@ -19,6 +19,13 @@ set_grammar_ancestry ["llvm", "llair", "llair_prop", "llvm_to_llair", "llvm_ssa"
numLib. prefer_num ( ) ;
Definition translate_trace_def :
( translate_trace gmap Tau = Tau ) ∧
( translate_trace gmap Error = Error ) ∧
( translate_trace gmap ( Exit i ) = ( Exit i ) ) ∧
( translate_trace gmap ( W gv bytes ) = W ( translate_glob_var gmap gv ) bytes )
End
Inductive v_rel :
( ∀w. v_rel ( FlatV ( PtrV w ) ) ( FlatV ( IntV ( w2i w ) llair $ pointer_size ) ) ) ∧
( ∀w. v_rel ( FlatV ( W1V w ) ) ( FlatV ( IntV ( w2i w ) 1 ) ) ) ∧
@ -43,7 +50,7 @@ End
Inductive pc_rel :
(* L L V M s i d e p o i n t s t o a n o r m a l i n s t r u c t i o n *)
( ∀prog emap ip bp d b idx b' prev_i fname .
( ∀prog emap ip bp d b idx b' prev_i fname gmap .
(* B o t h a r e v a l i d p o i n t e r s t o b l o c k s i n t h e s a m e f u n c t i o n *)
dest_fn ip. f = fst ( dest_llair_lab bp ) ∧
alookup prog ip. f = Some d ∧
@ -56,9 +63,9 @@ Inductive pc_rel:
( ip. i ≠ Offset 0 ⇒ get_instr prog ( ip with i := Offset ( idx - 1 ) ) ( Inl prev_i ) ∧ is_call prev_i ) ∧
ip. f = Fn fname ∧
( ∃regs_to_keep.
b' = fst ( translate_instrs fname emap regs_to_keep ( take_to_call ( drop idx b. body ) ) ) )
b' = fst ( translate_instrs fname gmap emap regs_to_keep ( take_to_call ( drop idx b. body ) ) ) )
⇒
pc_rel prog emap ip bp ) ∧
pc_rel prog gmap emap ip bp ) ∧
(* I f t h e L L V M s i d e p o i n t s t o p h i i n s t r u c t i o n s , t h e l l a i r s i d e
* should point to a block generated from them * )
@ -67,7 +74,7 @@ Inductive pc_rel:
(* T O D O : c o n s t r a i n b t o b e g e n e r a t e d f r o m t h e p h i s *)
get_block ( translate_prog prog ) bp b
⇒
pc_rel prog emap ip bp )
pc_rel prog gmap emap ip bp )
End
Definition untranslate_reg_def :
@ -80,7 +87,7 @@ End
* of the translation's state.
* )
Definition mem_state_rel_def :
mem_state_rel prog emap ( s : llvm $ state ) ( s' : llair $ state ) ⇔
mem_state_rel prog gmap emap ( s : llvm $ state ) ( s' : llair $ state ) ⇔
(* L i v e L L V M r e g i s t e r s a r e m a p p e d a n d h a v e a r e l a t e d v a l u e i n t h e e m a p
* ( after evaluating ) * )
( ∀r. r ∈ live prog s. ip ⇒
@ -93,6 +100,10 @@ Definition mem_state_rel_def:
( ∀ip1 r'. ip1. f = s. ip. f ∧ r ∈ live prog ip1 ∧ r' ∈ exp_uses e ⇒
∃ip2. untranslate_reg r' ∈ assigns prog ip2 ∧ dominates prog ip2 ip1 ) ) ) ∧
reachable prog s. ip ∧
fmap_rel ( \ ( _ , n ) n'. w2n n = n' )
s. globals
( s'. glob_addrs f_o translate_glob_var gmap ) ∧
heap_ok s. heap ∧
erase_tags s. heap = s'. heap ∧
s. status = s'. status
End
@ -103,13 +114,15 @@ End
* of the translation's state.
* )
Definition state_rel_def :
state_rel prog emap ( s : llvm $ state ) ( s' : llair $ state ) ⇔
( s. status = Partial ⇒ pc_rel prog emap s. ip s'. bp ) ∧
mem_state_rel prog emap s s'
state_rel prog gmap emap ( s : llvm $ state ) ( s' : llair $ state ) ⇔
( s. status = Partial ⇒ pc_rel prog gmap emap s. ip s'. bp ) ∧
mem_state_rel prog gmap emap s s'
End
Theorem mem_state_ignore_bp [ simp ] :
∀prog emap s s' b. mem_state_rel prog emap s ( s' with bp := b ) ⇔ mem_state_rel prog emap s s'
∀prog gmap emap s s' b.
mem_state_rel prog gmap emap s ( s' with bp := b ) ⇔
mem_state_rel prog gmap emap s s'
Proof
rw [ mem_state_rel_def ] >> eq_tac >> rw [ ] >>
first_x_assum drule >> rw [ ] >>
@ -125,23 +138,22 @@ Proof
QED
Theorem mem_state_rel_exited :
∀prog emap s s' code.
mem_state_rel prog emap s s'
∀prog gmap emap s s' code.
mem_state_rel prog gmap emap s s'
⇒
mem_state_rel prog emap ( s with status := Complete code ) ( s' with status := Complete code )
mem_state_rel prog gmap emap ( s with status := Complete code ) ( s' with status := Complete code )
Proof
rw [ mem_state_rel_def ] >>
metis_tac [ eval_exp_ignores , lemma ]
QED
Theorem mem_state_rel_no_update :
∀prog emap s1 s1' v res_v r i i'.
∀prog gmap emap s1 s1' v res_v r i i'.
assigns prog s1. ip = { } ∧
mem_state_rel prog emap s1 s1' ∧
v_rel v. value res_v ∧
mem_state_rel prog gmap emap s1 s1' ∧
i ∈ next_ips prog s1. ip
⇒
mem_state_rel prog emap ( s1 with ip := i ) s1'
mem_state_rel prog gmap emap ( s1 with ip := i ) s1'
Proof
rw [ mem_state_rel_def ]
>- (
@ -151,17 +163,17 @@ Proof
QED
Theorem mem_state_rel_update :
∀prog emap s1 s1' v res_v r e i.
∀prog gmap emap s1 s1' v res_v r e i.
is_ssa prog ∧
assigns prog s1. ip = { r } ∧
mem_state_rel prog emap s1 s1' ∧
mem_state_rel prog gmap emap s1 s1' ∧
eval_exp s1' e res_v ∧
v_rel v. value res_v ∧
i ∈ next_ips prog s1. ip ∧
( ∀r_use. r_use ∈ exp_uses e ⇒
∃r_tmp. r_use ∈ exp_uses ( translate_arg emap ( Variable r_tmp ) ) ∧ r_tmp ∈ live prog s1. ip )
∃r_tmp. r_use ∈ exp_uses ( translate_arg gmap emap ( Variable r_tmp ) ) ∧ r_tmp ∈ live prog s1. ip )
⇒
mem_state_rel prog ( emap |+ ( r , e ) )
mem_state_rel prog gmap ( emap |+ ( r , e ) )
( s1 with <| ip := i ; locals := s1. locals |+ ( r , v ) |> )
s1'
Proof
@ -188,15 +200,15 @@ Proof
QED
Theorem mem_state_rel_update_keep :
∀prog emap s1 s1' v res_v r i ty.
