[sledge] Refactor: Distinguish Fol term and formula types

Reviewed By: ngorogiannis

Differential Revision: D22170516

fbshipit-source-id: e593123ce
master
Josh Berdine 5 years ago committed by Facebook GitHub Bot
parent 0998ce011f
commit 0568f2ee2d

@ -38,7 +38,7 @@ let is_false = Sh.is_false
let dnf = Sh.dnf
let exec_assume q b =
Exec.assume q (Term.of_exp b) |> Option.map ~f:simplify
Exec.assume q (Formula.of_exp b) |> Option.map ~f:simplify
let exec_kill q r = Exec.kill q (Var.of_reg r) |> simplify
@ -122,7 +122,7 @@ let garbage_collect (q : t) ~wrt =
let and_eqs sub formals actuals q =
let and_eq q formal actual =
let actual' = Term.rename sub actual in
Sh.and_ (Term.eq (Term.var formal) actual') q
Sh.and_ (Formula.eq (Term.var formal) actual') q
in
List.fold2_exn ~f:and_eq formals actuals ~init:q
@ -277,7 +277,7 @@ let create_summary ~locals ~formals ~entry ~current:(post : Sh.t) =
Var.Set.fold formals ~init:q ~f:(fun q var ->
let var = Term.var var in
let renamed_var = Term.rename subst var in
Sh.and_ (Term.eq renamed_var var) q )
Sh.and_ (Formula.eq renamed_var var) q )
in
(* Add back the original formals name *)
let post = Sh.rename subst post in

@ -87,12 +87,11 @@ let gen_spec us specm =
* Instruction small axioms
*)
let null_eq ptr = Sh.pure (Term.eq Term.zero ptr)
let null_eq ptr = Sh.pure (Formula.eq Term.zero ptr)
let eq_concat (siz, seq) ms =
Term.(
eq (sized ~siz ~seq)
(concat (Array.map ~f:(fun (siz, seq) -> sized ~siz ~seq) ms)))
Formula.eq (Term.sized ~siz ~seq)
(Term.concat (Array.map ~f:(fun (siz, seq) -> Term.sized ~siz ~seq) ms))
open Fresh.Import
@ -110,7 +109,7 @@ let move_spec reg_exps =
let+ sub, ms = Fresh.assign ~ws ~rs in
let post =
IArray.fold reg_exps ~init:Sh.emp ~f:(fun post (reg, exp) ->
Sh.and_ (Term.eq (Term.var reg) (Term.rename sub exp)) post )
Sh.and_ (Formula.eq (Term.var reg) (Term.rename sub exp)) post )
in
{foot; sub; ms; post}
@ -124,7 +123,7 @@ let load_spec reg ptr len =
let+ sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:foot.us in
let post =
Sh.and_
(Term.eq (Term.var reg) (Term.rename sub seg.seq))
(Formula.eq (Term.var reg) (Term.rename sub seg.seq))
(Sh.rename sub foot)
in
{foot; sub; ms; post}
@ -157,7 +156,8 @@ let memcpy_eq_spec dst src len =
let+ seg = Fresh.seg dst ~len in
let dst_heap = Sh.seg seg in
let foot =
Sh.and_ (Term.eq dst src) (Sh.and_ (Term.eq len Term.zero) dst_heap)
Sh.and_ (Formula.eq dst src)
(Sh.and_ (Formula.eq len Term.zero) dst_heap)
in
let post = dst_heap in
{foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
@ -187,7 +187,7 @@ let memcpy_specs dst src len =
let memmov_eq_spec dst src len =
let+ dst_seg = Fresh.seg dst ~len in
let dst_heap = Sh.seg dst_seg in
let foot = Sh.and_ (Term.eq dst src) dst_heap in
let foot = Sh.and_ (Formula.eq dst src) dst_heap in
let post = dst_heap in
{foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
@ -221,8 +221,8 @@ let memmov_foot dst src len =
in
let foot =
Sh.and_ eq_mem_dst_mid_src
(Sh.and_ (Term.lt dst src)
(Sh.and_ (Term.lt src (Term.add dst len)) seg))
(Sh.and_ (Formula.lt dst src)
(Sh.and_ (Formula.lt src (Term.add dst len)) seg))
in
(bas, siz, mem_dst, mem_mid, mem_src, foot)
@ -336,7 +336,7 @@ let malloc_spec reg siz =
* { r=0 α'. r-[r;sΘ)->sΘ,α' }
*)
let mallocx_spec reg siz =
let foot = Sh.pure (Term.dq siz Term.zero) in
let foot = Sh.pure (Formula.dq siz Term.zero) in
let* sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:(Term.fv siz) in
let loc = Term.var reg in
let siz = Term.rename sub siz in
@ -381,9 +381,9 @@ let posix_memalign_spec reg ptr siz =
let enomem = Term.integer (Z.of_int 12) in
let post =
