@ -16,10 +16,28 @@ new_theory "llair_prop";
numLib. prefer_num ( ) ;
Theorem signed2unsigned_fits :
0 < n ∧ ifits i n ⇒ ifits ( & signed2unsigned i n ) ( n + 1 )
Proof
rw [ signed2unsigned_def , ifits_def ]
>- (
`? j. i = -& j ` by intLib. COOPER_TAC >>
rw [ ] >> fs [ ] >>
rfs [ EXP_SUB ] >>
` j ≤ 2 ** n ` by intLib. COOPER_TAC >>
rw [ INT_SUB , GSYM int_sub ] )
>- (
`? j. i = & j ` by intLib. COOPER_TAC >>
rw [ ] >> fs [ ] >>
rw [ INT_SUB , GSYM int_sub ] >>
rfs [ EXP_SUB ] >>
intLib. COOPER_TAC )
QED
Theorem i2n_n2i :
! n size. 0 < size ⇒ ( nfits n size ⇔ ( i2n ( n2i n size ) = n ) )
∀ n size. 0 < size ⇒ ( nfits n size ⇔ ( i2n ( n2i n size ) = n ) )
Proof
rw [ nfits_def , n2i_def , i2n_def ] >> rw [ ]
rw [ nfits_def , n2i_def , i2n_def , signed2unsigned_def ] >> rw [ ]
>- intLib. COOPER_TAC
>- (
` 2 ** size ≤ n ` by intLib. COOPER_TAC >> simp [ INT_SUB ] >>
@ -32,9 +50,9 @@ Proof
QED
Theorem n2i_i2n :
! i size. 0 < size ⇒ ( ifits i size ⇔ ( n2i ( i2n ( IntV i size ) ) size ) = IntV i size )
∀ i size. 0 < size ⇒ ( ifits i size ⇔ ( n2i ( i2n ( IntV i size ) ) size ) = IntV i size )
Proof
rw [ ifits_def , n2i_def , i2n_def ] >> rw [ ] >> fs [ ]
rw [ ifits_def , n2i_def , i2n_def , signed2unsigned_def ] >> rw [ ] >> fs [ ]
>- (
eq_tac >> rw [ ]
>- (
@ -44,7 +62,7 @@ Proof
>- (
fs [ intLib. COOPER_PROVE `` ∀(x:int) y z. x - y = z ⇔ x = y + z `` ] >>
fs [ INT_OF_NUM ] >>
` ?j. i = - j ` by intLib. COOPER_TAC >> rw [ ] >> fs [ ] >>
` ∃j. i = - j ` by intLib. COOPER_TAC >> rw [ ] >> fs [ ] >>
qpat_x_assum ` _ ≤ Num _ ` mp_tac >>
fs [ GSYM INT_OF_NUM ] >>
ASM_REWRITE_TAC [ GSYM INT_LE ] >> rw [ ] >>
@ -69,10 +87,10 @@ Proof
>- intLib. COOPER_TAC
QED
Theorem w2n_ i2n:
∀w. w2n ( w : 'a word ) = i2n ( IntV ( w2i w ) ( dimindex ( : 'a ) ) )
Theorem w2n_ s igned 2u nsigned :
∀w. w2n ( w : 'a word ) = signed2unsigned ( w2i w ) ( dimindex ( : 'a ) )
Proof
rw [ i2n_def] >> Cases_on ` w ` >> fs [ ]
rw [ s igned 2u nsigned _def] >> Cases_on ` w ` >> fs [ ]
>- (
` INT_MIN ( : α ) ≤ n `
by (
@ -89,6 +107,12 @@ Proof
rw [ w2i_n2w_pos ] )
QED
Theorem w2n_i2n :