∀prog gmap emap s1 s1' v res_v r i ty.
is_ssa prog ∧
assigns prog s1. ip = { r } ∧
mem_state_rel prog emap s1 s1' ∧
mem_state_rel prog gmap emap s1 s1' ∧
v_rel v. value res_v ∧
reachable prog s1. ip ∧
i ∈ next_ips prog s1. ip
⇒
mem_state_rel prog ( emap |+ ( r , Var ( translate_reg r ty ) ) )
mem_state_rel prog gmap ( emap |+ ( r , Var ( translate_reg r ty ) ) )
( s1 with <| ip := i ; locals := s1. locals |+ ( r , v ) |> )
( s1' with locals := s1'. locals |+ ( translate_reg r ty , res_v ) )
Proof
@ -240,6 +252,29 @@ Proof
>- metis_tac [ next_ips_reachable ]
QED
Triviality lemma :
( ( s : llair $ state ) with heap := h ) .locals = s. locals
Proof
rw [ ]
QED
Theorem mem_state_rel_heap_update :
∀prog gmap emap s s' h h'.
mem_state_rel prog gmap emap s s' ∧
heap_ok h ∧
erase_tags h = erase_tags h'
⇒
mem_state_rel prog gmap emap ( s with heap := h ) ( s' with heap := h' )
Proof
rw [ mem_state_rel_def , erase_tags_def ]
>- metis_tac [ eval_exp_ignores , lemma ] >>
rw [ heap_component_equality ] >>
fs [ fmap_eq_flookup , FLOOKUP_o_f ] >> rw [ ] >>
first_x_assum ( qspec_then ` x ` mp_tac ) >>
BasicProvers. EVERY_CASE_TAC >> rw [ ] >>
Cases_on ` x' ` >> Cases_on ` x'' ` >> fs [ ]
QED
Theorem v_rel_bytes :
∀v v'. v_rel v v' ⇒ llvm_value_to_bytes v = llair_value_to_bytes v'
Proof
@ -253,19 +288,116 @@ Proof
Induct_on ` vs2 ` >> rw [ ] >> rw [ ]
QED
Theorem bytes_v_rel_lem :
( ∀f s bs t.
f = ( λn t w. convert_value t w ) ∧
s = type_to_shape t ∧
first_class_type t
⇒
( quotient_pair $### v_rel $= )
( bytes_to_value f s bs )
( bytes_to_value ( λn t w. convert_value t w ) ( type_to_shape ( translate_ty t ) ) bs ) ) ∧
( ∀f n s bs t.
f = ( λn t w. convert_value t w ) ∧
s = type_to_shape t ∧
first_class_type t
⇒
( quotient_pair $### ( list_rel v_rel ) $= )
( read_array f n s bs )
( read_array ( λn t w. convert_value t w ) n ( type_to_shape ( translate_ty t ) ) bs ) ) ∧
( ∀f ss bs ts.
f = ( λn t w. convert_value t w ) ∧
ss = map type_to_shape ts ∧
every first_class_type ts
⇒
( quotient_pair $### ( list_rel v_rel ) $= )
( read_str f ss bs )
( read_str ( λn t w. convert_value t w ) ( map ( type_to_shape o translate_ty ) ts ) bs ) )
Proof
ho_match_mp_tac bytes_to_value_ind >>
rw [ llvmTheory. type_to_shape_def , translate_ty_def , type_to_shape_def ,
sizeof_def , llvmTheory. sizeof_def , bytes_to_value_def , pointer_size_def ,
convert_value_def , llvmTheory. convert_value_def , quotient_pairTheory. PAIR_REL ]
>- (
Cases_on ` t' ` >>
fs [ llvmTheory. type_to_shape_def , llvmTheory. sizeof_def , llvmTheory. first_class_type_def ] >>
TRY ( Cases_on ` s ` ) >>
rw [ llvmTheory. sizeof_def , le_read_num_def , translate_size_def ,
convert_value_def , llvmTheory. convert_value_def , translate_ty_def ,
type_to_shape_def , bytes_to_value_def , sizeof_def , llvmTheory. sizeof_def ] >>
simp [ v_rel_cases ] >> rw [ word_0_w2i , w2i_1 ] >>
fs [ pointer_size_def , llvmTheory. pointer_size_def ] >>
qmatch_goalsub_abbrev_tac ` l2n 256 l ` >>
qmatch_goalsub_abbrev_tac ` n2i n dim ` >>
` n < 2 ** dim `
by (
qspecl_then [ ` l ` , ` 256 ` ] mp_tac numposrepTheory. l2n_lt >>
rw [ ] >>
` 256 ** length l ≤ 2 ** dim ` suffices_by decide_tac >>
` 256 = 2 ** 8 ` by rw [ ] >>
full_simp_tac bool_ss [ ] >>
REWRITE_TAC [ GSYM EXP_EXP_MULT ] >>
rw [ EXP_BASE_LE_MONO ] >>
unabbrev_all_tac >> rw [ ] ) >>
metis_tac [ w2i_n2w , dimword_def , dimindex_8 , dimindex_32 , dimindex_64 ] )
>- (
Cases_on ` t ` >>
fs [ llvmTheory. type_to_shape_def , llvmTheory. sizeof_def , llvmTheory. first_class_type_def ] >>
rw [ pairTheory. PAIR_MAP ] >>
pairarg_tac >> fs [ type_to_shape_def , translate_ty_def , bytes_to_value_def ] >>
first_x_assum ( qspec_then ` t' ` mp_tac ) >> simp [ ] >>
simp [ v_rel_cases ] >>
pairarg_tac >> fs [ ] >>
pairarg_tac >> fs [ ] >> rw [ ] )
>- (
Cases_on ` t ` >>
fs [ llvmTheory. type_to_shape_def , llvmTheory. sizeof_def , llvmTheory. first_class_type_def ] >>
rw [ pairTheory. PAIR_MAP ] >>
fs [ type_to_shape_def , translate_ty_def , bytes_to_value_def ] >>
pairarg_tac >> fs [ pairTheory. PAIR_MAP ] >>
first_x_assum ( qspec_then ` l ` mp_tac ) >> simp [ ] >>
simp [ v_rel_cases ] >>
pairarg_tac >> fs [ ] >>
pairarg_tac >> fs [ MAP_MAP_o ] >> rw [ ] >> fs [ ETA_THM ] )
>- (
rpt ( pairarg_tac >> fs [ ] ) >>
first_x_assum ( qspec_then ` t ` mp_tac ) >> rw [ ] >>
first_x_assum ( qspec_then ` t ` mp_tac ) >> rw [ ] )
>- (
Cases_on ` ts ` >> fs [ bytes_to_value_def ] >>
rpt ( pairarg_tac >> fs [ ] ) >>
first_x_assum ( qspec_then ` h ` mp_tac ) >> simp [ ] >> strip_tac >>
fs [ ] >> rfs [ ] >> fs [ ] >>
first_x_assum ( qspec_then ` t ` mp_tac ) >> simp [ ] >> strip_tac >>
fs [ MAP_MAP_o ] >> rw [ ] )
QED
Theorem bytes_v_rel :
∀t bs.
