[sledge] Add typ of integer constants

Summary:
Types of integer constants, in particular their bit-width, are
necessary for:

- correctly interpreting bitwise operations (e.g. `-1 xor 1` at type
  `i1` is `0` while without the type the result is `-2`), and;

- distinguishing between integers and booleans, which are one-bit
  integers, since booleans admit stronger algebraic simplification.

Note that code does genuinely treat 1-bit integers interchangeably as
booleans and integers, e.g. with expressions such as `e + (b != 42)`.
Therefore a lighter-weight early syntactic distinction between boolean
and bitwise operations is nontrivial/impossible to make robust.

This patch:

- adds the type to the representation of Exp.Integer;

- adds checks that Integer values fit within their specified bit-width

- factors out code handling 1-bit integers as booleans into `Z`, as it
  is easy to make mistakes when forgetting that `-1`, not `1`, is the
  representation of `true`;

- corrects the treatment of Exp.Convert in some cases involving
  treating negative integers as unsigned;

- corrects and strengthens Exp simplification based on the bit-width
  information;

- removes the `e - e ==> 0` simplification, due to not having the type
  for `0`.

Reviewed By: mbouaziz

Differential Revision: D10488407

fbshipit-source-id: ff4320a29
master
Josh Berdine 6 years ago committed by Facebook Github Bot
parent 71fe6602ef
commit 1500745b03

@ -16,12 +16,14 @@ rather than nearest enclosing
** revise spec of strlen to account for non-max length strings
** convert strlen inst into a primitive to return the end of the block containing a pointer, and model strlen in code
* llair
** ? conflate null and 0
** NEXT normalize arithmetic exps to polynomials
and sort terms
** when Sub exps have types, simplify e - e to 0
** when Xor exps have types, simplify e xor e to 0
** ? remove src typ from Convert
** ? distribute addition over multiplication
for e.g. ((%12 + 1) * 8) to ((%12 * 8) + 8)
** simplify to NNF where (_ ^ -1) is (not _)
** ? conflate null and 0
** add config to pp e.g. Exp.t as sexps
** add check for variable non-occurrence to Exp.rename
** define version of map that transforms args of Struct_rec
@ -31,17 +33,12 @@ for e.g. ((%12 + 1) * 8) to ((%12 * 8) + 8)
let args' = Vector.map_preserving_phys_equal args ~f in
if op' == op && args' == args then e
else AppN {op= op'; args= args'; loc}
** simplify conv exps
with dst of int 1 type by testing least significant bit of Integer
constants
** define Label module for Exp.Label and Llair.label
- to unify how functions and blocks are named
- the Exp.label construction in Control.exec_term Iswitch is unwieldy
** check/ensure that generated names do not clash
- name ^ ".ti" xlate_instr LandingPad
** check that Loc.pp follows GNU conventions
** do not ignore types and signedness of operations
interpretation of expressions is currently wrong
** ? change Var.freshen to choose the first available
analogous to the following version that is over just ints
#+BEGIN_SRC ocaml