∀w. w2n ( w : 'a word ) = i2n ( IntV ( w2i w ) ( dimindex ( : 'a ) ) )
Proof
rw [ i2n_def ] >> metis_tac [ w2n_signed2unsigned ]
QED
Theorem w2i_n2w :
∀n. n < dimword ( : 'a ) ⇒ IntV ( w2i ( n2w n : 'a word ) ) ( dimindex ( : 'a ) ) = n2i n ( dimindex ( : 'a ) )
Proof
@ -130,7 +154,8 @@ Definition exp_uses_def:
( exp_uses ( Record es ) = bigunion ( set ( map exp_uses es ) ) ) ∧
( exp_uses ( Select e1 e2 ) = exp_uses e1 ∪ exp_uses e2 ) ∧
( exp_uses ( Update e1 e2 e3 ) = exp_uses e1 ∪ exp_uses e2 ∪ exp_uses e3 ) ∧
( exp_uses ( Convert _ _ _ e ) = exp_uses e )
( exp_uses ( Unsigned _ e _ ) = exp_uses e ) ∧
( exp_uses ( Signed _ e _ ) = exp_uses e )
Termination
WF_REL_TAC ` measure exp_size ` >> rw [ ] >>
Induct_on ` es ` >> rw [ exp_size_def ] >> res_tac >> rw [ ]
@ -179,6 +204,122 @@ Proof
metis_tac [ eval_exp_ignores_unused_lem ]
QED
Triviality num_mod_to_int_mod :
y ≠ 0 ⇒ x MOD y = Num ( & x % & y )
Proof
fs [ INT_MOD ]
QED
Triviality int_of_num2 :
0 ≤ x ⇒ & Num x = x
Proof
metis_tac [ INT_OF_NUM ]
QED
Theorem int_sub_mod :
∀i j. j ≠ 0 ⇒ ( i - j ) % j = i % j
Proof
rw [ int_mod ] >>
`- j % j = 0 ∧ - j / j = - 1 `
by (
ONCE_REWRITE_TAC [ INT_NEG_MINUS1 ] >> rw [ ] >>
rw [ INT_MUL_DIV ] ) >>
rw [ INT_ADD_DIV , int_sub , INT_RDISTRIB ] >>
rw [ ] >>
intLib. COOPER_TAC
QED
Theorem mod_halfway :
∀i b. 0 < b ⇒ ( ( i + b ) % ( 2 * b ) - b < 0 ⇔ 0 ≤ i % ( 2 * b ) - b )
Proof
rw [ ] >> ` b ≠ 0 ` by intLib. COOPER_TAC >>
rw [ Once ( GSYM INT_MOD_PLUS ) ] >>
` b < 2 * b ` by intLib. COOPER_TAC >>
rw [ INT_LESS_MOD ] >>
` 0 ≤ i % ( 2 * b ) ∧ i % ( 2 * b ) < 2 * b `
by (
`~ ( 2 * b < 0 ) ∧ 2 * b ≠ 0 ` by intLib. COOPER_TAC >>
drule INT_MOD_BOUNDS >>
rw [ ] ) >>
` 0 ≤ i % ( 2 * b ) + b ` by intLib. COOPER_TAC >>
Cases_on ` i % ( 2 * b ) + b < 2 * b ` >> rw [ INT_LESS_MOD ]
>- intLib. COOPER_TAC >>
simp [ Once ( GSYM int_sub_mod ) ] >>
rw [ intLib. COOPER_PROVE `` ∀x ( b : int ) . x + b - ( 2 * b ) = x - b `` ] >>
` i % ( 2 * b ) − b < 2 * b ` by intLib. COOPER_TAC >>
` 0 ≤ i % ( 2 * b ) − b ` by intLib. COOPER_TAC >>
rw [ INT_LESS_MOD ] >>
intLib. COOPER_TAC
QED
Theorem unsigned_truncate :
∀m n i.