first_class_type t ⇒
v_rel ( fst ( bytes_to_llvm_value t bs ) )
( fst ( bytes_to_llair_value ( translate_ty t ) bs ) )
Proof
rw [ bytes_to_llvm_value_def , bytes_to_llair_value_def ] >>
qspecl_then [ ` bs ` , ` t ` ] mp_tac ( CONJUNCT1 ( SIMP_RULE ( srw_ss ( ) ) [ ] bytes_v_rel_lem ) ) >>
rw [ quotient_pairTheory. PAIR_REL ] >>
pairarg_tac >> fs [ ] >>
pairarg_tac >> fs [ ]
QED
Theorem translate_constant_correct_lem :
( ∀c s prog emap s' ( g : glob_var |-> β # word64 ) .
mem_state_rel prog emap s s'
( ∀c s prog gmap emap s' .
mem_state_rel prog gmap emap s s'
⇒
∃v'. eval_exp s' ( translate_const c ) v' ∧ v_rel ( eval_const g c ) v' ) ∧
( ∀(cs : ( ty # const ) list ) s prog emap s' ( g : glob_var |-> β # word64 ) .
mem_state_rel prog emap s s'
∃v'. eval_exp s' ( translate_const gmap c) v' ∧ v_rel ( eval_const s. g lobals c ) v' ) ∧
( ∀(cs : ( ty # const ) list ) s prog gmap emap s' .
mem_state_rel prog gmap emap s s'
⇒
∃v'. list_rel ( eval_exp s' ) ( map ( translate_const o snd ) cs ) v' ∧ list_rel v_rel ( map ( eval_const g o snd ) cs ) v' ) ∧
( ∀(tc : ty # const ) s prog emap s' ( g : glob_var |-> β # word64 ) .
mem_state_rel prog emap s s'
∃v'. list_rel ( eval_exp s' ) ( map ( translate_const gmap o snd ) cs ) v' ∧ list_rel v_rel ( map ( eval_const s. g lobals o snd ) cs ) v' ) ∧
( ∀(tc : ty # const ) s prog gmap emap s' .
mem_state_rel prog gmap emap s s'
⇒
∃v'. eval_exp s' ( translate_const ( snd tc ) ) v' ∧ v_rel ( eval_const g ( snd tc ) ) v' )
∃v'. eval_exp s' ( translate_const gmap ( snd tc ) ) v' ∧ v_rel ( eval_const s. g lobals ( snd tc ) ) v' )
Proof
ho_match_mp_tac const_induction >> rw [ translate_const_def ] >>
simp [ Once eval_exp_cases , eval_const_def ]
@ -282,39 +414,46 @@ Proof
metis_tac [ ] )
(* T O D O : u n i m p l e m e n t e d s t u f f *)
>- cheat
>- cheat
>- (
fs [ mem_state_rel_def , fmap_rel_OPTREL_FLOOKUP ] >>
CASE_TAC >> fs [ ] >> first_x_assum ( qspec_then ` g ` mp_tac ) >> rw [ ] >>
rename1 ` option_rel _ _ opt ` >> Cases_on ` opt ` >> fs [ optionTheory. OPTREL_def ] >>
(* T O D O : f a l s e a t t h e m o m e n t , n e e d t o w o r k o u t t h e l l a i r s t o r y o n g l o b a l s *)
cheat )
(* T O D O : u n i m p l e m e n t e d s t u f f *)
>- cheat
>- cheat
QED
Theorem translate_constant_correct :
∀c s prog emap s' g.
mem_state_rel prog emap s s'
∀c s prog gmap emap s' g.
mem_state_rel prog gmap emap s s'
⇒
∃v'. eval_exp s' ( translate_const c) v' ∧ v_rel ( eval_const g c ) v'
∃v'. eval_exp s' ( translate_const gmap c) v' ∧ v_rel ( eval_const s. g lobals c ) v'
Proof
metis_tac [ translate_constant_correct_lem ]
QED
(* T O D O : T h i s i s n ' t t r u e , s i n c e t h e t r a n s l a t i o n t u r n s L L V M g l o b a l s i n t o l l a i r
* locals * )
Theorem translate_const_no_reg [ simp ] :
∀c. r ∉ exp_uses ( translate_const c )
∀ gmap c. r ∉ exp_uses ( translate_const gmap c )
Proof
ho_match_mp_tac translate_const_ind >>
rw [ translate_const_def , exp_uses_def , MEM_MAP , METIS_PROVE [ ] `` x ∨ y ⇔ ( ~ x ⇒ y ) `` ] >>
TRY pairarg_tac >> fs [ ]
>- metis_tac [ ]
>- metis_tac [ ] >>
(* T O D O : u n i m p l e m e n t e d s t u f f *)
cheat
rw [ translate_const_def , exp_uses_def , MEM_MAP , METIS_PROVE [ ] `` x ∨ y ⇔ ( ~ x ⇒ y ) `` ]
>- ( pairarg_tac >> fs [ ] >> metis_tac [ ] )
>- ( pairarg_tac >> fs [ ] >> metis_tac [ ] )
>- cheat
>- cheat
QED
Theorem translate_arg_correct :
∀s a v prog emap s'.
mem_state_rel prog emap s s' ∧
∀s a v prog gmap emap s'.
mem_state_rel prog gmap emap s s' ∧
eval s a = Some v ∧
arg_to_regs a ⊆ live prog s. ip
⇒
∃v'. eval_exp s' ( translate_arg emap a ) v' ∧ v_rel v. value v'
∃v'. eval_exp s' ( translate_arg gmap emap a ) v' ∧ v_rel v. value v'
Proof
Cases_on ` a ` >> rw [ eval_def , translate_arg_def ] >> rw [ ]
>- metis_tac [ translate_constant_correct ] >>
@ -323,8 +462,8 @@ Proof
QED
Theorem is_allocated_mem_state_rel :
∀prog emap s1 s1'.
mem_state_rel prog emap s1 s1'
∀prog gmap emap s1 s1'.
mem_state_rel prog gmap emap s1 s1'
⇒
( ∀i. is_allocated i s1. heap ⇔ is_allocated i s1'. heap )
Proof
@ -359,8 +498,8 @@ Proof
QED
Theorem translate_sub_correct :
∀prog emap s1 s1' nsw nuw ty v1 v1' v2 v2' e2' e1' result.
mem_state_rel prog emap s1 s1' ∧
∀prog gmap emap s1 s1' nsw nuw ty v1 v1' v2 v2' e2' e1' result.