@ -7,6 +7,58 @@
(** Expressions *)
(** Z wrapped to treat bounded and unsigned operations *)
module Z = struct
type t = Z.t [@@deriving compare, hash, sexp]
let equal = Z.equal
let pp = Z.pp_print
let zero = Z.zero
let one = Z.one
let to_int = Z.to_int
let numbits = Z.numbits
let fits_int = Z.fits_int
(* the signed 1-bit integers are -1 and 0 *)
let true_ = Z.minus_one
let false_ = Z.zero
let of_bool = function true -> true_ | false -> false_
let is_true = Z.equal true_
let is_false = Z.equal false_
(** Interpret as a bounded integer with specified signedness and width. *)
let clamp ~signed bits z =
if signed then Z.signed_extract z 0 bits else Z.extract z 0 bits
let clamp_binop ~signed bits op x y =
op (clamp ~signed bits x) (clamp ~signed bits y)
let leq ~bits x y = clamp_binop ~signed:true bits Z.leq x y
let geq ~bits x y = clamp_binop ~signed:true bits Z.geq x y
let lt ~bits x y = clamp_binop ~signed:true bits Z.lt x y
let gt ~bits x y = clamp_binop ~signed:true bits Z.gt x y
let uleq ~bits x y = clamp_binop ~signed:false bits Z.leq x y
let ugeq ~bits x y = clamp_binop ~signed:false bits Z.geq x y
let ult ~bits x y = clamp_binop ~signed:false bits Z.lt x y
let ugt ~bits x y = clamp_binop ~signed:false bits Z.gt x y
let neg ~bits z = Z.neg (clamp bits ~signed:true z)
let add ~bits x y = clamp_binop ~signed:true bits Z.add x y
let sub ~bits x y = clamp_binop ~signed:true bits Z.sub x y
let mul ~bits x y = clamp_binop ~signed:true bits Z.mul x y
let div ~bits x y = clamp_binop ~signed:true bits Z.div x y
let rem ~bits x y = clamp_binop ~signed:true bits Z.rem x y
let udiv ~bits x y = clamp_binop ~signed:false bits Z.div x y
let urem ~bits x y = clamp_binop ~signed:false bits Z.rem x y
let logand ~bits x y = clamp_binop ~signed:true bits Z.logand x y
let logor ~bits x y = clamp_binop ~signed:true bits Z.logor x y
let logxor ~bits x y = clamp_binop ~signed:true bits Z.logxor x y
let shift_left ~bits z i = Z.shift_left (clamp bits ~signed:true z) i
let shift_right ~bits z i = Z.shift_right (clamp bits ~signed:true z) i
let shift_right_trunc ~bits z i =
Z.shift_right_trunc (clamp bits ~signed:true z) i
end
module T0 = struct
type t =
| Var of {id: int; name: string}
@ -19,7 +71,7 @@ module T0 = struct
| Memory
| Concat
(* numeric constants *)
| Integer of {data: Z.t}
| Integer of {data: Z.t; typ: Typ.t}
| Float of {data: string}
(* binary: comparison *)
| Eq
@ -110,7 +162,7 @@ module T = struct
| App {op= App {op= Memory; arg= siz}; arg= bytes} ->
pf "@<1>⟨%a,%a@<1>⟩" pp siz pp bytes
| Concat -> pf "^"
| Integer {data} -> pf "%a" Z.pp_print data
| Integer {data} -> pf "%a" Z.pp data
| Float {data} -> pf "%s" data
| Eq -> pf "="
| Dq -> pf "!="
@ -134,11 +186,15 @@ module T = struct
| And -> pf "&&"
| Or -> pf "||"
| Xor -> pf "xor"
| App {op= App {op= Xor; arg}; arg= Integer {data}}
when Z.equal Z.minus_one data ->
| App
{ op= App {op= Xor; arg}
; arg= Integer {data; typ= Integer {bits= 1}} }
when Z.is_true data ->
pf "¬%a" pp arg
| App {op= App {op= Xor; arg= Integer {data}}; arg}
when Z.equal Z.minus_one data ->
| App
{ op= App {op= Xor; arg= Integer {data; typ= Integer {bits= 1}}}
; arg }
when Z.is_true data ->
pf "¬%a" pp arg
| Shl -> pf "shl"
| Lshr -> pf "lshr"
@ -198,15 +254,24 @@ let invariant ?(partial = false) e =
assert (nargs = arity || (partial && nargs < arity))
in
match op with
| Integer {data; typ= Integer {bits}} ->
assert_arity 0 ;
assert (Z.numbits data <= bits)
| Var _ | Nondet _ | Label _ | Null | Integer _ | Float _ ->
assert_arity 0
| Convert {dst; src} ->
assert (Typ.convertible src dst) ;
assert_arity 1
| Splat | Memory | Concat | Eq | Dq | Gt | Ge | Lt | Le | Ugt | Uge
|Ult | Ule | Ord | Uno | Add | Sub | Mul | Div | Udiv | Rem | Urem
|And | Or | Xor | Shl | Lshr | Ashr | Select ->
assert_arity 2
( match args with
| [Integer {typ}] -> assert (Typ.equal src typ)
| _ -> assert_arity 1 ) ;
assert (Typ.convertible src dst)
| Eq | Dq | Gt | Ge | Lt | Le | Ugt | Uge | Ult | Ule | Add | Sub | Mul
|Div | Udiv | Rem | Urem | And | Or | Xor | Shl | Lshr | Ashr -> (
match args with
| [Integer {typ= Integer {bits= m}}; Integer {typ= Integer {bits= n}}]
->
assert (m = n)
| _ -> assert_arity 2 )
| Splat | Memory | Concat | Ord | Uno | Select -> assert_arity 2
| Conditional | Update -> assert_arity 3
| Record -> assert (partial || not (List.is_empty args))
| Struct_rec {elts} ->
@ -372,165 +437,366 @@ let var x = x
let nondet msg = Nondet {msg} |> check invariant
let label ~parent ~name = Label {parent; name} |> check invariant
let null = Null |> check invariant
let integer data = Integer {data} |> check invariant
let bool b = integer (Z.of_int (Bool.to_int b))
let integer data typ = Integer {data; typ} |> check invariant
let bool b = integer (Z.of_bool b) Typ.bool
let float data = Float {data} |> check invariant
let simp_convert signed (dst : Typ.t) (src : Typ.t) arg =
match (signed, dst, src, arg) with
| _, Integer {bits}, _, Integer {data} when Z.numbits data <= bits ->
integer data
| false, Integer {bits= m}, Integer {bits= n}, _ when m >= n -> arg
let simp_convert signed (dst : Typ.t) src arg =
match (dst, arg) with
| Integer {bits= m}, Integer {data; typ= Integer {bits= n}} ->
integer (Z.clamp ~signed (min m n) data) dst
| _ -> App {op= Convert {signed; dst; src}; arg}
let rec simp_eq x y =
match (x, y) with
(* i = j ==> i=j *)
| Integer {data= i}, Integer {data= j} -> bool (Z.equal i j)
(* e+i = j ==> e = j-i *)
| ( App {op= App {op= Add; arg= e}; arg= Integer {data= i}}
, Integer {data= j} ) ->
simp_eq e (integer (Z.sub j i))
(* e = e ==> 1 *)
| _ when equal x y -> bool true
| _ -> App {op= App {op= Eq; arg= x}; arg= y}
let simp_dq x y =
match (x, y) with
(* i != j ==> i!=j *)
| Integer {data= i}, Integer {data= j} -> bool (not (Z.equal i j))
(* e = e ==> 0 *)
| _ when equal x y -> bool false
| _ -> App {op= App {op= Dq; arg= x}; arg= y}
let simp_gt x y =
match (x, y) with
(* i > j ==> i>j *)
| Integer {data= i}, Integer {data= j} -> bool (Z.gt i j)
| Integer {data= i}, Integer {data= j; typ= Integer {bits}} ->
bool (Z.gt ~bits i j)
| _ -> App {op= App {op= Gt; arg= x}; arg= y}
let simp_ugt x y =
match (x, y) with
| Integer {data= i}, Integer {data= j; typ= Integer {bits}} ->
bool (Z.ugt ~bits i j)
| _ -> App {op= App {op= Ugt; arg= x}; arg= y}
let simp_ge x y =
match (x, y) with
(* i >= j ==> i>=j *)
| Integer {data= i}, Integer {data= j} -> bool (Z.geq i j)
| Integer {data= i}, Integer {data= j; typ= Integer {bits}} ->
bool (Z.geq ~bits i j)
| _ -> App {op= App {op= Ge; arg= x}; arg= y}
let simp_uge x y =
match (x, y) with
| Integer {data= i}, Integer {data= j; typ= Integer {bits}} ->
bool (Z.ugeq ~bits i j)
| _ -> App {op= App {op= Uge; arg= x}; arg= y}
let simp_lt x y =
match (x, y) with
(* i < j ==> i<j *)
| Integer {data= i}, Integer {data= j} -> bool (Z.lt i j)