0 < m ∧ m ≤ n ∧ - i ≤ 2 ** n
⇒
signed2unsigned ( truncate_2comp i m ) m = signed2unsigned i n MOD ( 2 ** m )
Proof
rw [ signed2unsigned_def , truncate_2comp_def ] >>
qabbrev_tac ` b = & ( 2 ** ( m - 1 ) ) ` >>
`& ( ( 2 : num ) ** m ) = 2 * b `
by ( rw [ Abbr ` b ` ] >> Cases_on ` m ` >> fs [ ADD1 , EXP_ADD ] ) >>
` 0 < b ` by rw [ Abbr ` b ` ] >>
` 0 < 2 * b ∧ 0 ≠ 2 * b ∧ b < 2 * b ` by ( rw [ Abbr ` b ` ] >> intLib. COOPER_TAC ) >>
asm_simp_tac std_ss [ num_mod_to_int_mod ] >>
fs [ mod_halfway ] >>
` ∃x. & ( 2 ** n ) = 2 * b * 2 ** x `
by (
rw [ Abbr ` b ` , GSYM EXP_ADD ] >>
` 2 = 2 ** 1 ` by rw [ ] >>
` ∀x. 2 * 2 ** ( m + x - 1 ) = 2 ** ( 1 + ( m + x - 1 ) ) ` by metis_tac [ EXP_ADD ] >>
rw [ ] >>
qexists_tac ` n - m ` >> rw [ ] ) >>
irule ( METIS_PROVE [ ] `` x = y ⇒ f x = f y `` ) >>
fs [ GSYM int_le ] >>
rw [ int_of_num2 ] >>
rw [ intLib. COOPER_PROVE `` ∀(x:int) b. 2 * b + ( x - b ) = b + x `` ] >>
` 0 ≤ i % ( 2 * b ) ∧ i % ( 2 * b ) < 2 * b `
by (
`~ ( 2 * b < 0 ) ∧ 2 * b ≠ 0 ` by intLib. COOPER_TAC >>
drule INT_MOD_BOUNDS >>
rw [ ] )
>- (
` 0 ≤ 2 * b * & ( 2 ** x ) + i ` by intLib. COOPER_TAC >>
rw [ int_of_num2 ] >>
` 2 * b ≠ 0 ` by intLib. COOPER_TAC >>
drule INT_MOD_ADD_MULTIPLES >>
rw [ Once INT_MUL_COMM ] >>
rw [ Once ( GSYM INT_MOD_PLUS ) ] >>
rw [ INT_LESS_MOD ] >>
simp [ Once ( GSYM int_sub_mod ) ] >>
rw [ intLib. COOPER_PROVE `` ∀x ( b : int ) . x + b - ( 2 * b ) = x - b `` ] >>
` i % ( 2 * b ) − b < 2 * b ` by intLib. COOPER_TAC >>
rw [ INT_LESS_MOD ] )
>- (
rw [ Once ( GSYM INT_MOD_PLUS ) ] >>
rw [ INT_LESS_MOD ] >>
simp [ Once ( GSYM int_sub_mod ) ] >>
rw [ intLib. COOPER_PROVE `` ∀x ( b : int ) . x + b - ( 2 * b ) = x - b `` ] >>
` i % ( 2 * b ) − b < 2 * b ` by intLib. COOPER_TAC >>
rw [ INT_LESS_MOD ] )
>- (
` 0 ≤ 2 * b * & ( 2 ** x ) + i ` by intLib. COOPER_TAC >>
rw [ int_of_num2 ] >>
` 2 * b ≠ 0 ` by intLib. COOPER_TAC >>
drule INT_MOD_ADD_MULTIPLES >>
rw [ Once INT_MUL_COMM ] >>
rw [ Once ( GSYM INT_MOD_PLUS ) ] >>
rw [ INT_LESS_MOD ] >>
` i % ( 2 * b ) + b < 2 * b ` by intLib. COOPER_TAC >>
rw [ INT_LESS_MOD ] >>
intLib. COOPER_TAC )
>- (
rw [ Once ( GSYM INT_MOD_PLUS ) ] >>
rw [ INT_LESS_MOD ] >>
` i % ( 2 * b ) + b < 2 * b ` by intLib. COOPER_TAC >>
rw [ INT_LESS_MOD ] >>
intLib. COOPER_TAC )
QED
(* R e l a t e t h e s e m a n t i c s o f C o n v e r t t o s o m e t h i n g m o r e c l o s e l y f o l l o w i n g t h e
* implementation * )
@ -247,30 +388,6 @@ End
Z. signed_extract i3 1 3 = Z. of_int ( - 3 ) ; ;
* )
Definition extract_def :