mem_state_rel prog gmap emap s1 s1' ∧
do_sub nuw nsw v1 v2 ty = Some result ∧
eval_exp s1' e1' v1' ∧
v_rel v1. value v1' ∧
@ -413,23 +552,23 @@ Proof
QED
Theorem translate_extract_correct :
∀prog emap s1 s1' a v v1' e1' cs ns result.
mem_state_rel prog emap s1 s1' ∧
∀prog gmap emap s1 s1' a v v1' e1' cs ns result.
mem_state_rel prog gmap emap s1 s1' ∧
map ( λci. signed_v_to_num ( eval_const s1. globals ci ) ) cs = map Some ns ∧
extract_value v ns = Some result ∧
eval_exp s1' e1' v1' ∧
v_rel v v1'
⇒
∃v2'.
eval_exp s1' ( foldl ( λe c. Select e ( translate_const c) ) e1' cs ) v2' ∧
eval_exp s1' ( foldl ( λe c. Select e ( translate_const gmap c) ) e1' cs ) v2' ∧
v_rel result v2'
Proof
Induct_on ` cs ` >> rw [ ] >> fs [ extract_value_def ]
>- metis_tac [ ] >>
first_x_assum irule >>
Cases_on ` ns ` >> fs [ ] >>
qmatch_goalsub_rename_tac ` translate_const c` >>
`? v2'. eval_exp s1' ( translate_const c) v2' ∧ v_rel ( eval_const s1. globals c ) v2' `
qmatch_goalsub_rename_tac ` translate_const gmap c` >>
`? v2'. eval_exp s1' ( translate_const gmap c) v2' ∧ v_rel ( eval_const s1. globals c ) v2' `
by metis_tac [ translate_constant_correct ] >>
Cases_on ` v ` >> fs [ extract_value_def ] >>
qpat_x_assum ` v_rel ( AggV _ ) _ ` mp_tac >>
@ -447,8 +586,8 @@ Proof
QED
Theorem translate_update_correct :
∀prog emap s1 s1' a v1 v1' v2 v2' e2 e2' e1' cs ns result.
mem_state_rel prog emap s1 s1' ∧
∀prog gmap emap s1 s1' a v1 v1' v2 v2' e2 e2' e1' cs ns result.
mem_state_rel prog gmap emap s1 s1' ∧
map ( λci. signed_v_to_num ( eval_const s1. globals ci ) ) cs = map Some ns ∧
insert_value v1 v2 ns = Some result ∧
eval_exp s1' e1' v1' ∧
@ -457,7 +596,7 @@ Theorem translate_update_correct:
v_rel v2 v2'
⇒
∃v3'.
eval_exp s1' ( translate_updatevalue e1' e2' cs ) v3' ∧
eval_exp s1' ( translate_updatevalue gmap e1' e2' cs ) v3' ∧
v_rel result v3'
Proof
Induct_on ` cs ` >> rw [ ] >> fs [ insert_value_def , translate_updatevalue_def ]
@ -469,9 +608,9 @@ Proof
Cases_on ` insert_value ( el x l ) v2 ns ` >> fs [ ] >> rw [ ] >>
qpat_x_assum ` v_rel ( AggV _ ) _ ` mp_tac >> simp [ Once v_rel_cases ] >> rw [ ] >>
simp [ v_rel_cases ] >>
qmatch_goalsub_rename_tac ` translate_const c` >>
qmatch_goalsub_rename_tac ` translate_const gmap c` >>
qexists_tac ` vs2 ` >> simp [ ] >>
`? v4'. eval_exp s1' ( translate_const c) v4' ∧ v_rel ( eval_const s1. globals c ) v4' `
`? v4'. eval_exp s1' ( translate_const gmap c) v4' ∧ v_rel ( eval_const s1. globals c ) v4' `
by metis_tac [ translate_constant_correct ] >>
`? idx_size. v4' = FlatV ( IntV ( & x ) idx_size ) `
by (
@ -481,7 +620,7 @@ Proof
first_x_assum drule >>
disch_then drule >>
disch_then drule >>
disch_then ( qspecl_then [ ` el x vs2 ` , ` v2' ` , ` e2' ` , ` Select e1' ( translate_const c) ` ] mp_tac ) >>
disch_then ( qspecl_then [ ` el x vs2 ` , ` v2' ` , ` e2' ` , ` Select e1' ( translate_const gmap c) ` ] mp_tac ) >>
simp [ Once eval_exp_cases ] >>
metis_tac [ EVERY2_LUPDATE_same , LIST_REL_LENGTH , LIST_REL_EL_EQN ]
QED
@ -502,20 +641,20 @@ Proof
QED
Theorem translate_instr_to_exp_correct :
∀ emap instr r t s1 s1' s2 prog l.
∀ gmap emap instr r t s1 s1' s2 prog l.
is_ssa prog ∧ prog_ok prog ∧
classify_instr instr = Exp r t ∧
mem_state_rel prog emap s1 s1' ∧
mem_state_rel prog gmap emap s1 s1' ∧
get_instr prog s1. ip ( Inl instr ) ∧
step_instr prog s1 instr l s2 ⇒
∃pv emap' s2'.
l = Tau ∧
s2. ip = inc_pc s1. ip ∧
mem_state_rel prog emap' s2 s2' ∧
( r ∉ regs_to_keep ⇒ s1' = s2' ∧ emap' = emap |+ ( r , translate_instr_to_exp emap instr ) ) ∧
mem_state_rel prog gmap emap' s2 s2' ∧
( r ∉ regs_to_keep ⇒ s1' = s2' ∧ emap' = emap |+ ( r , translate_instr_to_exp gmap emap instr ) ) ∧
( r ∈ regs_to_keep ⇒
emap' = emap |+ ( r , Var ( translate_reg r t ) ) ∧
step_inst s1' ( Move [ ( translate_reg r t , translate_instr_to_exp emap instr ) ] ) Tau s2' )
step_inst s1' ( Move [ ( translate_reg r t , translate_instr_to_exp gmap emap instr ) ] ) Tau s2' )
Proof
recInduct translate_instr_to_exp_ind >>
simp [ translate_instr_to_exp_def , classify_instr_def ] >>
@ -619,7 +758,7 @@ Proof
disch_then ( qspecl_then [ ` v' ` , ` v'' ` ] mp_tac ) >> simp [ ] >>
disch_then drule >> disch_then drule >>
rw [ ] >>
rename1 ` eval_exp _ ( translate_updatevalue _ _ _ ) res_v ` >>
rename1 ` eval_exp _ ( translate_updatevalue _ _ _ _ ) res_v ` >>
rw [ inc_pc_def , inc_bip_def ] >>
rename1 ` r ∈ _ ` >>
Cases_on ` r ∈ regs_to_keep ` >> rw [ ]
@ -630,6 +769,7 @@ Proof
(* T O D O : u n f i n i s h e d *)
cheat )
>- cheat ) >>
(* O t h e r e x p r e s s i o n s , I c m p , I n t t o p t r , P t r t o i n t , G e p , A l l o c a *)
cheat
QED
@ -639,104 +779,112 @@ Proof
rw [ ]
QED
Theorem erase_tags_set_bytes :
∀p v l h. erase_tags ( set_bytes p v l h ) = set_bytes ( ) v l ( erase_tags h )
Proof
Induct_on ` v ` >> rw [ set_bytes_def ] >>
irule ( METIS_PROVE [ ] `` x = y ⇒ f a b c x = f a b c y `` ) >>
rw [ erase_tags_def ]
QED
(*
Theorem translate_instr_to_inst_correct :
∀ prog emap instr s1 s1' s2 .