| Integer {data= i}, Integer {data= j; typ= Integer {bits}} ->
bool (Z.lt ~bits i j)
| _ -> App {op= App {op= Lt; arg= x}; arg= y}
let simp_ult x y =
match (x, y) with
| Integer {data= i}, Integer {data= j; typ= Integer {bits}} ->
bool (Z.ult ~bits i j)
| _ -> App {op= App {op= Ult; arg= x}; arg= y}
let simp_le x y =
match (x, y) with
(* i <= j ==> i<=j *)
| Integer {data= i}, Integer {data= j} -> bool (Z.leq i j)
| Integer {data= i}, Integer {data= j; typ= Integer {bits}} ->
bool (Z.leq ~bits i j)
| _ -> App {op= App {op= Le; arg= x}; arg= y}
let simp_ule x y =
match (x, y) with
| Integer {data= i}, Integer {data= j; typ= Integer {bits}} ->
bool (Z.uleq ~bits i j)
| _ -> App {op= App {op= Ule; arg= x}; arg= y}
let simp_ord x y = App {op= App {op= Ord; arg= x}; arg= y}
let simp_uno x y = App {op= App {op= Uno; arg= x}; arg= y}
let simp_cond cnd thn els =
match cnd with
(* ¬(true ? t : e) ==> t *)
| Integer {data; typ= Integer {bits= 1}} when Z.is_true data -> thn
(* ¬(false ? t : e) ==> e *)
| Integer {data; typ= Integer {bits= 1}} when Z.is_false data -> els
| _ ->
App {op= App {op= App {op= Conditional; arg= cnd}; arg= thn}; arg= els}
let rec simp_not (typ : Typ.t) exp =
match (exp, typ) with
(* ¬(x = y) ==> x != y *)
| App {op= App {op= Eq; arg= x}; arg= y}, _ -> simp_dq x y
(* ¬(x != y) ==> x = y *)
| App {op= App {op= Dq; arg= x}; arg= y}, _ -> simp_eq x y
(* ¬(x > y) ==> x <= y *)
| App {op= App {op= Gt; arg= x}; arg= y}, _ -> simp_le x y
(* ¬(x >= y) ==> x < y *)
| App {op= App {op= Ge; arg= x}; arg= y}, _ -> simp_lt x y
(* ¬(x < y) ==> x >= y *)
| App {op= App {op= Lt; arg= x}; arg= y}, _ -> simp_ge x y
(* ¬(x <= y) ==> x > y *)
| App {op= App {op= Le; arg= x}; arg= y}, _ -> simp_gt x y
(* ¬(x u> y) ==> x u<= y *)
| App {op= App {op= Ugt; arg= x}; arg= y}, _ -> simp_ule x y
(* ¬(x u>= y) ==> x u< y *)
| App {op= App {op= Uge; arg= x}; arg= y}, _ -> simp_ult x y
(* ¬(x u< y) ==> x u>= y *)
| App {op= App {op= Ult; arg= x}; arg= y}, _ -> simp_uge x y
(* ¬(x u<= y) ==> x u> y *)
| App {op= App {op= Ule; arg= x}; arg= y}, _ -> simp_ugt x y
(* ¬(x != nan ∧ y != nan) ==> x = nan y = nan *)
| App {op= App {op= Ord; arg= x}; arg= y}, _ -> simp_uno x y
(* ¬(x = nan y = nan) ==> x != nan ∧ y != nan *)
| App {op= App {op= Uno; arg= x}; arg= y}, _ -> simp_ord x y
(* ¬(a ∧ b) ==> ¬a ¬b *)
| App {op= App {op= And; arg= x}; arg= y}, Integer {bits= 1} ->
simp_or (simp_not typ x) (simp_not typ y)
(* ¬(a b) ==> ¬a ∧ ¬b *)
| App {op= App {op= Or; arg= x}; arg= y}, Integer {bits= 1} ->
simp_and (simp_not typ x) (simp_not typ y)
(* ¬(c ? t : e) ==> c ? ¬t : ¬e *)
| ( App {op= App {op= App {op= Conditional; arg= cnd}; arg= thn}; arg= els}
, Integer {bits= 1} ) ->
simp_cond cnd (simp_not typ thn) (simp_not typ els)
(* ¬b ==> false = b *)
| b, Integer {bits= 1} -> App {op= App {op= Eq; arg= bool false}; arg= b}
(* ¬e ==> true xor e *)
| e, _ ->
App {op= App {op= Xor; arg= integer (Z.of_bool true) typ}; arg= e}
and simp_eq x y =
match (x, y) with
(* i = j *)
| Integer {data= i}, Integer {data= j} -> bool (Z.equal i j)
(* e+i = j ==> e = j-i *)
| ( App {op= App {op= Add; arg= e}; arg= Integer {data= i}}
, Integer {data= j; typ= Integer {bits} as typ} ) ->
simp_eq e (integer (Z.sub ~bits j i) typ)
(* b = false ==> ¬b *)
| b, Integer {data; typ= Integer {bits= 1}}
|Integer {data; typ= Integer {bits= 1}}, b
when Z.is_false data ->
simp_not Typ.bool b
(* b = true ==> b *)
| b, Integer {data; typ= Integer {bits= 1}}
|Integer {data; typ= Integer {bits= 1}}, b
when Z.is_true data ->
b
| _ ->
let c = compare x y in
(* e = e ==> true *)
if c = 0 then bool true
else if c < 0 then App {op= App {op= Eq; arg= y}; arg= x}
else App {op= App {op= Eq; arg= x}; arg= y}
and simp_dq x y =
match (x, y) with
(* i != j *)
| Integer {data= i}, Integer {data= j} -> bool (not (Z.equal i j))
(* e+i != j ==> e != j-i *)
| ( App {op= App {op= Add; arg= e}; arg= Integer {data= i}}
, Integer {data= j; typ= Integer {bits} as typ} ) ->
simp_dq e (integer (Z.sub ~bits j i) typ)
(* b != false ==> b *)
| b, Integer {data; typ= Integer {bits= 1}}
|Integer {data; typ= Integer {bits= 1}}, b
when Z.is_false data ->
b
(* b != true ==> ¬b *)
| b, Integer {data; typ= Integer {bits= 1}}
|Integer {data; typ= Integer {bits= 1}}, b
when Z.is_true data ->
simp_not Typ.bool b
| _ ->
let c = compare x y in
(* e = e ==> false *)
if c = 0 then bool false
else if c < 0 then App {op= App {op= Dq; arg= x}; arg= y}
else App {op= App {op= Dq; arg= y}; arg= x}
and simp_and x y =
match (x, y) with
(* i && j *)
| Integer {data= i; typ}, Integer {data= j; typ= Integer {bits}} ->
integer (Z.logand ~bits i j) typ
(* e && true ==> e *)
| Integer {data; typ= Integer {bits= 1}}, e
|e, Integer {data; typ= Integer {bits= 1}}
when Z.is_true data ->
e
(* e && false ==> 0 *)
| (Integer {data; typ= Integer {bits= 1}} as f), _
|_, (Integer {data; typ= Integer {bits= 1}} as f)
when Z.is_false data ->
f
| _ ->
let c = compare x y in
(* e && e ==> e *)
if c = 0 then x
else if c < 0 then App {op= App {op= And; arg= x}; arg= y}
else App {op= App {op= And; arg= y}; arg= x}
and simp_or x y =
match (x, y) with
(* i || j *)
| Integer {data= i; typ}, Integer {data= j; typ= Integer {bits}} ->
integer (Z.logor ~bits i j) typ
(* e || true ==> true *)
| (Integer {data; typ= Integer {bits= 1}} as t), _
|_, (Integer {data; typ= Integer {bits= 1}} as t)
when Z.is_true data ->
t
(* e || false ==> e *)
| Integer {data; typ= Integer {bits= 1}}, e
|e, Integer {data; typ= Integer {bits= 1}}
when Z.is_false data ->
e
| _ ->
let c = compare x y in
(* e || e ==> e *)
if c = 0 then x
else if c < 0 then App {op= App {op= Or; arg= x}; arg= y}
else App {op= App {op= Or; arg= y}; arg= x}
let simp_xor x y =
match (x, y) with
(* i xor j *)
| Integer {data= i; typ}, Integer {data= j; typ= Integer {bits}} ->
integer (Z.logxor ~bits i j) typ
(* true xor b ==> ¬b *)
| Integer {data; typ= Integer {bits= 1}}, b
|b, Integer {data; typ= Integer {bits= 1}}
when Z.is_true data ->
simp_not Typ.bool b
| _ ->
let c = compare x y in
if c <= 0 then App {op= App {op= Xor; arg= x}; arg= y}
else App {op= App {op= Xor; arg= y}; arg= x}
let simp_shl x y =
match (x, y) with
(* i shl j *)
| Integer {data= i; typ}, Integer {data= j; typ= Integer {bits}}
when Z.fits_int j ->
integer (Z.shift_left ~bits i (Z.to_int j)) typ
(* e shl 0 ==> e *)
| e, Integer {data} when Z.equal Z.zero data -> e
| _ -> App {op= App {op= Shl; arg= x}; arg= y}
let simp_lshr x y =
match (x, y) with
(* i lshr j *)
| Integer {data= i; typ}, Integer {data= j; typ= Integer {bits}}
when Z.fits_int j ->
integer (Z.shift_right_trunc ~bits i (Z.to_int j)) typ
(* e lshr 0 ==> e *)
| e, Integer {data} when Z.equal Z.zero data -> e
| _ -> App {op= App {op= Lshr; arg= x}; arg= y}
let simp_ashr x y =
match (x, y) with
(* i ashr j *)
| Integer {data= i; typ}, Integer {data= j; typ= Integer {bits}}