extract ( : 'a ) unsigned bits z =
if unsigned then Zextract ( : 'a ) z 0 bits else Zsigned_extract ( : 'a ) z 0 bits
End
Definition simp_convert_def :
simp_convert ( : 'a ) unsigned dst src arg =
case ( dst , src ) of
| ( IntegerT m , IntegerT n ) =>
( if m ≤ n then
case arg of
| Integer data _ => Integer ( extract ( : 'a ) F m data ) dst
| _ => Convert F dst src arg
else
case arg of
| Integer data _ => Integer ( extract ( : 'a ) unsigned n data ) dst
| _ =>
if unsigned then Convert unsigned dst src arg
else arg )
| _ =>
if dst = src then arg
else Convert unsigned dst src arg
End
Theorem Zextract0 :
dimindex ( : 'b ) ≤ dimindex ( : 'a )
⇒
@ -306,93 +423,171 @@ Proof
rw [ w21_sw2sw_extend ]
QED
Theorem convert_implementation_fits :
∀unsigned dst src const i m n.
const = Integer i src ∧
src = IntegerT n ∧
dst = IntegerT m ∧ 0 < m ∧
ifits i ( sizeof_bits src ) ∧
dimindex ( : 'b ) = min m n ∧
Theorem signed_extract_truncate_2comp :
dimindex ( : 'b ) ≤ dimindex ( : 'a )
⇒
Zsigned_extract ( : 'a ) i 0 ( dimindex ( : 'b ) ) = truncate_2comp i ( dimindex ( : 'b ) )
Proof
rw [ ] >>
drule Zsigned_extract0 >> rw [ ] >>
metis_tac [ truncate_2comp_i2w_w2i ]
QED
Theorem unsigned_extract_truncate_2comp :
dimindex ( : 'b ) ≤ dimindex ( : 'a )
⇒
Zextract ( : 'a ) i 0 ( dimindex ( : 'b ) ) = & signed2unsigned ( truncate_2comp i ( dimindex ( : 'b ) ) ) ( dimindex ( : 'b ) )
Proof
rw [ ] >> drule Zextract0 >> rw [ w2n_i2w ] >>
` ∃n. - i ≤ 2 ** n ∧ dimindex ( : 'b ) ≤ n `
by (
Cases_on ` i < 0 ` >> rw [ ]
>- (
` ∃j. i = -& j ` by intLib. COOPER_TAC >>
rw [ ] >>
` 1 < 2 ` by decide_tac >>
drule EXP_ALWAYS_BIG_ENOUGH >>
disch_then ( qspec_then ` j ` mp_tac ) >>
rw [ ] >>
qexists_tac ` MAX m ( dimindex ( : 'b ) ) ` >>
rw [ MAX_DEF ] >>
drule bitTheory. TWOEXP_MONO >>
intLib. COOPER_TAC )
>- (
` ∃j. i = & j ` by intLib. COOPER_TAC >>
rw [ ] >>
metis_tac [ ] ) ) >>
` 0 < dimword ( : 'b ) ∧ 0 < dimindex ( : 'b ) ` by rw [ DIMINDEX_GT_0 , ZERO_LT_dimword ] >>
` 0 ≠ dimindex ( : 'b ) ∧ 0 ≠ dimword ( : 'b ) ` by decide_tac >>
drule unsigned_truncate >>
ntac 2 ( disch_then drule ) >>
rw [ GSYM dimword_def ] >>
rw [ signed2unsigned_def ]
>- (
asm_simp_tac std_ss [ GSYM INT_MOD ] >>
` 0 ≤ & ( 2 ** n ) + i `
by ( fs [ INT_EXP ] >> intLib. COOPER_TAC ) >>
asm_simp_tac std_ss [ int_of_num2 ] >>
` ∃j. i = -& j ` by intLib. COOPER_TAC >>
rw [ ] >>
` ∃x. & ( 2 ** n ) = dimword ( : 'b ) * 2 ** x `
by (
rw [ GSYM EXP_ADD , dimword_def ] >>
qexists_tac ` n - dimindex ( : 'b ) ` >> rw [ ] ) >>
rw [ ] >>