∀gmap emap instr r t s1 s1' s2 prog l.
classify_instr instr = Non_exp ∧
state_rel prog emap s1 s1' ∧
get_instr prog s1. ip instr ∧
step_instr prog s1 instr s2 ⇒
∃s2'.
step_inst s1' ( translate_instr_to_inst emap instr ) s2' ∧
state_rel prog emap s2 s2'
prog_ok prog ∧ is_ssa prog ∧
mem_state_rel prog gmap emap s1 s1' ∧
get_instr prog s1. ip ( Inl instr ) ∧
step_instr prog s1 instr l s2
⇒
∃pv s2'.
s2. ip = inc_pc s1. ip ∧
mem_state_rel prog gmap ( extend_emap_non_exp emap instr ) s2 s2' ∧
step_inst s1' ( translate_instr_to_inst gmap emap instr ) ( translate_trace gmap l ) s2'
Proof
rw [ step_instr_cases ] >>
fs [ classify_instr_def , translate_instr_to_inst_def ]
>- ( (* L o a d *)
cheat )
fs [ step_inst_cases , get_instr_cases , PULL_EXISTS ] >>
qpat_x_assum ` Load _ _ _ = el _ _ ` ( assume_tac o GSYM ) >>
` arg_to_regs a1 ⊆ live prog s1. ip `
by (
simp [ Once live_gen_kill , SUBSET_DEF , uses_cases , IN_DEF , get_instr_cases ,
instr_uses_def ] >>
metis_tac [ ] ) >>
fs [ ] >>
first_x_assum ( mp_then. mp_then mp_then. Any mp_tac translate_arg_correct ) >>
disch_then drule >> disch_then drule >> rw [ ] >>
qpat_x_assum ` v_rel ( FlatV _ ) _ ` mp_tac >> simp [ Once v_rel_cases ] >> rw [ ] >>
` ∃n. r = Reg n ` by ( Cases_on ` r ` >> metis_tac [ ] ) >>
qexists_tac ` n ` >> qexists_tac ` translate_ty t ` >>
HINT_EXISTS_TAC >> rw [ ] >>
qexists_tac ` freeable ` >> rw [ translate_trace_def ]
>- rw [ inc_pc_def , llvmTheory. inc_pc_def , update_result_def ]
>- (
simp [ GSYM translate_reg_def , llvmTheory. inc_pc_def , update_result_def ,
update_results_def , GSYM FUPDATE_EQ_FUPDATE_LIST ,
extend_emap_non_exp_def ] >>
irule mem_state_rel_update_keep >>
rw [ ]
>- rw [ assigns_cases , IN_DEF , EXTENSION , get_instr_cases , instr_assigns_def ]
>- (
` s1. ip with i := inc_bip ( Offset idx ) = inc_pc s1. ip ` by rw [ inc_pc_def ] >>
simp [ ] >> irule prog_ok_nonterm >>
simp [ get_instr_cases , terminator_def ] )
>- metis_tac [ next_ips_reachable , mem_state_rel_def ]
>- (
fs [ w2n_i2n , pointer_size_def , mem_state_rel_def ] >>
metis_tac [ bytes_v_rel , get_bytes_erase_tags ] ) )
>- rw [ translate_reg_def ]
>- (
fs [ w2n_i2n , pointer_size_def , mem_state_rel_def ] >>
metis_tac [ is_allocated_erase_tags ] ) )
>- ( (* S t o r e *)
simp [ step_inst_cases , PULL_EXISTS ] >>
drule get_instr_live >> rw [ uses_def ] >>
drule translate_arg_correct >> disch_then drule >> disch_then drule >>
qpat_x_assum ` eval _ _ = Some _ ` mp_tac >>
drule translate_arg_correct >> disch_then drule >> disch_then drule >>
rw [ ] >>
fs [ step_inst_cases , get_instr_cases , PULL_EXISTS ] >>
qpat_x_assum ` Store _ _ = el _ _ ` ( assume_tac o GSYM ) >>
` bigunion ( image arg_to_regs { a1 ; a2 } ) ⊆ live prog s1. ip `
by (
simp [ Once live_gen_kill , SUBSET_DEF , uses_cases , IN_DEF , get_instr_cases ,
instr_uses_def ] >>
metis_tac [ ] ) >>
fs [ ] >>
first_x_assum ( mp_then. mp_then mp_then. Any mp_tac translate_arg_correct ) >>
disch_then drule >> disch_then drule >>
first_x_assum ( mp_then. mp_then mp_then. Any mp_tac translate_arg_correct ) >>
disch_then drule >> disch_then drule >> rw [ ] >>
qpat_x_assum ` v_rel ( FlatV _ ) _ ` mp_tac >> simp [ Once v_rel_cases ] >> rw [ ] >>
drule v_rel_bytes >> rw [ ] >>
fs [ w2n_i2n , pointer_size_def ] >>
HINT_EXISTS_TAC >> rw [ ] >>
qexists_tac ` freeable ` >> rw [ ] >>
HINT_EXISTS_TAC >> rw [ ]
>- metis_tac [ v_rel_bytes ]
qexists_tac ` v' ` >> rw [ ]
>- rw [ llvmTheory. inc_pc_def , inc_pc_def ]
>- (
fs [ w2n_i2n , pointer_size_def ] >>
metis_tac [ v_rel_bytes , is_allocated_state_rel , ADD_COMM ] ) >>
fs [ state_rel_def ] >>
rw [ ]
>- cheat
>- (
fs [ llvmTheory. inc_pc_def ] >>
` r ∈ live prog s1. ip `
by (
drule live_gen_kill >>
rw [ next_ips_def , assigns_def , uses_def , inc_pc_def ] ) >>
first_x_assum drule >> rw [ ] >>
metis_tac [ eval_exp_ignores , eval_exp_help ] )
simp [ llvmTheory. inc_pc_def ] >>
irule mem_state_rel_no_update >> rw [ ]
