diff --git a/sledge/src/fol.ml b/sledge/src/fol.ml index c3870cbd6..c7963bdd4 100644 --- a/sledge/src/fol.ml +++ b/sledge/src/fol.ml @@ -262,7 +262,6 @@ module Fml : sig (* arithmetic *) | Eq0 of trm (** [Eq0(x)] iff x = 0 *) | Gt0 of trm (** [Gt0(x)] iff x > 0 *) - | Le0 of trm (** [Le0(x)] iff x ≤ 0 *) (* propositional connectives *) | Not of fml | And of fml * fml @@ -279,7 +278,6 @@ module Fml : sig val _Eq : trm -> trm -> fml val _Eq0 : trm -> fml val _Gt0 : trm -> fml - val _Le0 : trm -> fml val _Not : fml -> fml val _And : fml -> fml -> fml val _Or : fml -> fml -> fml @@ -294,7 +292,6 @@ end = struct | Eq of trm * trm | Eq0 of trm | Gt0 of trm - | Le0 of trm | Not of fml | And of fml * fml | Or of fml * fml @@ -352,16 +349,11 @@ end = struct | Q q -> if Q.gt q Q.zero then Tt else _Ff | x -> Gt0 x - let _Le0 = function - | Z z -> if Z.leq z Z.zero then Tt else _Ff - | Q q -> if Q.leq q Q.zero then Tt else _Ff - | x -> Le0 x - let _UPosLit p xs = UPosLit (p, xs) let _UNegLit p xs = UNegLit (p, xs) let rec is_negative = function - | Not (Tt | Eq _ | Eq0 _) | Le0 _ | Or _ | Xor _ | UNegLit _ -> true + | Not (Tt | Eq _ | Eq0 _ | Gt0 _) | Or _ | Xor _ | UNegLit _ -> true | Tt | Eq _ | Eq0 _ | Gt0 _ | And _ | Iff _ | UPosLit _ | Cond _ -> false | Not p -> not (is_negative p) @@ -371,8 +363,6 @@ end = struct let rec equal_or_opposite p q = match (p, q) with | p, Not p' | Not p', p -> if equal_fml p p' then Opposite else Unknown - | Gt0 a, Le0 a' | Le0 a, Gt0 a' -> - if equal_trm a a' then Opposite else Unknown | And (a, b), Or (a', b') | Or (a', b'), And (a, b) -> ( match equal_or_opposite a a' with | Opposite -> ( @@ -447,8 +437,6 @@ end = struct Xor (p, q) ) and _Not = function - | Gt0 x -> _Le0 x - | Le0 x -> _Gt0 x | Not x -> x | And (x, y) -> _Or (_Not x) (_Not y) | Or (x, y) -> _And (_Not x) (_Not y) @@ -457,7 +445,7 @@ end = struct | Cond {cnd; pos; neg} -> _Cond cnd (_Not pos) (_Not neg) | UPosLit (p, xs) -> _UNegLit p xs | UNegLit (p, xs) -> _UPosLit p xs - | (Tt | Eq _ | Eq0 _) as x -> Not x + | (Tt | Eq _ | Eq0 _ | Gt0 _) as x -> Not x and _Cond cnd pos neg = match (cnd, pos, neg) with @@ -528,7 +516,7 @@ let ppx_f strength fs fml = | Eq0 x -> pf "(0 = %a)" pp_t x | Not (Eq0 x) -> pf "(0 @<2>≠ %a)" pp_t x | Gt0 x -> pf "(0 < %a)" pp_t x - | Le0 x -> pf "(0 @<2>≥ %a)" pp_t x + | Not (Gt0 x) -> pf "(0 @<2>≥ %a)" pp_t x | Not x -> pf "@<1>¬%a" pp x | And (x, y) -> pf "(%a@ @<2>∧ %a)" pp x pp y | Or (x, y) -> pf "(%a@ @<2>∨ %a)" pp x pp y @@ -584,7 +572,7 @@ let rec fold_vars_f ~init p ~f = match (p : fml) with | Tt -> init | Eq (x, y) -> fold_vars_t ~f x ~init:(fold_vars_t ~f y ~init) - | Eq0 x | Gt0 x | Le0 x -> fold_vars_t ~f x ~init + | Eq0 x | Gt0 x -> fold_vars_t ~f x ~init | Not x -> fold_vars_f ~f x ~init | And (x, y) | Or (x, y) | Iff (x, y) | Xor (x, y) -> fold_vars_f ~f x ~init:(fold_vars_f ~f y ~init) @@ -634,7 +622,6 @@ let rec map_trms_f ~f b = | Eq (x, y) -> map2 f b _Eq x y | Eq0 x -> map1 f b _Eq0 x | Gt0 x -> map1 f b _Gt0 x - | Le0 x -> map1 f b _Le0 x | Not x -> map1 (map_trms_f ~f) b _Not x | And (x, y) -> map2 (map_trms_f ~f) b _And x y | Or (x, y) -> map2 (map_trms_f ~f) b _Or x y @@ -944,7 +931,7 @@ module Formula = struct let eq0 = ap1f _Eq0 let dq0 a = _Not (eq0 a) let gt0 = ap1f _Gt0 - let le0 = ap1f _Le0 + let le0 a = _Not (gt0 a) let ge0 a = le0 (Term.neg a) let lt0 a = gt0 (Term.neg a) @@ -1007,7 +994,6 @@ module Formula = struct | Eq (x, y) -> lift_map2 f b _Eq x y | Eq0 x -> lift_map1 f b _Eq0 x | Gt0 x -> lift_map1 f b _Gt0 x - | Le0 x -> lift_map1 f b _Le0 x | Not x -> map1 (map_terms ~f) b _Not x | And (x, y) -> map2 (map_terms ~f) b _And x y | Or (x, y) -> map2 (map_terms ~f) b _Or x y @@ -1039,8 +1025,8 @@ module Formula = struct fun ~meet1 ~join1 ~top ~bot fml -> let rec add_conjunct (cjn, splits) fml = match fml with - | Tt | Eq _ | Eq0 _ | Gt0 _ | Le0 _ | Iff _ | Xor _ | UPosLit _ - |UNegLit _ | Not _ -> + | Tt | Eq _ | Eq0 _ | Gt0 _ | Iff _ | Xor _ | UPosLit _ | UNegLit _ + |Not _ -> (meet1 fml cjn, splits) | And (p, q) -> add_conjunct (add_conjunct (cjn, splits) p) q | Or (p, q) -> (cjn, [p; q] :: splits) @@ -1116,7 +1102,6 @@ let rec f_to_ses : fml -> Ses.Term.t = function | Eq (x, y) -> Ses.Term.eq (t_to_ses x) (t_to_ses y) | Eq0 x -> Ses.Term.eq Ses.Term.zero (t_to_ses x) | Gt0 x -> Ses.Term.lt Ses.Term.zero (t_to_ses x) - | Le0 x -> Ses.Term.le (t_to_ses x) Ses.Term.zero | Not p -> Ses.Term.not_ (f_to_ses p) | And (p, q) -> Ses.Term.and_ (f_to_ses p) (f_to_ses q) | Or (p, q) -> Ses.Term.or_ (f_to_ses p) (f_to_ses q)