Sh.or_
(Sh.and_ (Term.eq (Term.var reg) enomem) (Sh.rename sub foot))
(Sh.and_ (Formula.eq (Term.var reg) enomem) (Sh.rename sub foot))
(Sh.and_
(Term.eq (Term.var reg) eok)
(Formula.eq (Term.var reg) eok)
(Sh.rename sub (Sh.star (Sh.seg pseg') (Sh.seg qseg))))
in
{foot; sub; ms; post}
@ -410,12 +410,11 @@ let realloc_spec reg ptr siz =
let+ a2 = Fresh.var "a" in
let post =
Sh.or_
(Sh.and_ Term.(eq loc zero) (Sh.rename sub foot))
(Sh.and_ (Formula.eq loc Term.zero) (Sh.rename sub foot))
(Sh.and_
Term.(
conditional ~cnd:(le len siz)
~thn:(eq_concat (siz, a1) [|(len, a0); (sub siz len, a2)|])
~els:(eq_concat (len, a0) [|(siz, a1); (sub len siz, a2)|]))
(Formula.conditional ~cnd:(Formula.le len siz)
~thn:(eq_concat (siz, a1) [|(len, a0); (Term.sub siz len, a2)|])
~els:(eq_concat (len, a0) [|(siz, a1); (Term.sub len siz, a2)|]))
(Sh.seg rseg))
in
{foot; sub; ms; post}
@ -430,7 +429,7 @@ let rallocx_spec reg ptr siz =
let* len = Fresh.var "m" in
let* pseg = Fresh.seg ptr ~bas:ptr ~len ~siz:len in
let pheap = Sh.seg pseg in
let foot = Sh.and_ (Term.dq siz Term.zero) pheap in
let foot = Sh.and_ (Formula.dq siz Term.zero) pheap in
let* sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:foot.us in
let loc = Term.var reg in
let siz = Term.rename sub siz in
@ -440,12 +439,11 @@ let rallocx_spec reg ptr siz =
let+ a2 = Fresh.var "a" in
let post =
Sh.or_
(Sh.and_ Term.(eq loc zero) (Sh.rename sub pheap))
(Sh.and_ (Formula.eq loc Term.zero) (Sh.rename sub pheap))
(Sh.and_
Term.(
conditional ~cnd:(le len siz)
~thn:(eq_concat (siz, a1) [|(len, a0); (sub siz len, a2)|])
~els:(eq_concat (len, a0) [|(siz, a1); (sub len siz, a2)|]))
(Formula.conditional ~cnd:(Formula.le len siz)
~thn:(eq_concat (siz, a1) [|(len, a0); (Term.sub siz len, a2)|])
~els:(eq_concat (len, a0) [|(siz, a1); (Term.sub len siz, a2)|]))
(Sh.seg rseg))
in
{foot; sub; ms; post}
@ -458,7 +456,7 @@ let rallocx_spec reg ptr siz =
let xallocx_spec reg ptr siz ext =
let* len = Fresh.var "m" in
let* seg = Fresh.seg ptr ~bas:ptr ~len ~siz:len in
let foot = Sh.and_ (Term.dq siz Term.zero) (Sh.seg seg) in
let foot = Sh.and_ (Formula.dq siz Term.zero) (Sh.seg seg) in
let* sub, ms =
Fresh.assign ~ws:(Var.Set.of_ reg)
~rs:Var.Set.(union foot.us (union (Term.fv siz) (Term.fv ext)))
@ -473,12 +471,12 @@ let xallocx_spec reg ptr siz ext =
let+ a2 = Fresh.var "a" in
let post =
Sh.and_
Term.(
and_
(conditional ~cnd:(le len siz)
~thn:(eq_concat (siz, a1) [|(len, a0); (sub siz len, a2)|])
~els:(eq_concat (len, a0) [|(siz, a1); (sub len siz, a2)|]))
(and_ (le siz reg) (le reg (add siz ext))))
(Formula.and_
(Formula.conditional ~cnd:(Formula.le len siz)
~thn:(eq_concat (siz, a1) [|(len, a0); (Term.sub siz len, a2)|])
~els:(eq_concat (len, a0) [|(siz, a1); (Term.sub len siz, a2)|]))
(Formula.and_ (Formula.le siz reg)
(Formula.le reg (Term.add siz ext))))
(Sh.seg seg')
in
{foot; sub; ms; post}
@ -492,7 +490,7 @@ let sallocx_spec reg ptr =
let* seg = Fresh.seg ptr ~bas:ptr ~len ~siz:len in
let foot = Sh.seg seg in
let+ sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:foot.us in
let post = Sh.and_ (Term.eq (Term.var reg) len) (Sh.rename sub foot) in
let post = Sh.and_ (Formula.eq (Term.var reg) len) (Sh.rename sub foot) in
{foot; sub; ms; post}
(* { p-[p;m)->⟨m,α⟩ }
@ -504,7 +502,7 @@ let malloc_usable_size_spec reg ptr =
let* seg = Fresh.seg ptr ~bas:ptr ~len ~siz:len in
let foot = Sh.seg seg in
let+ sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:foot.us in
let post = Sh.and_ (Term.le len (Term.var reg)) (Sh.rename sub foot) in
let post = Sh.and_ (Formula.le len (Term.var reg)) (Sh.rename sub foot) in