>- rw [ assigns_cases , EXTENSION , IN_DEF , get_instr_cases , instr_assigns_def ]
>- (
` s1. ip with i := inc_bip ( Offset idx ) = inc_pc s1. ip ` by rw [ inc_pc_def ] >>
simp [ ] >> irule prog_ok_nonterm >>
simp [ get_instr_cases , terminator_def ] ) >>
irule mem_state_rel_heap_update >>
rw [ set_bytes_unchanged , erase_tags_set_bytes ] >>
fs [ mem_state_rel_def , extend_emap_non_exp_def ] >>
metis_tac [ set_bytes_heap_ok ] )
>- (
rw [ llvmTheory. inc_pc_def , w2n_i2n , pointer_size_def , erase_tags_set_bytes ] >>
metis_tac [ v_rel_bytes ] ) )
>- cheat
>- cheat
>- cheat
QED
simp [ step_inst_cases , PULL_EXISTS ] >>
Cases_on ` r ` >> simp [ translate_reg_def ] >>
drule get_instr_live >> rw [ uses_def ] >>
drule translate_arg_correct >> disch_then drule >> disch_then drule >>
simp [ Once v_rel_cases ] >> rw [ ] >>
qexists_tac ` IntV ( w2i w ) pointer_size ` >> rw [ ] >>
qexists_tac ` freeable ` >> rw [ ]
>- ( fs [ w2n_i2n , pointer_size_def ] >> metis_tac [ is_allocated_state_rel ] ) >>
fs [ state_rel_def ] >> rw [ ]
>- cheat
fs [ mem_state_rel_def ] >>
fs [ is_allocated_def , heap_component_equality , erase_tags_def ] >>
metis_tac [ ] )
>- (
fs [ llvmTheory. inc_pc_def , update_results_def , update_result_def ] >>
rw [ ] >> fs [ FLOOKUP_UPDATE ] >> rw [ ]
(* T O D O : m e m _ s t a t e _ r e l n e e d s t o r e l a t e t h e g l o b a l s *)
fs [ get_obs_cases , llvmTheory. get_obs_cases ] >> rw [ translate_trace_def ] >>
fs [ mem_state_rel_def , fmap_rel_OPTREL_FLOOKUP ]
>- (
cheat )
>- (
` r ∈ live prog s1. ip `
by (
drule live_gen_kill >>
rw [ next_ips_def , assigns_def , uses_def , inc_pc_def ] ) >>
first_x_assum drule >> rw [ ] >>
qexists_tac ` v ` >>
qexists_tac ` v' ` >>
qexists_tac ` e ` >>
rw [ ]
metis_tac [ eval_exp_ignores , eval_exp_help ] )
>- fs [ update_results_def , llvmTheory. inc_pc_def , update_result_def ]
* )
first_x_assum ( qspec_then ` x ` mp_tac ) >> rw [ ] >>
rename1 ` option_rel _ _ opt ` >> Cases_on ` opt ` >>
fs [ optionTheory. OPTREL_def ] >>
cheat ) >>
cheat ) )
QED
Definition translate_trace_def :
( translate_trace types Tau = Tau ) ∧
( translate_trace types Error = Error ) ∧
( translate_trace types ( Exit i ) = ( Exit i ) ) ∧
( translate_trace types ( W gv bytes ) = W ( translate_glob_var gv ( types gv ) ) bytes )
End
Theorem classify_instr_term_call :
∀i. ( classify_instr i = Term ⇔ terminator i ) ∧
( classify_instr i = Call ⇔ is_call i )
Proof
Cases >> rw [ classify_instr_def , is_call_def , terminator_def ] >>
Cases_on ` p ` >> rw [ classify_instr_def ]
QED
Definition untranslate_glob_var_def :
untranslate_glob_var ( Var_name n ty ) = Glob_var n
@ -750,13 +898,14 @@ Definition untranslate_trace_def:
End
Theorem un_translate_glob_inv :
∀x t. untranslate_glob_var ( translate_glob_var x t ) = x
∀x t. untranslate_glob_var ( translate_glob_var gmap x ) = x
Proof
Cases_on ` x ` >> rw [ untranslate_glob_var_def , translate_glob_var_def ]
Cases_on ` x ` >> rw [ translate_glob_var_def ] >>
CASE_TAC >> rw [ untranslate_glob_var_def ]
QED
Theorem un_translate_trace_inv :
∀x. untranslate_trace ( translate_trace types x ) = x
∀x. untranslate_trace ( translate_trace gmap x ) = x
Proof
Cases >> rw [ translate_trace_def , untranslate_trace_def ] >>
metis_tac [ un_translate_glob_inv ]
@ -776,18 +925,18 @@ QED
Theorem translate_instrs_correct1 :
∀prog s1 tr s2.
multi_step prog s1 tr s2 ⇒
∀s1' b' emap regs_to_keep d b types idx.
∀s1' b' gmap emap regs_to_keep d b idx.
prog_ok prog ∧ is_ssa prog ∧
mem_state_rel prog emap s1 s1' ∧
mem_state_rel prog gmap emap s1 s1' ∧
alookup prog s1. ip. f = Some d ∧
alookup d. blocks s1. ip. b = Some b ∧
s1. ip. i = Offset idx ∧
b' = fst ( translate_instrs ( dest_fn s1. ip. f ) emap regs_to_keep ( take_to_call ( drop idx b. body ) ) )
b' = fst ( translate_instrs ( dest_fn s1. ip. f ) gmap emap regs_to_keep ( take_to_call ( drop idx b. body ) ) )
⇒
∃emap s2' tr'.
