r1 = of_eqs [(x, y)]
let%expect_test _ =
pp_classes r1 ;
pp r1 ;
[%expect
{|
%x_5 = %y_6
{sat= true; rep= [[%x_5 ]; [%y_6 %x_5]; [-1 ]; [0 ]]} |}]
let%test _ = implies_eq r1 x y
let r2 = of_eqs [(x, y); (f x, y); (f y, z)]
let%expect_test _ =
pp_classes r2 ;
pp r2 ;
[%expect
{|
%x_5 = %y_6 = %z_7 = ((u8) %x_5)
{sat= true;
rep= [[%x_5 ];
[%y_6 %x_5];
[%z_7 %x_5];
[((u8) %x_5) %x_5];
[-1 ];
[0 ]]} |}]
let%test _ = implies_eq r2 x z
let%test _ = implies_eq (or_ r1 r2) x y
let%test _ = not (implies_eq (or_ r1 r2) x z)
let%test _ = implies_eq (or_ f1 r2) x z
let%test _ = implies_eq (or_ r2 f3) x z
let%test _ = implies_eq r2 (f y) y
let%test _ = implies_eq r2 (f x) (f z)
let%test _ = implies_eq r2 (g x y) (g z y)
let%expect_test _ =
let r = of_eqs [(w, y); (y, z)] in
let s = of_eqs [(x, y); (y, z)] in
let rs = or_ r s in
pp r ;
pp s ;
pp rs ;
[%expect
{|
{sat= true;
rep= [[%w_4 ]; [%y_6 %w_4]; [%z_7 %w_4]; [-1 ]; [0 ]]}
{sat= true;
rep= [[%x_5 ]; [%y_6 %x_5]; [%z_7 %x_5]; [-1 ]; [0 ]]}
{sat= true; rep= [[%y_6 ]; [%z_7 %y_6]; [-1 ]; [0 ]]} |}]
let%test _ =
let r = of_eqs [(w, y); (y, z)] in
let s = of_eqs [(x, y); (y, z)] in
let rs = or_ r s in
implies_eq rs y z
let r3 = of_eqs [(g y z, w); (v, w); (g y w, t); (x, v); (x, u); (u, z)]
let%expect_test _ =
@ -199,185 +73,6 @@ let%test_module _ =
[0 ]]} |}]
let%test _ = implies_eq r3 t z
let%test _ = implies_eq r3 x z
let%test _ = implies_eq (and_ r2 r3) x z
let r4 = of_eqs [(w + !2, x - !3); (x - !5, y + !7); (y, z - !4)]
let%expect_test _ =
pp_classes r4 ;
pp r4 ;
[%expect
{|
(%z_7 + -4) = %y_6 (%z_7 + 3) = %w_4 (%z_7 + 8) = %x_5
{sat= true;
rep= [[%w_4 (%z_7 + 3)];
[%x_5 (%z_7 + 8)];
[%y_6 (%z_7 + -4)];
[%z_7 ];
[-1 ];
[0 ]]} |}]
let%test _ = implies_eq r4 x (w + !5)
let r5 = of_eqs [(x, y); (g w x, y); (g w y, f z)]
let%test _ = Var.Set.equal (fv r5) (Var.Set.of_list [w_; x_; y_; z_])
let r6 = of_eqs [(x, !1); (!1, y)]
let%expect_test _ =
pp_classes r6 ;
pp r6 ;
[%expect
{|
1 = %x_5 = %y_6
{sat= true; rep= [[%x_5 1]; [%y_6 1]; [-1 ]; [0 ]]} |}]
let%test _ = implies_eq r6 x y
let r7 = of_eqs [(v, x); (w, z); (y, z)]
let%expect_test _ =
pp_classes r7 ;
pp r7 ;
pp (and_eq x z r7) ;
pp_classes (and_eq x z r7) ;
[%expect
{|
%v_3 = %x_5 %w_4 = %y_6 = %z_7
{sat= true;
rep= [[%v_3 ];
[%w_4 ];
[%x_5 %v_3];
[%y_6 %w_4];
[%z_7 %w_4];
[-1 ];
[0 ]]}
{sat= true;
rep= [[%v_3 ];
[%w_4 %v_3];
[%x_5 %v_3];
[%y_6 %v_3];
[%z_7 %v_3];
[-1 ];
[0 ]]}
%v_3 = %w_4 = %x_5 = %y_6 = %z_7 |}]
let%expect_test _ =
printf (List.pp " , " Term.pp) (Equality.class_of r7 t) ;
printf (List.pp " , " Term.pp) (Equality.class_of r7 x) ;
printf (List.pp " , " Term.pp) (Equality.class_of r7 z) ;
[%expect
{|
%t_1
%v_3 , %x_5
%w_4 , %z_7 , %y_6 |}]
let r7' = and_eq x z r7
let%expect_test _ =
pp_classes r7' ;
pp r7' ;
[%expect
{|