{foot; sub; ms; post}
(* { s≠0 }
@ -512,11 +510,11 @@ let malloc_usable_size_spec reg ptr =
* { r=0 r=sΘ }
*)
let nallocx_spec reg siz =
let foot = Sh.pure (Term.dq siz Term.zero) in
let foot = Sh.pure (Formula.dq siz Term.zero) in
let+ sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:foot.us in
let loc = Term.var reg in
let siz = Term.rename sub siz in
let post = Sh.or_ (null_eq loc) (Sh.pure (Term.eq loc siz)) in
let post = Sh.or_ (null_eq loc) (Sh.pure (Formula.eq loc siz)) in
{foot; sub; ms; post}
let size_of_int_mul = Term.mulq (Q.of_int Llair.Typ.(size_of siz))
@ -530,9 +528,9 @@ let mallctl_read_spec r i w n =
let* rseg = Fresh.seg r ~siz:iseg.seq in
let+ a = Fresh.var "a" in
let foot =
Sh.and_
Term.(eq w zero)
(Sh.and_ Term.(eq n zero) (Sh.star (Sh.seg iseg) (Sh.seg rseg)))
Sh.and_ (Formula.eq w Term.zero)
(Sh.and_ (Formula.eq n Term.zero)
(Sh.star (Sh.seg iseg) (Sh.seg rseg)))
in
let rseg' = {rseg with seq= a} in
let post = Sh.star (Sh.seg rseg') (Sh.seg iseg) in
@ -552,9 +550,8 @@ let mallctlbymib_read_spec p l r i w n =
let const = Sh.star (Sh.seg pseg) (Sh.seg iseg) in
let+ a = Fresh.var "a" in
let foot =
Sh.and_
Term.(eq w zero)
(Sh.and_ Term.(eq n zero) (Sh.star const (Sh.seg rseg)))
Sh.and_ (Formula.eq w Term.zero)
(Sh.and_ (Formula.eq n Term.zero) (Sh.star const (Sh.seg rseg)))
in
let rseg' = {rseg with seq= a} in
let post = Sh.star (Sh.seg rseg') const in
@ -568,7 +565,7 @@ let mallctl_write_spec r i w n =
let+ seg = Fresh.seg w ~siz:n in
let post = Sh.seg seg in
let foot =
Sh.and_ (Term.eq r Term.zero) (Sh.and_ (Term.eq i Term.zero) post)
Sh.and_ (Formula.eq r Term.zero) (Sh.and_ (Formula.eq i Term.zero) post)
in
{foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
@ -583,7 +580,7 @@ let mallctlbymib_write_spec p l r i w n =
let+ wseg = Fresh.seg w ~siz:n in
let post = Sh.star (Sh.seg pseg) (Sh.seg wseg) in
let foot =
Sh.and_ (Term.eq r Term.zero) (Sh.and_ (Term.eq i Term.zero) post)
Sh.and_ (Formula.eq r Term.zero) (Sh.and_ (Formula.eq i Term.zero) post)
in
{foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
@ -630,7 +627,7 @@ let strlen_spec reg ptr =
let ret = Term.sub (Term.sub (Term.add b m) p) Term.one in
let post =
Sh.and_
(Term.eq (Term.var reg) (Term.rename sub ret))
(Formula.eq (Term.var reg) (Term.rename sub ret))
(Sh.rename sub foot)
in
{foot; sub; ms; post}

@ -9,7 +9,7 @@
open Fol
val assume : Sh.t -> Term.t -> Sh.t option
val assume : Sh.t -> Formula.t -> Sh.t option
val kill : Sh.t -> Var.t -> Sh.t
val move : Sh.t -> (Var.t * Term.t) iarray -> Sh.t
val load : Sh.t -> reg:Var.t -> ptr:Term.t -> len:Term.t -> Sh.t option

@ -10,10 +10,29 @@ module Var = Ses.Term.Var
module Term = struct
include Ses.Term
type term = t
type formula = t
let ite = conditional
end
module Context = Ses.Equality
module Formula = struct
include Ses.Term
let inject b = b
let project e = Some e
let of_exp e =
let b = Term.of_exp e in
match project b with Some p -> p | None -> dq Term.zero b
end
module Context = struct
include Ses.Equality
let and_formula = and_term
let normalizef = normalize
module Subst = struct
include Subst
let substf = subst
end
end

@ -56,90 +56,110 @@ module Var : sig
end
(** Terms *)
module Term : sig
type term
type formula = term
module rec Term : sig
type t [@@deriving compare, equal, sexp]
val ppx : Var.strength -> term pp
val pp : term pp
(* pretty-printing *)
val ppx : Var.strength -> t pp
val pp : t pp
module Map : Map.S with type key := term
module Map : Map.S with type key := t
(** Construct *)
(** terms *)
(* variables *)
val var : Var.t -> term
val var : Var.t -> t
(* constants *)
val zero : term