step_block ( translate_prog prog ) s1' b'. cmnd b'. term tr' s2' ∧
filter ( $ ≠ Tau ) tr' = filter ( $ ≠ Tau ) ( map ( translate_trace types) tr ) ∧
state_rel prog emap s2 s2'
filter ( $ ≠ Tau ) tr' = filter ( $ ≠ Tau ) ( map ( translate_trace gmap) tr ) ∧
state_rel prog gmap emap s2 s2'
Proof
ho_match_mp_tac multi_step_ind >> rw_tac std_ss [ ]
>- (
@ -855,6 +1004,27 @@ Proof
qexists_tac ` if 0 = w2i tf then dest_label lab2 else dest_label lab1 ` >> simp [ ] >>
qpat_abbrev_tac ` target = if tf = 0 w then l2 else l1 ` >>
qpat_abbrev_tac ` target' = if 0 = w2i tf then dest_label lab2 else dest_label lab1 ` >>
` last b. body = Br a l1 l2 ∧
<| f := s1. ip. f ; b := Some target ; i := Phi_ip s1. ip. b |> ∈ next_ips prog s1. ip `
by (
fs [ prog_ok_def , get_instr_cases ] >>
last_x_assum drule >> disch_then drule >>
strip_tac >> conj_asm1_tac
>- (
CCONTR_TAC >>
` Br a l1 l2 ∈ set ( front ( b. body ) ) `
by (
` mem ( Br a l1 l2 ) ( front b. body ++ [ last b. body ] ) `
by metis_tac [ EL_MEM , APPEND_FRONT_LAST ] >>
fs [ ] >> metis_tac [ ] ) >>
fs [ EVERY_MEM ] >> first_x_assum drule >> rw [ terminator_def ] )
>- (
rw [ next_ips_cases , IN_DEF , assigns_cases ] >>
disj1_tac >>
qexists_tac ` Br a l1 l2 ` >>
rw [ instr_next_ips_def , Abbr ` target ` ] >>
fs [ get_instr_cases , instr_to_labs_def ] >>
metis_tac [ blockHeader_nchotomy ] ) ) >>
rw [ ] >>
` translate_label ( dest_fn s1. ip. f ) target = Lab_name ( dest_fn s1. ip. f ) target' `
by (
@ -867,7 +1037,16 @@ Proof
>- ( Cases_on ` lab2 ` >> rw [ Abbr ` target' ` , translate_label_def , dest_label_def ] )
>- ( Cases_on ` lab1 ` >> rw [ Abbr ` target' ` , translate_label_def , dest_label_def ] )
>- (
rw [ pc_rel_cases ] >> cheat )
fs [ get_instr_cases ] >>
` every ( λlab. ∃b. alookup d. blocks ( Some lab ) = Some b ∧ b. h ≠ Entry )
( instr_to_labs ( last b. body ) ) `
by metis_tac [ prog_ok_def ] >>
rfs [ instr_to_labs_def ] >>
rw [ pc_rel_cases , get_instr_cases , get_block_cases , GSYM PULL_EXISTS ]
>- metis_tac [ blockHeader_nchotomy ] >>
fs [ translate_prog_def ] >>
(* U n f i n i s h e d *)
cheat )
>- (
fs [ mem_state_rel_def ] >> rw [ ]
>- (
@ -877,20 +1056,16 @@ Proof
rw [ PULL_EXISTS ] >>
disj1_tac >>
qexists_tac `<| f := s1. ip. f ; b := Some target ; i := Phi_ip s1. ip. b |>` >>
rw [ next_ips_cases , IN_DEF , assigns_cases ]
>- (
disj1_tac >>
qexists_tac ` Br a l1 l2 ` >>
rw [ instr_next_ips_def , Abbr ` target ` ] >>
fs [ prog_ok_def , get_instr_cases ] >>
last_x_assum drule >> disch_then drule >> rw [ ] >>
` last b. body = Br a l1 l2 ` by cheat >>
fs [ instr_to_labs_def ] >>
metis_tac [ blockHeader_nchotomy ] ) >>
rw [ ] >>
rw [ IN_DEF , assigns_cases ] >>
CCONTR_TAC >> fs [ ] >>
imp_res_tac get_instr_func >> fs [ ] >> rw [ ] >>
fs [ instr_assigns_def ] )
>- cheat ) )
>- (
fs [ reachable_def ] >>
qexists_tac ` path ++ [ <| f := s1. ip. f ; b := Some target ; i := Phi_ip s1. ip. b |> ] ` >>
rw_tac std_ss [ good_path_append , GSYM APPEND ] >> rw [ ] >>
rw [ Once good_path_cases ] >> fs [ next_ips_cases , IN_DEF ] >> metis_tac [ ] ) ) )
>- ( (* I n v o k e *)
cheat )
>- ( (* U n r e a c h a b l e *)
@ -911,8 +1086,8 @@ Proof
>- ( (* M i d d l e o f t h e b l o c k *)
fs [ llvmTheory. step_cases ] >> TRY ( fs [ get_instr_cases ] >> NO_TAC ) >>
` i' = i ` by metis_tac [ get_instr_func , sumTheory. INL_11 ] >> fs [ ] >>
rename [ ` step_instr _ _ _ _ s2 ` , ` state_rel _ _ s3 _ ` ,
` mem_state_rel _ _ s1 s1' ` ] >>
rename [ ` step_instr _ _ _ _ s2 ` , ` state_rel _ _ _ s3 _ ` ,
` mem_state_rel _ _ _ s1 s1' ` ] >>
Cases_on ` ∃r t. classify_instr i = Exp r t ` >> fs [ ]
>- ( (* i n s t r u c t i o n s t h a t c o m p i l e t o e x p r e s s i o n s *)
drule translate_instr_to_exp_correct >>
@ -923,8 +1098,8 @@ Proof
by metis_tac [ prog_ok_nonterm , next_ips_reachable , mem_state_rel_def ] >>
first_x_assum drule >>
simp [ inc_pc_def , inc_bip_def ] >>
disch_then ( qspecl_then [ ` regs_to_keep ` , ` types ` ] mp_tac ) >> rw [ ] >>
rename1 ` state_rel prog emap3 s3 s3' ` >>
disch_then ( qspecl_then [ ` regs_to_keep ` ] mp_tac ) >> rw [ ] >>
rename1 ` state_rel prog gmap emap3 s3 s3' ` >>
qexists_tac ` emap3 ` >> qexists_tac ` s3' ` >> rw [ ] >>
` take_to_call ( drop idx b. body ) = i :: take_to_call ( drop ( idx + 1 ) b. body ) `
by (
@ -938,7 +1113,24 @@ Proof
pairarg_tac >> rw [ ] >> fs [ ] >>
metis_tac [ ] )
>- ( (* N o n - e x p r e s s i o n i n s t r u c t i o n s *)
cheat ) )
Cases_on ` classify_instr i ` >> fs [ classify_instr_term_call ] >>
drule translate_instr_to_inst_correct >>
ntac 5 ( disch_then drule ) >>
strip_tac >> fs [ ] >>
first_x_assum drule >> simp [ inc_pc_def , inc_bip_def ] >>
disch_then ( qspecl_then [ ` regs_to_keep ` ] mp_tac ) >> simp [ ] >>
strip_tac >>
rename1 ` state_rel prog gmap emap3 s3 s3' ` >>
qexists_tac ` emap3 ` >> qexists_tac ` s3' ` >> simp [ ] >>
` take_to_call ( drop idx b. body ) = i :: take_to_call ( drop ( idx + 1 ) b. body ) `
by (
irule take_to_call_lem >> simp [ ] >>
fs [ get_instr_cases ] ) >>
simp [ translate_instrs_def ] >>
qexists_tac ` translate_trace gmap l :: tr' ` >> rw [ ] >>
simp [ Once step_block_cases ] >> pairarg_tac >> rw [ ] >> fs [ ] >>
disj2_tac >>
qexists_tac ` s2' ` >> rw [ ] ) )
QED
Theorem multi_step_to_step_block :
@ -946,20 +1138,20 @@ Theorem multi_step_to_step_block:
prog_ok prog ∧ is_ssa prog ∧
multi_step prog s1 tr s2 ∧
s1. status = Partial ∧
state_rel prog emap s1 s1'
state_rel prog gmap emap s1 s1'
⇒
∃s2' emap2 b tr'.
get_block ( translate_prog prog ) s1'. bp b ∧
step_block ( translate_prog prog ) s1' b. cmnd b. term tr' s2' ∧
filter ( $ ≠ Tau ) tr' = filter ( $ ≠ Tau ) ( map ( translate_trace types ) tr ) ∧
state_rel prog emap2 s2 s2'
filter ( $ ≠ Tau ) tr' = filter ( $ ≠ Tau ) ( map ( translate_trace gmap ) tr ) ∧
state_rel prog gmap emap2 s2 s2'
Proof
rw [ ] >> pop_assum mp_tac >> simp [ Once state_rel_def ] >> rw [ pc_rel_cases ]
>- (
(* N o n - p h i i n s t r u c t i o n *)
drule translate_instrs_correct1 >> simp [ ] >>
disch_then drule >>
disch_then ( qspecl_then [ ` regs_to_keep ` , ` types ` ] mp_tac ) >> simp [ ] >>
disch_then ( qspecl_then [ ` regs_to_keep ` ] mp_tac ) >> simp [ ] >>
rw [ ] >>
qexists_tac ` s2' ` >> simp [ ] >>
ntac 3 HINT_EXISTS_TAC >>
@ -979,13 +1171,13 @@ QED
Theorem step_block_to_multi_step :
∀prog s1 s1' tr s2' b.