`& dimword ( : β) ≠ 0 ` by intLib. COOPER_TAC >>
drule INT_MOD_ADD_MULTIPLES >>
simp_tac std_ss [ Once INT_MUL_COMM , GSYM INT_MUL ] )
>- (
` ∃j. i = & j ` by intLib. COOPER_TAC >>
rw [ ] )
QED
Definition simp_signed_def :
simp_signed ( : 'a ) bits arg to_t =
case arg of
| Integer data _ => Integer ( Zsigned_extract ( : 'a ) data 0 bits ) to_t
| _ => Signed bits arg to_t
End
Definition simp_unsigned_def :
simp_unsigned ( : 'a ) bits arg to_t =
case arg of
| Integer data _ => Integer ( Zextract ( : 'a ) data 0 bits ) to_t
| _ => Signed bits arg to_t
End
Theorem signed_implementation_fits :
∀const i to_t from_t.
dimindex ( : 'b ) ≤ sizeof_bits to_t ∧
dimindex ( : 'b ) ≤ dimindex ( : 'a )
⇒
∃i2. simp_convert ( : 'a ) unsigned dst src const = Integer i2 dst ∧ ifits i2 m
∃i2.
simp_signed ( : 'a ) ( dimindex ( : 'b ) ) ( Integer i from_t ) to_t =
Integer i2 to_t ∧ ifits i2 ( sizeof_bits to_t )
Proof
rw [ simp_convert_def , extract_def , MIN_DEF ] >> fs [ ]
>- ( drule Zsigned_extract0 >> rw [ ] >> rw [ ifits_w2i ] )
rw [ simp_signed_def ] >>
drule Zsigned_extract0 >> rw [ ] >>
` ifits ( w2i ( i2w i : 'b word ) ) ( dimindex ( : 'b ) ) ` by metis_tac [ ifits_w2i ] >>
metis_tac [ ifits_mono ]
QED
Theorem unsigned_implementation_fits :
∀const i to_t from_t.
dimindex ( : 'b ) < sizeof_bits to_t ∧
dimindex ( : 'b ) ≤ dimindex ( : 'a )
⇒
∃i2.
simp_unsigned ( : 'a ) ( dimindex ( : 'b ) ) ( Integer i from_t ) to_t =
Integer i2 to_t ∧ ifits i2 ( sizeof_bits to_t )
Proof
rw [ simp_unsigned_def ] >>
drule Zextract0 >> rw [ ] >> rw [ w2n_i2w ] >>
fs [ ifits_def , dimword_def ] >> rw [ ] >>
qspecl_then [ ` i ` , `& ( 2 ** dimindex ( : β))`] mp_tac INT_MOD_BOUNDS >>
rw [ ]
>- (
` m = dimindex ( : 'b ) ` by decide_tac >>
drule Zsigned_extract0 >> rw [ ] >> rw [ ifits_w2i ] )
` 0 <= ( 2 : num ) ** ( sizeof_bits to_t − 1 ) ` by intLib. COOPER_TAC >>
intLib. COOPER_TAC )
>- (
drule Zextract0 >> rw [ ] >> rw [ w2n_i2w ] >> fs [ sizeof_bits_def ] >>
fs [ ifits_def , dimword_def ] >> rw [ ] >>
qspecl_then [ ` i ` , `& ( 2 ** dimindex ( : β))`] mp_tac INT_MOD_BOUNDS >>
rw [ ]
>- intLib. COOPER_TAC >>
` dimindex ( : 'b ) < m ` by decide_tac >>
` 2 ** dimindex ( : 'b ) ≤ 2 ** ( m - 1 ) ` suffices_by intLib. COOPER_TAC >>
` 2 ** dimindex ( : 'b ) ≤ 2 ** ( sizeof_bits to_t - 1 ) ` suffices_by intLib. COOPER_TAC >>
rw [ ] )
>- (
drule Zsigned_extract0 >> rw [ ] >>
irule ifits_mono >> qexists_tac ` dimindex ( : 'b ) ` >> rw [ ifits_w2i ] )
QED
Theorem convert_implementation :
∀h unsigned dst src const i m n.