val one : term
val integer : Z.t -> term
val rational : Q.t -> term
val zero : t
val one : t
val integer : Z.t -> t
val rational : Q.t -> t
(* arithmetic *)
val neg : term -> term
val add : term -> term -> term
val sub : term -> term -> term
val mulq : Q.t -> term -> term
val mul : term -> term -> term
val neg : t -> t
val add : t -> t -> t
val sub : t -> t -> t
val mulq : Q.t -> t -> t
val mul : t -> t -> t
(* sequences *)
val splat : term -> term
val sized : seq:term -> siz:term -> term
val extract : seq:term -> off:term -> len:term -> term
val concat : term array -> term
val splat : t -> t
val sized : seq:t -> siz:t -> t
val extract : seq:t -> off:t -> len:t -> t
val concat : t array -> t
(* if-then-else *)
val ite : cnd:formula -> thn:term -> els:term -> term
(** formulas *)
(* constants *)
val true_ : formula
val false_ : formula
(* comparisons *)
val eq : term -> term -> formula
val dq : term -> term -> formula
val lt : term -> term -> formula
val le : term -> term -> formula
(* connectives *)
val not_ : formula -> formula
val and_ : formula -> formula -> formula
val or_ : formula -> formula -> formula
val conditional : cnd:formula -> thn:formula -> els:formula -> formula
val ite : cnd:Formula.t -> thn:t -> els:t -> t
(** Convert *)
val of_exp : Llair.Exp.t -> term
val of_exp : Llair.Exp.t -> t
(** Destruct *)
val d_int : term -> Z.t option
val d_int : t -> Z.t option
(** Access *)
val const_of : term -> Q.t option
val const_of : t -> Q.t option
(** Transform *)
val disjuncts : term -> term list
val rename : Var.Subst.t -> term -> term
val rename : Var.Subst.t -> t -> t
(** Traverse *)
val fold_vars : term -> init:'a -> f:('a -> Var.t -> 'a) -> 'a
val fold_vars : t -> init:'a -> f:('a -> Var.t -> 'a) -> 'a
(** Query *)
val is_true : formula -> bool
val is_false : formula -> bool
val fv : term -> Var.Set.t
val fv : t -> Var.Set.t
end
(** Formulas *)
and Formula : sig
type t [@@deriving compare, equal, sexp]
val inject : t -> Term.t
val project : Term.t -> t option
(* pretty-printing *)
val ppx : Var.strength -> t pp
val pp : t pp
(** Construct *)
(* constants *)
val true_ : t
val false_ : t
(* comparisons *)
val eq : Term.t -> Term.t -> t
val dq : Term.t -> Term.t -> t
val lt : Term.t -> Term.t -> t
val le : Term.t -> Term.t -> t
(* connectives *)
val not_ : t -> t
val and_ : t -> t -> t
val or_ : t -> t -> t
val conditional : cnd:t -> thn:t -> els:t -> t
(** Convert *)
val of_exp : Llair.Exp.t -> t
type t = term [@@deriving compare, equal, sexp]
(** Transform *)
val rename : Var.Subst.t -> t -> t
val disjuncts : t -> t list
(** Query *)
val is_true : t -> bool
val is_false : t -> bool
val fv : t -> Var.Set.t
end
(** Inference System *)
@ -164,7 +184,7 @@ module Context : sig
val true_ : t
(** The diagonal relation, which only equates each term with itself. *)
val and_term : Var.Set.t -> Term.t -> t -> Var.Set.t * t
val and_formula : Var.Set.t -> Formula.t -> t -> Var.Set.t * t
(** Conjoin a (Boolean) term to a relation. *)
val and_ : Var.Set.t -> t -> t -> Var.Set.t * t
@ -197,6 +217,8 @@ module Context : sig
relation, where [e'] and its subterms are expressed in terms of the
relation's canonical representatives of each equivalence class. *)
val normalizef : t -> Formula.t -> Formula.t
val difference : t -> Term.t -> Term.t -> Z.t option
(** The difference as an offset. [difference r a b = Some k] if [r]
implies [a = b+k], or [None] if [a] and [b] are not equal up to an
@ -217,6 +239,8 @@ module Context : sig
val subst : t -> Term.t -> Term.t
(** Apply a substitution recursively to subterms. *)
val substf : t -> Formula.t -> Formula.t