when Z.fits_int j ->
integer (Z.shift_right ~bits i (Z.to_int j)) typ
(* e ashr 0 ==> e *)
| e, Integer {data} when Z.equal Z.zero data -> e
| _ -> App {op= App {op= Ashr; arg= x}; arg= y}
let rec simp_add x y =
match (x, y) with
(* i + j ==> i+j *)
| Integer {data= i}, Integer {data= j} -> integer (Z.add i j)
(* i + j *)
| Integer {data= i; typ}, Integer {data= j; typ= Integer {bits}} ->
integer (Z.add ~bits i j) typ
(* i + e ==> e + i *)
| Integer _, _ -> simp_add y x
(* e + 0 ==> e *)
| _, Integer {data} when Z.equal Z.zero data -> x
| e, Integer {data} when Z.equal Z.zero data -> e
(* (e+i) + j ==> e+(i+j) *)
| App {op= App {op= Add; arg}; arg= Integer {data= i}}, Integer {data= j}
->
simp_add arg (integer (Z.add i j))
| ( App
{ op= App {op= Add; arg}
; arg= Integer {data= i; typ= Integer {bits} as typ} }
, Integer {data= j} ) ->
simp_add arg (integer (Z.add ~bits i j) typ)
(* (i-e) + j ==> (i+j)-e *)
| App {op= App {op= Sub; arg= Integer {data= i}}; arg}, Integer {data= j}
->
simp_sub (integer (Z.add i j)) arg
| ( App
{ op=
App {op= Sub; arg= Integer {data= i; typ= Integer {bits} as typ}}
; arg }
, Integer {data= j} ) ->
simp_sub (integer (Z.add ~bits i j) typ) arg
| _ -> App {op= App {op= Add; arg= x}; arg= y}
and simp_sub x y =
match (x, y) with
(* i - j ==> i-j *)
| Integer {data= i}, Integer {data= j} -> integer (Z.sub i j)
(* i - j *)
| Integer {data= i; typ}, Integer {data= j; typ= Integer {bits}} ->
integer (Z.sub ~bits i j) typ
(* e - i ==> e + (-i) *)
| _, Integer {data} -> simp_add x (integer (Z.neg data))
(* e - e ==> 0 *)
| _ when equal x y -> integer Z.zero
| _, Integer {data; typ= Integer {bits} as typ} ->
simp_add x (integer (Z.neg ~bits data) typ)
| _ -> App {op= App {op= Sub; arg= x}; arg= y}
let simp_mul x y =
match (x, y) with
(* i * j ==> i*j *)
| Integer {data= i}, Integer {data= j} -> integer (Z.mul i j)
(* i * j *)
| Integer {data= i; typ}, Integer {data= j; typ= Integer {bits}} ->
integer (Z.mul ~bits i j) typ
(* e * 1 ==> e *)
| (Integer {data}, e | e, Integer {data}) when Z.equal Z.one data -> e
| Integer {data}, e when Z.equal Z.one data -> e
| e, Integer {data} when Z.equal Z.one data -> e
| _ -> App {op= App {op= Mul; arg= x}; arg= y}
let simp_div x y =
match (x, y) with
(* i / j ==> i/j *)
| Integer {data= i}, Integer {data= j} -> integer (Z.div i j)
(* i / j *)
| Integer {data= i; typ}, Integer {data= j; typ= Integer {bits}} ->
integer (Z.div ~bits i j) typ
(* e / 1 ==> e *)
| Integer {data}, e when Z.equal Z.one data -> e
| _ -> App {op= App {op= Div; arg= x}; arg= y}
let simp_rem x y =
match (x, y) with
(* i % j ==> i%j *)
| Integer {data= i}, Integer {data= j} -> integer (Z.( mod ) i j)
| _ -> App {op= App {op= Rem; arg= x}; arg= y}
let simp_and x y =
let simp_udiv x y =
match (x, y) with
(* i && j ==> i logand j *)
| Integer {data= i}, Integer {data= j} -> integer (Z.logand i j)
(* e && 1 ==> e *)
| (Integer {data}, e | e, Integer {data}) when Z.equal Z.one data -> e
(* e && 0 ==> 0 *)
| ((Integer {data} as z), _ | _, (Integer {data} as z))
when Z.equal Z.zero data ->
z
| _ -> App {op= App {op= And; arg= x}; arg= y}
(* i u/ j *)
| Integer {data= i; typ= Integer {bits} as typ}, Integer {data= j} ->
integer (Z.udiv ~bits i j) typ
(* e u/ 1 ==> e *)
| Integer {data}, e when Z.equal Z.one data -> e
| _ -> App {op= App {op= Udiv; arg= x}; arg= y}
let simp_or x y =
let simp_rem x y =
match (x, y) with
(* i || j ==> i logor j *)
| Integer {data= i}, Integer {data= j} -> integer (Z.logor i j)
(* e || 1 ==> e *)
| (Integer {data}, _ | _, Integer {data}) when Z.equal Z.one data ->
integer Z.one
(* e || 0 ==> e *)
| (Integer {data}, e | e, Integer {data}) when Z.equal Z.zero data -> e
| _ -> App {op= App {op= Or; arg= x}; arg= y}
(* i % j *)
| Integer {data= i; typ}, Integer {data= j; typ= Integer {bits}} ->
integer (Z.rem ~bits i j) typ
(* e % 1 ==> 0 *)
| _, Integer {data; typ} when Z.equal Z.one data -> integer Z.zero typ
| _ -> App {op= App {op= Rem; arg= x}; arg= y}
let simp_xor x y =
let simp_urem x y =
match (x, y) with
(* i xor j ==> i logxor j *)
| Integer {data= i}, Integer {data= j} -> integer (Z.logxor i j)
(* ¬(x=y) ==> x!=y *)
| App {op= App {op= Eq; arg= x}; arg= y}, Integer {data}
|Integer {data}, App {op= App {op= Eq; arg= x}; arg= y}
when Z.equal Z.minus_one data ->
simp_dq x y
(* ¬(x!=y) ==> x=y *)
| App {op= App {op= Dq; arg= x}; arg= y}, Integer {data}
|Integer {data}, App {op= App {op= Dq; arg= x}; arg= y}
when Z.equal Z.minus_one data ->
simp_eq x y
| _ -> App {op= App {op= Xor; arg= x}; arg= y}
(* i u% j *)
| Integer {data= i; typ= Integer {bits} as typ}, Integer {data= j} ->
integer (Z.urem ~bits i j) typ
(* e u% 1 ==> 0 *)
| _, Integer {data; typ} when Z.equal Z.one data -> integer Z.zero typ
| _ -> App {op= App {op= Urem; arg= x}; arg= y}
let app1 ?(partial = false) op arg =
( match (op, arg) with
| Convert {signed; dst; src}, x -> simp_convert signed dst src x
| App {op= Eq; arg= x}, y -> simp_eq x y
| App {op= Dq; arg= x}, y -> simp_dq x y
| App {op= Gt; arg= x}, y -> simp_gt x y
| App {op= Ge; arg= x}, y -> simp_ge x y
| App {op= Lt; arg= x}, y -> simp_lt x y
| App {op= Le; arg= x}, y -> simp_le x y
| App {op= Ugt; arg= x}, y -> simp_ugt x y
| App {op= Uge; arg= x}, y -> simp_uge x y
| App {op= Ult; arg= x}, y -> simp_ult x y
| App {op= Ule; arg= x}, y -> simp_ule x y
| App {op= Ord; arg= x}, y -> simp_ord x y
| App {op= Uno; arg= x}, y -> simp_uno x y
| App {op= Add; arg= x}, y -> simp_add x y
| App {op= Sub; arg= x}, y -> simp_sub x y
| App {op= Mul; arg= x}, y -> simp_mul x y
| App {op= Div; arg= x}, y -> simp_div x y
| App {op= Udiv; arg= x}, y -> simp_udiv x y
| App {op= Rem; arg= x}, y -> simp_rem x y
| App {op= Urem; arg= x}, y -> simp_urem x y
| App {op= And; arg= x}, y -> simp_and x y
| App {op= Or; arg= x}, y -> simp_or x y
| App {op= Xor; arg= x}, y -> simp_xor x y
| App {op= Shl; arg= x}, y -> simp_shl x y
| App {op= Lshr; arg= x}, y -> simp_lshr x y
| App {op= Ashr; arg= x}, y -> simp_ashr x y
| App {op= App {op= Conditional; arg= x}; arg= y}, z -> simp_cond x y z
| Convert {signed; dst; src}, x -> simp_convert signed dst src x
| _ -> App {op; arg} )
|> check (invariant ~partial)
@ -562,6 +828,7 @@ let urem = app2 Urem
let and_ = app2 And
let or_ = app2 Or
let xor = app2 Xor
let not_ = simp_not
let shl = app2 Shl
let lshr = app2 Lshr
let ashr = app2 Ashr
@ -634,8 +901,13 @@ let rename e sub =
(** Query *)
let is_true = function Integer {data} -> Z.equal Z.one data | _ -> false
let is_false = function Integer {data} -> Z.equal Z.zero data | _ -> false
let is_true = function
| Integer {data; typ= Integer {bits= 1}} -> Z.is_true data
| _ -> false
let is_false = function
| Integer {data; typ= Integer {bits= 1}} -> Z.is_false data
| _ -> false
let rec is_constant = function
| Var _ | Nondet _ -> false