const = Integer i src ∧
src = IntegerT n ∧ 0 < n ∧
dst = IntegerT m ∧
ifits i ( sizeof_bits src ) ∧
dimindex ( : 'b ) = min m n ∧
dimindex ( : 'b ) ≤ dimindex ( : 'a )
Theorem signed_implementation :
∀to_t i from_t h m n.
dimindex ( : 'b ) ≤ sizeof_bits to_t ∧
dimindex ( : 'b ) ≤ dimindex ( : 'a ) ∧
from_ t = IntegerT m ∧
to_t = IntegerT n ∧
0 < m ∧
ifits i m
⇒
eval_exp h ( Convert unsigned dst src const ) =
eval_exp h ( simp_convert ( : 'a ) unsigned dst src const )
eval_exp h ( Signed ( dimindex ( : 'b ) ) ( Integer i from_t ) to_ t) =
eval_exp h ( simp_ signed ( : 'a ) ( dimindex ( : 'b ) ) ( Integer i from_t ) to_ t)
Proof
rw [ EXTENSION , IN_DEF ] >>
simp [ simp_convert_def ] >>
CASE_TAC >>
rw [ EXTENSION , IN_DEF ] >> simp [ simp_signed_def ] >>
ONCE_REWRITE_TAC [ eval_exp_cases ] >>
fs [ sizeof_bits_def ] >>
fs [ ] >>
ONCE_REWRITE_TAC [ eval_exp_cases ] >> rw [ ] >>
` 0 < m ` by decide_tac >>
` truncate_2comp i m = i ` by metis_tac [ fits_ident ] >>
rw [ ] >> fs [ sizeof_bits_def ] >>
irule ( METIS_PROVE [ ] `` y = z ⇒ ( x = y ⇔ x = z ) `` ) >> rw [ ] >>
rw [ signed_extract_truncate_2comp ] >>
` 0 < dimindex ( : 'b ) ` by metis_tac [ DIMINDEX_GT_0 ] >>
` 0 < n ` by decide_tac >>
` truncate_2comp i n = i ` by metis_tac [ fits_ident ] >>
rw [ ] >>
Cases_on ` unsigned ` >> fs [ extract_def ] >>
irule ( METIS_PROVE [ ] `` y = z ⇒ ( x = y ⇔ x = z ) `` ) >> rw [ ]
>- ( (* T r u n c a t i n g , u n s i g n e d c o n v e r t *)
drule Zsigned_extract0 >> rw [ ] >>
` min m n = m ` by fs [ MIN_DEF ] >>
` ∀i. truncate_2comp i ( dimindex ( : β)) = w2i ( i2w i : 'b word ) `
by rw [ GSYM truncate_2comp_i2w_w2i ] >>
fs [ ] >> rw [ i2w_pos , i2n_def , i2w_def ] >>
`? j. 0 ≤ j ∧ - i = j ` by rw [ ] >>
` i = - j ` by intLib. COOPER_TAC >>
simp [ ] >>
simp [ GSYM int_sub ] >>
`? k. j = & k ` by metis_tac [ NUM_POSINT_EXISTS ] >>
simp [ ] >>
` k < 2 ** n `
by ( fs [ ifits_def ] >> Cases_on ` n ` >> fs [ ADD1 , EXP_ADD ] ) >>
simp [ INT_SUB , word_2comp_n2w , dimword_def ] >>
qabbrev_tac ` d = dimindex ( : 'b ) ` >>
` ∃x. ( 2 : num ) ** n = 2 ** x * 2 ** d `
by (