val partition_valid : Var.Set.t -> t -> t * Var.Set.t * t
(** Partition ∃xs. σ into equivalent ∃xs. τ ∧ ∃ks. ν where ks
and ν are maximal where ks. ν is universally valid, xs ks

@ -18,7 +18,7 @@ type starjunction =
{ us: Var.Set.t
; xs: Var.Set.t
; ctx: Context.t
; pure: Term.t
; pure: Formula.t
; heap: seg list
; djns: disjunction list }
[@@deriving compare, equal, sexp]
@ -33,7 +33,7 @@ let emp =
{ us= Var.Set.empty
; xs= Var.Set.empty
; ctx= Context.true_
; pure= Term.true_
; pure= Formula.true_
; heap= []
; djns= [] }
@ -56,9 +56,10 @@ let map_seg ~f h =
then h
else {loc; bas; len; siz; seq}
let map ~f_sjn ~f_ctx ~f_trm ({us; xs= _; ctx; pure; heap; djns} as q) =
let pure = f_trm pure in
if Term.is_false pure then false_ us
let map ~f_sjn ~f_ctx ~f_trm ~f_fml ({us; xs= _; ctx; pure; heap; djns} as q)
=
let pure = f_fml pure in
if Formula.is_false pure then false_ us
else
let ctx = f_ctx ctx in
let heap = List.map_endo heap ~f:(map_seg ~f:f_trm) in
@ -78,7 +79,7 @@ let fold_vars_stem ?ignore_ctx {us= _; xs= _; ctx; pure; heap; djns= _}
~init ~f =
List.fold ~init heap ~f:(fun init -> fold_vars_seg ~f ~init)
|> fun init ->
Term.fold_vars ~f ~init pure
Term.fold_vars ~f ~init (Formula.inject pure)
|> fun init ->
if Option.is_some ignore_ctx then init
else Context.fold_terms ~init ctx ~f:(fun init -> Term.fold_vars ~f ~init)
@ -222,12 +223,12 @@ let rec pp_ ?var_strength vs parent_xs parent_ctx fs
let pure =
if Option.is_none var_strength then [pure]
else
let pure' = Context.normalize ctx pure in
if Term.is_true pure' then [] else [pure']
let pure' = Context.normalizef ctx pure in
if Formula.is_true pure' then [] else [pure']
in
List.pp
~pre:(if first then "@[ " else "@ @[@<2>∧ ")
"@ @<2>∧ " (Term.ppx x) fs pure ~suf:"@]" ;
"@ @<2>∧ " (Formula.ppx x) fs pure ~suf:"@]" ;
let first = first && List.is_empty pure in
if List.is_empty heap then
Format.fprintf fs
@ -275,11 +276,7 @@ let fv ?ignore_ctx q =
in
fv_union Var.Set.empty q
let invariant_pure b =
match Term.d_int b with
| Some data -> assert (not (Z.is_false data))
| _ -> assert true
let invariant_pure p = assert (not (Formula.is_false p))
let invariant_seg _ = ()
let rec invariant q =
@ -298,7 +295,7 @@ let rec invariant q =
( match djns with
| [[]] ->
assert (Context.is_true ctx) ;
assert (Term.is_true pure) ;
assert (Formula.is_true pure) ;
assert (List.is_empty heap)
| _ -> assert (not (Context.is_false ctx)) ) ;
invariant_pure pure ;
@ -318,7 +315,7 @@ let rec invariant q =
let rec apply_subst sub q =
map q ~f_sjn:(rename sub)
~f_ctx:(fun r -> Context.rename r sub)
~f_trm:(Term.rename sub)
~f_trm:(Term.rename sub) ~f_fml:(Formula.rename sub)
|> check (fun q' ->
assert (Var.Set.disjoint (fv q') (Var.Subst.domain sub)) )
@ -456,11 +453,11 @@ let star q1 q2 =
| {djns= [[]]; _}, _ | _, {djns= [[]]; _} ->
false_ (Var.Set.union q1.us q2.us)
| {us= _; xs= _; ctx; pure; heap= []; djns= []}, _
when Context.is_true ctx && Term.is_true pure ->
when Context.is_true ctx && Formula.is_true pure ->
let us = Var.Set.union q1.us q2.us in
if us == q2.us then q2 else {q2 with us}
| _, {us= _; xs= _; ctx; pure; heap= []; djns= []}
when Context.is_true ctx && Term.is_true pure ->
when Context.is_true ctx && Formula.is_true pure ->
let us = Var.Set.union q1.us q2.us in
if us == q1.us then q1 else {q1 with us}
| _ ->
@ -479,7 +476,7 @@ let star q1 q2 =
{ us
; xs= Var.Set.union xs1 xs2
; ctx
; pure= Term.and_ p1 p2
; pure= Formula.and_ p1 p2
; heap= List.append h1 h2
; djns= List.append d1 d2 } )
|>
@ -501,17 +498,17 @@ let or_ q1 q2 =
| _, {djns= [[]]; _} -> extend_us q2.us q1
| ( ({djns= []; _} as q)