@ -34,7 +34,7 @@ type t = private
| Splat (** Iterated concatenation of a single byte *)
| Memory (** Size-tagged byte-array *)
| Concat (** Byte-array concatenation *)
| Integer of {data: Z.t} (** Integer constant *)
| Integer of {data: Z.t; typ: Typ.t} (** Integer constant *)
| Float of {data: string} (** Floating-point constant *)
| Eq (** Equal test *)
| Dq (** Disequal test *)
@ -55,12 +55,12 @@ type t = private
| Udiv (** Unsigned division *)
| Rem (** Remainder of division *)
| Urem (** Remainder of unsigned division *)
| And (** Conjunction *)
| Or (** Disjunction *)
| Xor (** Exclusive-or / Boolean disequality *)
| Shl (** Shift left *)
| Lshr (** Logical shift right *)
| Ashr (** Arithmetic shift right *)
| And (** Conjunction, boolean or bitwise *)
| Or (** Disjunction, boolean or bitwise *)
| Xor (** Exclusive-or, bitwise *)
| Shl (** Shift left, bitwise *)
| Lshr (** Logical shift right, bitwise *)
| Ashr (** Arithmetic shift right, bitwise *)
| Conditional (** If-then-else *)
| Record (** Record (array / struct) constant *)
| Select (** Select an index from a record *)
@ -134,7 +134,7 @@ val splat : byt:t -> siz:t -> t
val memory : siz:t -> arr:t -> t
val concat : t -> t -> t
val bool : bool -> t
val integer : Z.t -> t
val integer : Z.t -> Typ.t -> t
val float : string -> t
val eq : t -> t -> t
val dq : t -> t -> t
@ -158,6 +158,7 @@ val urem : t -> t -> t
val and_ : t -> t -> t
val or_ : t -> t -> t
val xor : t -> t -> t
val not_ : Typ.t -> t -> t
val shl : t -> t -> t
val lshr : t -> t -> t
val ashr : t -> t -> t