`? x. n = x + d ` by ( qexists_tac ` n - d ` >> fs [ MIN_DEF ] ) >>
metis_tac [ EXP_ADD ] ) >>
metis_tac [ MOD_COMPLEMENT , bitTheory. ZERO_LT_TWOEXP , MULT_COMM ] )
>- ( (* T r u n c a t i n g , s i g n e d c o n v e r t *)
` min m n = m ` by rw [ MIN_DEF ] >>
drule Zsigned_extract0 >> rw [ ] >> fs [ ] >>
` w2i ( i2w i : 'b word ) = truncate_2comp i m ` by metis_tac [ truncate_2comp_i2w_w2i ] >>
rw [ ] >>
` 0 < dimindex ( : 'b ) ` by rw [ ] >>
metis_tac [ fits_ident , truncate_2comp_fits ] ) >>
(* e x t e n d i n g *)
drule Zsigned_extract0 >> drule Zextract0 >> fs [ MIN_DEF ] >> rw [ w2n_i2n ] >>
` INT_MIN ( : 'b ) ≤ i ∧ i ≤ INT_MAX ( : 'b ) ` suffices_by metis_tac [ w2i_i2w ] >>
fs [ ifits_def , INT_MAX_def , INT_MIN_def , int_arithTheory. INT_NUM_SUB ] >>
rw [ DECIDE ``! ( x : num ) . x < 1 ⇔ x = 0 `` ,
intLib. COOPER_PROVE ``! ( x : int ) . x ≤ y - 1 ⇔ x < y `` ]
` ifits ( truncate_2comp i ( dimindex ( : β))) n ` suffices_by metis_tac [ fits_ident ] >>
metis_tac [ truncate_2comp_fits , ifits_mono ]
QED
Theorem unsigned_implementation :
∀to_t i from_t h m n.
dimindex ( : 'b ) < sizeof_bits to_t ∧
dimindex ( : 'b ) ≤ dimindex ( : 'a ) ∧
from_t = IntegerT m ∧
to_t = IntegerT n ∧
0 < m ∧
ifits i m
⇒
eval_exp h ( Unsigned ( dimindex ( : 'b ) ) ( Integer i from_t ) to_t ) =
eval_exp h ( simp_unsigned ( : 'a ) ( dimindex ( : 'b ) ) ( Integer i from_t ) to_t )
Proof
rw [ EXTENSION , IN_DEF ] >> simp [ simp_unsigned_def ] >>
ONCE_REWRITE_TAC [ eval_exp_cases ] >>
fs [ ] >>
ONCE_REWRITE_TAC [ eval_exp_cases ] >> rw [ ] >>
` 0 < m ` by decide_tac >>
` truncate_2comp i m = i ` by metis_tac [ fits_ident ] >>
rw [ ] >> fs [ sizeof_bits_def ] >>
irule ( METIS_PROVE [ ] `` y = z ⇒ ( x = y ⇔ x = z ) `` ) >> rw [ ] >>
rw [ unsigned_extract_truncate_2comp ] >>
` 0 < dimindex ( : 'b ) ` by metis_tac [ DIMINDEX_GT_0 ] >>
` 0 < n ` by decide_tac >>
` ifits ( & signed2unsigned ( truncate_2comp i ( dimindex ( : β))) ( dimindex ( : 'b ) ) ) n ` suffices_by metis_tac [ fits_ident ] >>
irule ifits_mono >>
qexists_tac ` dimindex ( : 'b ) + 1 ` >> rw [ ] >>
metis_tac [ truncate_2comp_fits , signed2unsigned_fits ]
QED
export_theory ( ) ;