, ({us= _; xs; ctx= _; pure; heap= []; djns= [djn]} as d) )
when Var.Set.is_empty xs && Term.is_true pure ->
when Var.Set.is_empty xs && Formula.is_true pure ->
{d with us= Var.Set.union q.us d.us; djns= [q :: djn]}
| ( ({us= _; xs; ctx= _; pure; heap= []; djns= [djn]} as d)
, ({djns= []; _} as q) )
when Var.Set.is_empty xs && Term.is_true pure ->
when Var.Set.is_empty xs && Formula.is_true pure ->
{d with us= Var.Set.union q.us d.us; djns= [q :: djn]}
| _ ->
{ us= Var.Set.union q1.us q2.us
; xs= Var.Set.empty
; ctx= Context.true_
; pure= Term.true_
; pure= Formula.true_
; heap= []
; djns= [[q1; q2]] } )
|>
@ -525,14 +522,15 @@ let orN = function
| [q] -> q
| q :: qs -> List.fold ~f:or_ ~init:q qs
let pure (e : Term.t) =
[%Trace.call fun {pf} -> pf "%a" Term.pp e]
let pure (p : Formula.t) =
[%Trace.call fun {pf} -> pf "%a" Formula.pp p]
;
List.fold (Term.disjuncts e) ~init:(false_ Var.Set.empty) ~f:(fun q b ->
let us = Term.fv b in
let xs, ctx = Context.(and_term us b true_) in
List.fold (Formula.disjuncts p) ~init:(false_ Var.Set.empty)
~f:(fun q p ->
let us = Formula.fv p in
let xs, ctx = Context.(and_formula us p true_) in
if Context.is_false ctx then false_ us
else or_ q (exists_fresh xs {emp with us; ctx; pure= b}) )
else or_ q (exists_fresh xs {emp with us; ctx; pure= p}) )
|>
[%Trace.retn fun {pf} q ->
pf "%a" pp q ;
@ -544,7 +542,7 @@ let and_subst subst q =
[%Trace.call fun {pf} -> pf "%a@ %a" Context.Subst.pp subst pp q]
;
Context.Subst.fold
~f:(fun ~key ~data -> and_ (Term.eq key data))
~f:(fun ~key ~data -> and_ (Formula.eq key data))
subst ~init:q
|>
[%Trace.retn fun {pf} q ->
@ -555,10 +553,10 @@ let subst sub q =
[%Trace.call fun {pf} -> pf "@[%a@]@ %a" Var.Subst.pp sub pp q]
;
let dom, eqs =
Var.Subst.fold sub ~init:(Var.Set.empty, Term.true_)
Var.Subst.fold sub ~init:(Var.Set.empty, Formula.true_)
~f:(fun var trm (dom, eqs) ->
( Var.Set.add dom var
, Term.and_ (Term.eq (Term.var var) (Term.var trm)) eqs ) )
, Formula.and_ (Formula.eq (Term.var var) (Term.var trm)) eqs ) )
in
exists dom (and_ eqs q)
|>
@ -585,13 +583,13 @@ let filter_heap ~f q =
(** Query *)
let is_emp = function
| {us= _; xs= _; ctx= _; pure; heap= []; djns= []} -> Term.is_true pure
| {us= _; xs= _; ctx= _; pure; heap= []; djns= []} -> Formula.is_true pure
| _ -> false
let is_false = function
| {djns= [[]]; _} -> true
| {ctx; pure; heap; _} ->
Term.is_false (Context.normalize ctx pure)
Formula.is_false (Context.normalizef ctx pure)
|| List.exists heap ~f:(fun seg ->
Context.entails_eq ctx seg.loc Term.zero )
@ -647,6 +645,7 @@ let rec norm_ s q =
;
let q =
map q ~f_sjn:(norm_ s) ~f_ctx:Fn.id ~f_trm:(Context.Subst.subst s)
~f_fml:(Context.Subst.substf s)
in
let xs, ctx = Context.apply_subst (Var.Set.union q.us q.xs) s q.ctx in
exists_fresh xs {q with ctx}

@ -19,7 +19,7 @@ type starjunction = private
; xs: Var.Set.t (** existentially-bound variables *)
; ctx: Context.t
(** first-order logical context induced by rest of formula *)
; pure: Term.t (** pure boolean constraints *)
; pure: Formula.t (** pure boolean constraints *)
; heap: seg list (** star-conjunction of segment atomic formulas *)
; djns: disjunction list (** star-conjunction of disjunctions *) }
@ -56,10 +56,10 @@ val or_ : t -> t -> t
(** Disjoin formulas, extending to a common vocabulary, and avoiding
capturing existentials. *)
val pure : Term.t -> t
val pure : Formula.t -> t
(** Atomic pure boolean constraint formula. *)
val and_ : Term.t -> t -> t
val and_ : Formula.t -> t -> t
(** Conjoin a boolean constraint to a formula. *)
val and_ctx : Context.t -> t -> t
@ -72,7 +72,7 @@ val and_subst : Context.Subst.t -> t -> t