@ -274,15 +274,17 @@ let i32 x = xlate_type x (Llvm.i32_type x.llcontext)
let suffix_after_last_space : string -> string =
fun str -> String.drop_prefix str (String.rindex_exn str ' ' + 1)
let xlate_int : Llvm.llvalue -> Exp.t =
fun llv ->
let xlate_int : x -> Llvm.llvalue -> Exp.t =
fun x llv ->
let llt = Llvm.type_of llv in
let typ = xlate_type x llt in
let data =
match Llvm.int64_of_const llv with
| Some n -> Z.of_int64 n
| None ->
Z.of_string (suffix_after_last_space (Llvm.string_of_llvalue llv))
in
Exp.integer data
Exp.integer data typ
let xlate_float : Llvm.llvalue -> Exp.t =
fun llv ->
@ -314,11 +316,11 @@ let ptr_fld x ~ptr ~fld ~lltyp =
let offset =
Llvm_target.DataLayout.offset_of_element lltyp fld x.lldatalayout
in
Exp.add ptr (Exp.integer (Z.of_int64 offset))
Exp.add ptr (Exp.integer (Z.of_int64 offset) Typ.siz)
let ptr_idx x ~ptr ~idx ~llelt =
let stride = Llvm_target.DataLayout.abi_size llelt x.lldatalayout in
Exp.add ptr (Exp.mul (Exp.integer (Z.of_int64 stride)) idx)
Exp.add ptr (Exp.mul (Exp.integer (Z.of_int64 stride) Typ.siz) idx)
let xlate_llvm_eh_typeid_for : x -> Typ.t -> Exp.t -> Exp.t =
fun x typ arg -> Exp.convert ~dst:(i32 x) ~src:typ arg
@ -351,7 +353,7 @@ and xlate_value : x -> Llvm.llvalue -> Exp.t =
Exp.var (xlate_name llv)
| Function | GlobalVariable -> Exp.var (xlate_global x llv).var
| GlobalAlias -> xlate_value x (Llvm.operand llv 0)
| ConstantInt -> xlate_int llv
| ConstantInt -> xlate_int x llv
| ConstantFP -> xlate_float llv
| ConstantPointerNull | ConstantAggregateZero -> Exp.null
| ConstantVector | ConstantArray ->
@ -498,10 +500,10 @@ and xlate_opcode : x -> Llvm.llvalue -> Llvm.Opcode.t -> Exp.t =
let rcd_i, upd =
match typ with
| Tuple _ | Struct _ ->
let idx = Exp.integer (Z.of_int indices.(i)) in
let idx = Exp.integer (Z.of_int indices.(i)) Typ.siz in
(Exp.select ~rcd ~idx, Exp.update ~rcd ~idx)
| Array _ ->
let idx = Exp.integer (Z.of_int indices.(i)) in
let idx = Exp.integer (Z.of_int indices.(i)) Typ.siz in
(Exp.select ~rcd ~idx, Exp.update ~rcd ~idx)
| _ -> fail "xlate_value: %a" pp_llvalue llv ()
in
@ -639,9 +641,10 @@ let pop_stack_frame_of_function :
(** construct the types involved in landingpads: i32, std::type_info*, and
__cxa_exception *)
let landingpad_typs : x -> Llvm.llvalue -> Typ.t * Llvm.lltype =
let landingpad_typs : x -> Llvm.llvalue -> Typ.t * Typ.t * Llvm.lltype =
fun x instr ->
let llt = Llvm.type_of instr in
let i32 = i32 x in
if
not
( Poly.(Llvm.classify_type llt = Struct)
@ -662,7 +665,7 @@ let landingpad_typs : x -> Llvm.llvalue -> Typ.t * Llvm.lltype =
let void = Llvm.void_type llcontext in
let dtor = Llvm.(pointer_type (function_type void [|llpi8|])) in
let cxa_exception = Llvm.struct_type llcontext [|tip; dtor|] in
(xlate_type x tip, cxa_exception)
(i32, xlate_type x tip, cxa_exception)
(** construct the argument of a landingpad block, mainly fix the encoding
scheme for landingpad instruction name to block arg name *)
@ -869,23 +872,29 @@ let xlate_instr :
match opcode with
| Load ->
let reg = xlate_name instr in
let len = Exp.integer (Z.of_int (size_of x (Llvm.type_of instr))) in
let len =
Exp.integer (Z.of_int (size_of x (Llvm.type_of instr))) Typ.siz
in
let ptr = xlate_value x (Llvm.operand instr 0) in
continue (fun (insts, term) ->
(Llair.Inst.load ~reg ~ptr ~len ~loc :: insts, term, []) )
| Store ->
let exp = xlate_value x (Llvm.operand instr 0) in
let llt = Llvm.type_of (Llvm.operand instr 0) in
let len = Exp.integer (Z.of_int (size_of x llt)) in
let len = Exp.integer (Z.of_int (size_of x llt)) Typ.siz in
let ptr = xlate_value x (Llvm.operand instr 1) in
continue (fun (insts, term) ->
(Llair.Inst.store ~ptr ~exp ~len ~loc :: insts, term, []) )
| Alloca ->
let reg = xlate_name instr in
let rand = Llvm.operand instr 0 in
let num = xlate_value x rand in
let num =
Exp.convert ~dst:Typ.siz
~src:(xlate_type x (Llvm.type_of rand))
(xlate_value x rand)
in
let llt = Llvm.element_type (Llvm.type_of instr) in
let len = Exp.integer (Z.of_int (size_of x llt)) in
let len = Exp.integer (Z.of_int (size_of x llt)) Typ.siz in
continue (fun (insts, term) ->
(Llair.Inst.alloc ~reg ~num ~len ~loc :: insts, term, []) )
| Call -> (
@ -956,7 +965,7 @@ let xlate_instr :
| ["_Znwm"] ->
let num = xlate_value x (Llvm.operand instr 0) in
let llt = Llvm.type_of instr in
let len = Exp.integer (Z.of_int (size_of x llt)) in
let len = Exp.integer (Z.of_int (size_of x llt)) Typ.siz in
continue (fun (insts, term) ->
( Llair.Inst.alloc ~reg:(Option.value_exn reg) ~num ~len ~loc
:: insts
@ -1020,7 +1029,7 @@ let xlate_instr :
let reg = xlate_name_opt x instr in
let num = xlate_value x (Llvm.operand instr 0) in
let llt = Llvm.type_of instr in
let len = Exp.integer (Z.of_int (size_of x llt)) in
let len = Exp.integer (Z.of_int (size_of x llt)) Typ.siz in
let blk = Llvm.get_normal_dest instr in
let args = jump_args x instr blk in
let dst = Llair.Jump.mk (label_of_block blk) args in
@ -1135,7 +1144,7 @@ let xlate_instr :
eventually jumping to the handler code following the landingpad,
passing a value for the selector which the handler code tests to
e.g. either cleanup or rethrow. *)
let tip, cxa_exception = landingpad_typs x instr in
let i32, tip, cxa_exception = landingpad_typs x instr in
let exc = Exp.var (landingpad_arg instr) in
let ti = Var.program (name ^ ".ti") in
(* std::type_info* ti = ((__cxa_exception* )exc - 1)->exceptionType *)
@ -1144,13 +1153,13 @@ let xlate_instr :
(* field number of the exceptionType member of __cxa_exception *)
let fld = 0 in
(* index from exc that points to header *)
let idx = Exp.integer Z.minus_one in
let idx = Exp.integer Z.minus_one Typ.siz in
let ptr =
ptr_fld x
~ptr:(ptr_idx x ~ptr:exc ~idx ~llelt:typ)
~fld ~lltyp:typ
in
let len = Exp.integer (Z.of_int (size_of x typ)) in
let len = Exp.integer (Z.of_int (size_of x typ)) Typ.siz in
Llair.Inst.load ~reg:ti ~ptr ~len ~loc
in
let ti = Exp.var ti in
@ -1168,7 +1177,8 @@ let xlate_instr :
Llair.Term.goto ~dst ~loc
in
let term_unwind, rev_blocks =
if Llvm.is_cleanup instr then (goto_unwind (Exp.integer Z.zero), [])
if Llvm.is_cleanup instr then
(goto_unwind (Exp.integer Z.zero i32), [])
else
let num_clauses = Llvm.num_operands instr in
let lbl i = name ^ "." ^ Int.to_string i in
@ -1177,7 +1187,7 @@ let xlate_instr :
Llair.Block.mk ~lbl:(lbl i) ~params:[] ~cmnd:Vector.empty ~term
in
let match_filter =
jump_unwind (Exp.sub (Exp.integer Z.zero) typeid)
jump_unwind (Exp.sub (Exp.integer Z.zero i32) typeid)
in
let xlate_clause i =
let clause = Llvm.operand instr i in
@ -1221,7 +1231,7 @@ let xlate_instr :
~term ] ) )
| Resume ->
let rcd = xlate_value x (Llvm.operand instr 0) in
let exc = Exp.select ~rcd ~idx:(Exp.integer Z.zero) in
let exc = Exp.select ~rcd ~idx:(Exp.integer Z.zero Typ.siz) in
terminal (pop loc) (Llair.Term.throw ~exc ~loc) []
| Unreachable -> terminal [] Llair.Term.unreachable []
| Trunc | ZExt | SExt | FPToUI | FPToSI | UIToFP | SIToFP | FPTrunc