%v_3 = %w_4 = %x_5 = %y_6 = %z_7
{sat= true;
rep= [[%v_3 ];
[%w_4 %v_3];
[%x_5 %v_3];
[%y_6 %v_3];
[%z_7 %v_3];
[-1 ];
[0 ]]} |}]
let%test _ = normalize r7' w |> Term.equal v
let%test _ =
implies_eq (of_eqs [(g w x, g y z); (x, z)]) (g w x) (g w z)
let%test _ =
implies_eq (of_eqs [(g w x, g y w); (x, z)]) (g w x) (g w z)
let r8 = of_eqs [(x + !42, (3 * y) + (13 * z)); (13 * z, x)]
let%expect_test _ =
pp_classes r8 ;
pp r8 ;
[%expect
{|
(13 × %z_7) = %x_5 14 = %y_6
{sat= true;
rep= [[%x_5 (13 × %z_7)]; [%y_6 14]; [%z_7 ]; [-1 ]; [0 ]]} |}]
let%test _ = implies_eq r8 y !14
let r11 = of_eqs [(!16, z - x); (x + !8 - z, z - !16 + !8 - z)]
let%expect_test _ =
pp_classes r11 ;
[%expect {| (%z_7 + -16) = %x_5 |}]
let r12 = of_eqs [(!16, z - x); (x + !8 - z, z + !16 + !8 - z)]
let%expect_test _ =
pp_classes r12 ;
[%expect {| (%z_7 + -16) = %x_5 |}]
let r13 = of_eqs [(Term.eq x !2, y); (Term.dq x !2, z); (y, z)]
let%expect_test _ =
pp r13 ;
[%expect
{|
{sat= true;
rep= [[%x_5 ];
[%y_6 ];
[%z_7 %y_6];
[(%x_5 = 2) %y_6];
[(%x_5 2) %y_6];
[-1 ];
[0 ]]} |}]
let%test _ = not (is_false r13) (* incomplete *)
let a = Term.dq x !0
let r14 = of_eqs [(a, a); (x, !1)]
let%expect_test _ =
pp r14 ;
[%expect
{|
{sat= true; rep= [[%x_5 1]; [(%x_5 0) -1]; [-1 ]; [0 ]]} |}]
let%test _ = implies_eq r14 a Term.true_
let b = Term.dq y !0
let r14 = of_eqs [(a, b); (x, !1)]
let%expect_test _ =
pp r14 ;
[%expect
{|
{sat= true;
rep= [[%x_5 1];
[%y_6 ];
[(%x_5 0) -1];
[(%y_6 0) -1];
[-1 ];
[0 ]]} |}]
let%test _ = implies_eq r14 a Term.true_
let%test _ = implies_eq r14 b Term.true_
let b = Term.dq x !0
let r15 = of_eqs [(b, b); (x, !1)]
@ -390,66 +85,4 @@ let%test_module _ =
let%test _ = implies_eq r15 b (Term.signed 1 !1)
let%test _ = implies_eq r15 (Term.unsigned 1 b) !1
(* f(x1)1=x+1, f(y)+1=y1, y+1=x ⊢ false *)
let r16 =
of_eqs [(f (x - !1) - !1, x + !1); (f y + !1, y - !1); (y + !1, x)]
let%expect_test _ =
pp r16 ;
[%expect
{|
{sat= false;
rep= [[%x_5 (%y_6 + 1)];
[%y_6 ];
[((u8) %y_6) (%y_6 + -2)];
[((u8) (%x_5 + -1)) (%y_6 + 3)];
[-1 ];
[0 ]]} |}]
let%test _ = is_false r16
(* f(x) = x, f(y) = y 1, y = x ⊢ false *)
let r17 = of_eqs [(f x, x); (f y, y - !1); (y, x)]
let%expect_test _ =
pp r17 ;
[%expect
{|
{sat= false;
rep= [[%x_5 ];
[%y_6 %x_5];
[((u8) %x_5) %x_5];
[((u8) %y_6) (%x_5 + -1)];
[-1 ];
[0 ]]} |}]
let%test _ = is_false r17
let%expect_test _ =
let r18 = of_eqs [(f x, x); (f y, y - !1)] in
pp r18 ;
pp_classes r18 ;
[%expect
{|
{sat= true;
rep= [[%x_5 ];
[%y_6 ];
[((u8) %x_5) %x_5];
[((u8) %y_6) (%y_6 + -1)];
[-1 ];
[0 ]]}
%x_5 = ((u8) %x_5) (%y_6 + -1) = ((u8) %y_6) |}]
let r19 = of_eqs [(x, y + z); (x, !0); (y, !0)]
let%expect_test _ =
pp r19 ;
[%expect
{|
{sat= true;
rep= [[%x_5 0]; [%y_6 0]; [%z_7 0]; [-1 ]; [0 ]]} |}]
let%test _ = implies_eq r19 z !0
end )

Loading…
Cancel
Save