(** Update *)
val with_pure : Term.t -> t -> t
val with_pure : Formula.t -> t -> t
(** [with_pure pure q] is [{q with pure}], which assumes that [q.pure] and
[pure] are defined in the same vocabulary. Note that [ctx] is not
weakened, so if [pure] and [q.pure] do not induce the same context, then

@ -24,7 +24,7 @@ let%test_module _ =
let ( ~$ ) = Var.Set.of_list
let ( ! ) i = Term.integer (Z.of_int i)
let ( - ) = Term.sub
let ( = ) = Term.eq
let ( = ) = Formula.eq
let f = Term.splat (* any uninterpreted function *)
let wrt = Var.Set.empty
@ -45,12 +45,12 @@ let%test_module _ =
let y = Term.var y_
let eq_concat (siz, seq) ms =
Term.(
eq (sized ~siz ~seq)
(concat (Array.map ~f:(fun (siz, seq) -> sized ~siz ~seq) ms)))
Formula.eq (Term.sized ~siz ~seq)
(Term.concat
(Array.map ~f:(fun (siz, seq) -> Term.sized ~siz ~seq) ms))
let of_eqs l =
List.fold ~init:emp ~f:(fun q (a, b) -> and_ (Term.eq a b) q) l
List.fold ~init:emp ~f:(fun q (a, b) -> and_ (Formula.eq a b) q) l
let%expect_test _ =
let p = exists ~$[x_] (extend_us ~$[x_] emp) in
@ -160,7 +160,7 @@ let%test_module _ =
(star
(pure (eq_concat (!16, e) [|(!8, a); (!8, d)|]))
(or_
(pure (Term.dq x !0))
(pure (Formula.dq x !0))
(exists
(Var.Set.of_list [b_])
(pure (eq_concat (!8, a) [|(!4, c); (!4, b)|])))))

@ -134,9 +134,8 @@ end
open Goal
let eq_concat (siz, seq) ms =
Term.(
eq (sized ~siz ~seq)
(concat (Array.map ~f:(fun (siz, seq) -> sized ~siz ~seq) ms)))
Formula.eq (Term.sized ~siz ~seq)
(Term.concat (Array.map ~f:(fun (siz, seq) -> Term.sized ~siz ~seq) ms))
let fresh_var name vs zs ~wrt =
let v, wrt = Var.fresh name ~wrt in
@ -155,7 +154,7 @@ let excise_exists goal =
let solutions_for_xs =
let xs =
Var.Set.diff goal.xs
(Sh.fv ~ignore_ctx:() (Sh.with_pure Term.true_ goal.sub))
(Sh.fv ~ignore_ctx:() (Sh.with_pure Formula.true_ goal.sub))
in
Context.solve_for_vars [Var.Set.empty; goal.us; xs] goal.sub.ctx
in
@ -182,8 +181,8 @@ let excise_exists goal =
let excise_pure ({min; sub} as goal) =
trace (fun {pf} -> pf "@[<2>excise_pure@ %a@]" pp goal) ;
let pure' = Context.normalize min.ctx sub.pure in
if Term.is_false pure' then None
let pure' = Context.normalizef min.ctx sub.pure in
if Formula.is_false pure' then None
else Some (goal |> with_ ~sub:(Sh.with_pure pure' sub))
(* [k; o)
@ -208,8 +207,9 @@ let excise_seg_same ({com; min; sub} as goal) msg ssg =
let com = Sh.star (Sh.seg msg) com in
let min = Sh.rem_seg msg min in
let sub =
Sh.and_ (Term.eq b b')
(Sh.and_ (Term.eq m m') (Sh.and_ (Term.eq a a') (Sh.rem_seg ssg sub)))
Sh.and_ (Formula.eq b b')
(Sh.and_ (Formula.eq m m')
(Sh.and_ (Formula.eq a a') (Sh.rem_seg ssg sub)))
in
goal |> with_ ~com ~min ~sub
@ -246,9 +246,9 @@ let excise_seg_sub_prefix ({us; com; min; xs; sub; zs} as goal) msg ssg o_n
(Sh.rem_seg msg min))
in
let sub =
Sh.and_ (Term.eq b b')
(Sh.and_ (Term.eq m m')
(Sh.and_ (Term.eq a0 a') (Sh.rem_seg ssg sub)))
Sh.and_ (Formula.eq b b')
(Sh.and_ (Formula.eq m m')
(Sh.and_ (Formula.eq a0 a') (Sh.rem_seg ssg sub)))
in
goal |> with_ ~us ~com ~min ~xs ~sub ~zs
@ -278,8 +278,8 @@ let excise_seg_min_prefix ({us; com; min; xs; sub; zs} as goal) msg ssg n_o
let min = Sh.rem_seg msg min in
let a1', xs, zs, _ = fresh_var "a1" xs zs ~wrt:(Var.Set.union us xs) in
let sub =
Sh.and_ (Term.eq b b')
(Sh.and_ (Term.eq m m')
Sh.and_ (Formula.eq b b')
(Sh.and_ (Formula.eq m m')
(Sh.and_
(eq_concat (n, a') [|(o, a); (n_o, a1')|])
(Sh.star
@ -324,9 +324,9 @@ let excise_seg_sub_suffix ({us; com; min; xs; sub; zs} as goal) msg ssg l_k
(Sh.rem_seg msg min))
in
let sub =
Sh.and_ (Term.eq b b')
(Sh.and_ (Term.eq m m')
(Sh.and_ (Term.eq a1 a') (Sh.rem_seg ssg sub)))