@ -100,6 +100,11 @@ let struct_ =
Vector.iteri elt_thks ~f:(fun i (lazy elt) -> elts.(i) <- elt) ;
typ |> check invariant
(** Constants *)
let bool = integer ~bits:1
let siz = integer ~bits:64
(** Queries *)
let rec prim_bit_size_of = function

@ -34,6 +34,8 @@ include Invariant.S with type t := t
(** Constructors *)
val bool : t
val siz : t
val function_ : return:t option -> args:t vector -> t
val integer : bits:int -> t
val float : bits:int -> enc:[`Extended | `IEEE | `Pair] -> t

@ -446,7 +446,7 @@ let difference r a b =
let%test_module _ =
( module struct
let printf pp = Format.printf "@.%a@." pp
let ( ! ) i = Exp.integer (Z.of_int i)
let ( ! ) i = Exp.integer (Z.of_int i) Typ.siz
let%expect_test _ =
printf pp {true_ with pnd= [(!0, !1)]} ;

@ -14,7 +14,7 @@ let%test_module _ =
let mem_eq x y r = entails r (and_eq true_ x y)
let i8 = Typ.integer ~bits:8
let i64 = Typ.integer ~bits:64
let ( ! ) i = Exp.integer (Z.of_int i)
let ( ! ) i = Exp.integer (Z.of_int i) Typ.siz
let ( + ) = Exp.add
let ( - ) = Exp.sub
let f = Exp.convert ~dst:i64 ~src:i8

@ -15,7 +15,7 @@ let init globals =
Vector.fold globals ~init:Sh.emp ~f:(fun q -> function
| {Global.var; init= Some arr; siz} ->
let loc = Exp.var var in
let len = Exp.integer (Z.of_int siz) in
let len = Exp.integer (Z.of_int siz) Typ.siz in
Sh.star q (Sh.seg {loc; bas= loc; len; siz= len; arr})
| _ -> q )

@ -108,7 +108,7 @@ let memcpy_eq_spec us dst src len =
let dst_heap = Sh.seg seg in
let foot =
Sh.and_ (Exp.eq dst src)
(Sh.and_ (Exp.eq len (Exp.integer Z.zero)) dst_heap)
(Sh.and_ (Exp.eq len (Exp.integer Z.zero Typ.siz)) dst_heap)
in
let post = dst_heap in
{xs; foot; post}
@ -249,7 +249,7 @@ let strlen_spec us reg ptr =
let {xs; seg} = fresh_seg ~loc:ptr us in
let foot = Sh.seg seg in
let {Sh.loc= p; bas= b; len= m} = seg in
let ret = Exp.sub (Exp.add (Exp.sub b p) m) (Exp.integer Z.one) in
let ret = Exp.sub (Exp.add (Exp.sub b p) m) (Exp.integer Z.one Typ.siz) in
let post = Sh.and_ (Exp.eq (Exp.var reg) ret) foot in
{xs; foot; post}