state_rel prog emap s1 s1' ∧
state_rel prog gmap emap s1 s1' ∧
get_block ( translate_prog prog ) s1'. bp b ∧
step_block ( translate_prog prog ) s1' b. cmnd b. term tr s2'
⇒
∃s2.
multi_step prog s1 ( map untranslate_trace tr ) s2 ∧
state_rel prog emap s2 s2'
state_rel prog gmap emap s2 s2'
Proof
cheat
QED
@ -1008,34 +1200,33 @@ Theorem translate_prog_correct_lem1:
∀path.
okpath ( multi_step prog ) path ∧ finite path
⇒
∀ emap s1'.
∀ gmap emap s1'.
prog_ok prog ∧
is_ssa prog ∧
state_rel prog emap ( first path ) s1'
state_rel prog gmap emap ( first path ) s1'
⇒
∃path' emap.
finite path' ∧
okpath ( step ( translate_prog prog ) ) path' ∧
first path' = s1' ∧
LMAP ( filter ( $ ≠ Tau ) ) ( labels path' ) =
LMAP ( map ( translate_trace types ) o filter ( $ ≠ Tau ) ) ( labels path ) ∧
state_rel prog emap ( last path ) ( last path' )
LMAP ( map ( translate_trace gmap ) o filter ( $ ≠ Tau ) ) ( labels path ) ∧
state_rel prog gmap emap ( last path ) ( last path' )
Proof
ho_match_mp_tac finite_okpath_ind >> rw [ ]
>- ( qexists_tac ` stopped_at s1' ` >> rw [ ] >> metis_tac [ ] ) >>
fs [ ] >>
rename1 ` state_rel _ _ s1 s1' ` >>
rename1 ` state_rel _ _ _ s1 s1' ` >>
Cases_on ` s1. status ≠ Partial `
>- fs [ Once multi_step_cases , llvmTheory. step_cases , last_step_cases ] >>
fs [ ] >>
drule multi_step_to_step_block >> ntac 4 ( disch_then drule ) >>
disch_then ( qspec_then ` types ` mp_tac ) >> rw [ ] >>
drule multi_step_to_step_block >> ntac 4 ( disch_then drule ) >> rw [ ] >>
first_x_assum drule >> rw [ ] >>
qexists_tac ` pcons s1' tr' path' ` >> rw [ ] >>
rw [ FILTER_MAP , combinTheory. o_DEF , trans_trace_not_tau ] >>
HINT_EXISTS_TAC >> simp [ ] >>
simp [ step_cases ] >> qexists_tac ` b ` >> simp [ ] >>
qpat_x_assum ` state_rel _ _ _ s1' ` mp_tac >>
qpat_x_assum ` state_rel _ _ _ _ s1' ` mp_tac >>
rw [ state_rel_def , mem_state_rel_def ]
QED
@ -1045,14 +1236,14 @@ Theorem translate_prog_correct_lem2:
⇒
∀s1.
prog_ok prog ∧
state_rel prog emap s1 ( first path' )
state_rel prog gmap emap s1 ( first path' )
⇒
∃path.
finite path ∧
okpath ( multi_step prog ) path ∧
first path = s1 ∧
labels path = LMAP ( map untranslate_trace ) ( labels path' ) ∧
state_rel prog emap ( last path ) ( last path' )
state_rel prog gmap emap ( last path ) ( last path' )
Proof
ho_match_mp_tac finite_okpath_ind >> rw [ ]
>- ( qexists_tac ` stopped_at s1 ` >> rw [ ] ) >>
@ -1115,16 +1306,15 @@ QED
Theorem translate_prog_correct :
∀prog s1 s1'.
prog_ok prog ∧ is_ssa prog ∧
state_rel prog emap s1 s1'
state_rel prog gmap emap s1 s1'
⇒
multi_step_sem prog s1 = image ( I ## map untranslate_trace ) ( sem ( translate_prog prog ) s1' )
Proof
rw [ sem_def , multi_step_sem_def , EXTENSION ] >> eq_tac >> rw [ ]
>- (
drule translate_prog_correct_lem1 >> ntac 4 ( disch_then drule ) >>
disch_then ( qspec_then ` types ` mp_tac ) >> rw [ pairTheory. EXISTS_PROD ] >>
drule translate_prog_correct_lem1 >> ntac 4 ( disch_then drule ) >> rw [ pairTheory. EXISTS_PROD ] >>
PairCases_on ` x ` >> rw [ ] >>
qexists_tac ` map ( translate_trace types ) x1 ` >> rw [ ]
qexists_tac ` map ( translate_trace gmap ) x1 ` >> rw [ ]
>- rw [ MAP_MAP_o , combinTheory. o_DEF , un_translate_trace_inv ] >>
qexists_tac ` path' ` >> rw [ ] >>
fs [ IN_DEF , observation_prefixes_cases , toList_some ] >> rw [ ] >>
@ -1139,13 +1329,13 @@ Proof
>- fs [ state_rel_def , mem_state_rel_def ]
>- fs [ state_rel_def , mem_state_rel_def ] >>
rename [ ` labels path' = fromList l' ` , ` labels path = fromList l ` ,
` state_rel _ _ (last path ) ( last path' ) ` , ` lsub ≼ flat l ` ] >>
` state_rel _ _ _ (last path ) ( last path' ) ` , ` lsub ≼ flat l ` ] >>
Cases_on ` lsub = flat l ` >> fs [ ]
>- (
qexists_tac ` flat l' ` >>
rw [ FILTER_FLAT , MAP_FLAT , MAP_MAP_o , combinTheory. o_DEF ] >>
fs [ state_rel_def , mem_state_rel_def ] ) >>
` filter ( λy. Tau ≠ y ) ( flat l' ) = map ( translate_trace types ) ( filter ( λy. Tau ≠ y ) ( flat l ) ) `
` filter ( λy. Tau ≠ y ) ( flat l' ) = map ( translate_trace gmap ) ( filter ( λy. Tau ≠ y ) ( flat l ) ) `
by rw [ FILTER_FLAT , MAP_FLAT , MAP_MAP_o , combinTheory. o_DEF , FILTER_MAP ] >>
qexists_tac ` take_prop ( $ ≠ Tau ) ( length ( filter ( $ ≠ Tau ) lsub ) ) ( flat l' ) ` >>
rw [ ] >> rw [ GSYM MAP_TAKE ]