Sh.and_ (Formula.eq b b')
(Sh.and_ (Formula.eq m m')
(Sh.and_ (Formula.eq a1 a') (Sh.rem_seg ssg sub)))
in
goal |> with_ ~us ~com ~min ~xs ~sub ~zs
@ -371,9 +371,9 @@ let excise_seg_sub_infix ({us; com; min; xs; sub; zs} as goal) msg ssg l_k
(Sh.rem_seg msg min)))
in
let sub =
Sh.and_ (Term.eq b b')
(Sh.and_ (Term.eq m m')
(Sh.and_ (Term.eq a1 a') (Sh.rem_seg ssg sub)))
Sh.and_ (Formula.eq b b')
(Sh.and_ (Formula.eq m m')
(Sh.and_ (Formula.eq a1 a') (Sh.rem_seg ssg sub)))
in
goal |> with_ ~us ~com ~min ~xs ~sub ~zs
@ -417,8 +417,8 @@ let excise_seg_min_skew ({us; com; min; xs; sub; zs} as goal) msg ssg l_k
(Sh.rem_seg msg min))
in
let sub =
Sh.and_ (Term.eq b b')
(Sh.and_ (Term.eq m m')
Sh.and_ (Formula.eq b b')
(Sh.and_ (Formula.eq m m')
(Sh.and_
(eq_concat (n, a') [|(ko_l, a1); (ln_ko, a2')|])
(Sh.star
@ -453,8 +453,8 @@ let excise_seg_min_suffix ({us; com; min; xs; sub; zs} as goal) msg ssg k_l
let com = Sh.star (Sh.seg msg) com in
let min = Sh.rem_seg msg min in
let sub =
Sh.and_ (Term.eq b b')
(Sh.and_ (Term.eq m m')
Sh.and_ (Formula.eq b b')
(Sh.and_ (Formula.eq m m')
(Sh.and_
(eq_concat (n, a') [|(k_l, a0'); (o, a)|])
(Sh.star
@ -493,8 +493,8 @@ let excise_seg_min_infix ({us; com; min; xs; sub; zs} as goal) msg ssg k_l
let com = Sh.star (Sh.seg msg) com in
let min = Sh.rem_seg msg min in
let sub =
Sh.and_ (Term.eq b b')
(Sh.and_ (Term.eq m m')
Sh.and_ (Formula.eq b b')
(Sh.and_ (Formula.eq m m')
(Sh.and_
(eq_concat (n, a') [|(k_l, a0'); (o, a); (ln_ko, a2')|])
(Sh.star
@ -544,8 +544,8 @@ let excise_seg_sub_skew ({us; com; min; xs; sub; zs} as goal) msg ssg k_l
(Sh.rem_seg msg min))
in
let sub =
Sh.and_ (Term.eq b b')
(Sh.and_ (Term.eq m m')
Sh.and_ (Formula.eq b b')
(Sh.and_ (Formula.eq m m')
(Sh.and_
(eq_concat (n, a') [|(k_l, a0'); (ln_k, a1)|])
(Sh.star
@ -569,8 +569,9 @@ let excise_seg ({sub} as goal) msg ssg =
Some
( goal
|> with_
~sub:(Sh.and_ (Term.eq b b') (Sh.and_ (Term.eq m m') goal.sub))
)
~sub:
(Sh.and_ (Formula.eq b b')
(Sh.and_ (Formula.eq m m') goal.sub)) )
else
match Int.sign (Z.sign k_l) with
(* k-l < 0 so k < l *)

@ -69,7 +69,7 @@ let%test_module _ =
) infer_frame: false |}]
let%expect_test _ =
check_frame Sh.emp [n_; m_] (Sh.and_ (Term.eq m n) Sh.emp) ;
check_frame Sh.emp [n_; m_] (Sh.and_ (Formula.eq m n) Sh.emp) ;
[%expect
{|
( infer_frame: emp \- %m_8, %n_9 . %m_8 = %n_9 emp
@ -101,7 +101,7 @@ let%test_module _ =
let seg1 = Sh.seg {loc= l; bas= b; len= !10; siz= !10; seq= a} in
let minued = Sh.star common seg1 in
let subtrahend =
Sh.and_ (Term.eq m n)
Sh.and_ (Formula.eq m n)
(Sh.exists
(Var.Set.of_list [m_])
(Sh.extend_us (Var.Set.of_list [m_]) common))
@ -229,7 +229,7 @@ let%test_module _ =
let%expect_test _ =
check_frame
(Sh.and_
Term.(or_ (or_ (eq n !0) (eq n !1)) (eq n !2))
Formula.(or_ (or_ (eq n !0) (eq n !1)) (eq n !2))
seg_split_symbolically)
[m_; a_]
(Sh.seg {loc= l; bas= l; len= m; siz= m; seq= a}) ;
@ -263,7 +263,7 @@ let%test_module _ =
(* Incompleteness: equivalent to above but using ≤ instead of *)
let%expect_test _ =
infer_frame
(Sh.and_ (Term.le n !2) seg_split_symbolically)
(Sh.and_ (Formula.le n !2) seg_split_symbolically)
[m_; a_]
(Sh.seg {loc= l; bas= l; len= m; siz= m; seq= a}) ;
[%expect
@ -278,7 +278,9 @@ let%test_module _ =
(* Incompleteness: cannot witness existentials to satisfy non-equality
pure constraints *)
let%expect_test _ =
let subtrahend = Sh.and_ (Term.eq m a) (Sh.pure (Term.dq m !0)) in
let subtrahend =
Sh.and_ (Formula.eq m a) (Sh.pure (Formula.dq m !0))
in
let minuend = Sh.extend_us (Var.Set.of_ a_) Sh.emp in
infer_frame minuend [m_] subtrahend ;
[%expect

Loading…
Cancel
Save