@ -67,7 +67,7 @@ let rec pp_ vs fs {us; xs; cong; pure; heap; djns} =
(List.map ~f:(map_seg ~f:(Congruence.normalize cong)) heap)
~compare:(fun s1 s2 ->
let b_o = function
| Exp.App {op= App {op= Add; arg}; arg= Integer {data}} ->
| Exp.App {op= App {op= Add; arg}; arg= Integer {data; _}} ->
(arg, data)
| e -> (e, Z.zero)
in
@ -117,7 +117,9 @@ let rec fv_union init q =
let fv q = fv_union Var.Set.empty q
let invariant_pure = function
| Exp.Integer {data} -> assert (not (Z.equal Z.zero data))
| Exp.Integer {data; typ} ->
assert (Typ.equal Typ.bool typ) ;
assert (not (Z.equal Z.zero data))
| _ -> assert true
let invariant_seg _ = ()
@ -333,16 +335,15 @@ let rec pure (e : Exp.t) =
;
let us = Exp.fv e in
( match e with
| Integer {data} -> if Z.equal Z.zero data then false_ us else emp
| Integer {data; typ= Integer {bits= 1}} ->
if Z.equal Z.zero data then false_ us else emp
| App {op= App {op= And; arg= e1}; arg= e2} -> star (pure e1) (pure e2)
| App {op= App {op= Or; arg= e1}; arg= e2} -> or_ (pure e1) (pure e2)
| App
{ op= App {op= Eq; arg= App {op= App {op= Eq; arg= e1}; arg= e2}}
; arg= Integer {data} }
when Z.equal Z.one data ->
let cong = Congruence.(and_eq true_ e1 e2) in
if Congruence.is_false cong then false_ us
else {emp with us; cong; pure= [e]}
| App {op= App {op= App {op= Conditional; arg= cnd}; arg= thn}; arg= els}
->
or_
(star (pure cnd) (pure thn))
(star (pure (Exp.not_ Typ.bool cnd)) (pure els))
| App {op= App {op= Eq; arg= e1}; arg= e2} ->
let cong = Congruence.(and_eq true_ e1 e2) in
if Congruence.is_false cong then false_ us

@ -106,7 +106,7 @@ let excise_seg_sub_prefix ({us; com; min; xs; sub; zs} as goal) msg ssg o_n
ssg pp goal] ;
let {Sh.loc= k; bas= b; len= m; siz= o; arr= a} = msg in
let {Sh.bas= b'; len= m'; siz= n; arr= a'} = ssg in
let o_n = Exp.integer o_n in
let o_n = Exp.integer o_n Typ.siz in
let a0, us, zs, wrt = fresh_var "a0" us zs ~wrt:(Set.union us xs) in
let a1, us, zs, _ = fresh_var "a1" us zs ~wrt in
let com = Sh.star (Sh.seg {msg with siz= n; arr= a0}) com in
@ -148,7 +148,7 @@ let excise_seg_min_prefix ({us; com; min; xs; sub; zs} as goal) msg ssg n_o
ssg pp goal] ;
let {Sh.bas= b; len= m; siz= o; arr= a} = msg in
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
let n_o = Exp.integer n_o in
let n_o = Exp.integer n_o Typ.siz in
let com = Sh.star (Sh.seg msg) com in
let min = Sh.rem_seg msg min in
let a1', xs, zs, _ = fresh_var "a1" xs zs ~wrt:(Set.union us xs) in
@ -188,7 +188,7 @@ let excise_seg_sub_suffix ({us; com; min; xs; sub; zs} as goal) msg ssg l_k
ssg pp goal] ;
let {Sh.loc= k; bas= b; len= m; siz= o; arr= a} = msg in
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
let l_k = Exp.integer l_k in
let l_k = Exp.integer l_k Typ.siz in
let a0, us, zs, wrt = fresh_var "a0" us zs ~wrt:(Set.union us xs) in
let a1, us, zs, _ = fresh_var "a1" us zs ~wrt in
let com =
@ -232,7 +232,7 @@ let excise_seg_sub_infix ({us; com; min; xs; sub; zs} as goal) msg ssg l_k
pp goal] ;
let {Sh.loc= k; bas= b; len= m; siz= o; arr= a} = msg in
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
let l_k = Exp.integer l_k and ko_ln = Exp.integer ko_ln in
let l_k = Exp.integer l_k Typ.siz and ko_ln = Exp.integer ko_ln Typ.siz in
let ln = Exp.add l n in
let a0, us, zs, wrt = fresh_var "a0" us zs ~wrt:(Set.union us xs) in
let a1, us, zs, wrt = fresh_var "a1" us zs ~wrt in
@ -282,9 +282,9 @@ let excise_seg_min_skew ({us; com; min; xs; sub; zs} as goal) msg ssg l_k
pp goal] ;
let {Sh.loc= k; bas= b; len= m; siz= o; arr= a} = msg in
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
let l_k = Exp.integer l_k in
let ko_l = Exp.integer ko_l in
let ln_ko = Exp.integer ln_ko in
let l_k = Exp.integer l_k Typ.siz in
let ko_l = Exp.integer ko_l Typ.siz in
let ln_ko = Exp.integer ln_ko Typ.siz in
let ko = Exp.add k o in
let a0, us, zs, wrt = fresh_var "a0" us zs ~wrt:(Set.union us xs) in
let a1, us, zs, wrt = fresh_var "a1" us zs ~wrt in
@ -339,7 +339,7 @@ let excise_seg_min_suffix ({us; com; min; xs; sub; zs} as goal) msg ssg k_l
ssg pp goal] ;
let {Sh.bas= b; len= m; siz= o; arr= a} = msg in
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
let k_l = Exp.integer k_l in
let k_l = Exp.integer k_l Typ.siz in
let a0', xs, zs, _ = fresh_var "a0" xs zs ~wrt:(Set.union us xs) in
let com = Sh.star (Sh.seg msg) com in
let min = Sh.rem_seg msg min in
@ -380,8 +380,8 @@ let excise_seg_min_infix ({us; com; min; xs; sub; zs} as goal) msg ssg k_l
pp goal] ;
let {Sh.loc= k; bas= b; len= m; siz= o; arr= a} = msg in
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
let k_l = Exp.integer k_l in
let ln_ko = Exp.integer ln_ko in
let k_l = Exp.integer k_l Typ.siz in
let ln_ko = Exp.integer ln_ko Typ.siz in
let ko = Exp.add k o in
let a0', xs, zs, wrt = fresh_var "a0" xs zs ~wrt:(Set.union us xs) in
let a2', xs, zs, _ = fresh_var "a2" xs zs ~wrt in
@ -427,9 +427,9 @@ let excise_seg_sub_skew ({us; com; min; xs; sub; zs} as goal) msg ssg k_l
pp goal] ;
let {Sh.loc= k; bas= b; len= m; siz= o; arr= a} = msg in
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
let k_l = Exp.integer k_l in
let ln_k = Exp.integer ln_k in
let ko_ln = Exp.integer ko_ln in
let k_l = Exp.integer k_l Typ.siz in
let ln_k = Exp.integer ln_k Typ.siz in
let ko_ln = Exp.integer ko_ln Typ.siz in
let ln = Exp.add l n in
let a0', xs, zs, wrt = fresh_var "a0" xs zs ~wrt:(Set.union us xs) in
let a1, us, zs, wrt = fresh_var "a1" us zs ~wrt in

Loading…
Cancel
Save